Linear partial differential equations for scientists and engineers:
Gespeichert in:
Vorheriger Titel: | Tyn Myint-U Partial differential equations for scientists and engineers |
---|---|
Hauptverfasser: | , |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2007
|
Ausgabe: | 4. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 3. Aufl. u.d.T.: Myint-U, Tyn: Partial differential equations for scientists and engineers |
Beschreibung: | XXII, 778 S. graph. Darst. |
ISBN: | 0817643931 9780817643935 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021745967 | ||
003 | DE-604 | ||
005 | 20080702 | ||
007 | t | ||
008 | 060927s2007 d||| |||| 00||| eng d | ||
015 | |a 05,N15,0732 |2 dnb | ||
016 | 7 | |a 974202452 |2 DE-101 | |
020 | |a 0817643931 |c Gb. (Pr. in Vorb.) |9 0-8176-4393-1 | ||
020 | |a 9780817643935 |9 978-0-8176-4393-5 | ||
024 | 3 | |a 9780817643935 | |
028 | 5 | 2 | |a 11405566 |
035 | |a (OCoLC)75925404 | ||
035 | |a (DE-599)BVBBV021745967 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-573 |a DE-703 |a DE-91G |a DE-83 |a DE-20 |a DE-11 | ||
050 | 0 | |a QA377 | |
082 | 0 | |a 510 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 350f |2 stub | ||
100 | 0 | |a Tyn Myint-U |e Verfasser |0 (DE-588)132477033 |4 aut | |
245 | 1 | 0 | |a Linear partial differential equations for scientists and engineers |c Tyn Myint-U ; Lokenath Debnath |
250 | |a 4. ed. | ||
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2007 | |
300 | |a XXII, 778 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a 3. Aufl. u.d.T.: Myint-U, Tyn: Partial differential equations for scientists and engineers | ||
650 | 4 | |a Équations aux dérivées partielles - Manuels d'enseignement supérieur | |
650 | 4 | |a Differential equations, Partial | |
650 | 0 | 7 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Debnath, Lokenath |d 1935- |e Verfasser |0 (DE-588)115600663 |4 aut | |
780 | 0 | 0 | |i 3. Auflage |a Tyn Myint-U |t Partial differential equations for scientists and engineers |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014959239&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014959239 |
Datensatz im Suchindex
_version_ | 1804135600309141504 |
---|---|
adam_text | TYN MYINT-U LOKENATH DEBNATH LINEAR PARTIAL DIFFERENTIAL EQUATIONS FOR
SCIENTISTS AND ENGINEERS FOURTH EDITION BIRKHAUSER BOSTON * BASEL *
BERLIN CONTENTS PREFACE TO THE FOURTH EDITION XV PREFACE TO THE THIRD
EDITION XIX 1 INTRODUCTION 1 1.1 BRIEF HISTORICAL COMMENTS 1 1.2 BASIC
CONCEPTS AND DEFINITIONS 12 1.3 MATHEMATICAL PROBLEMS 15 1.4 LINEAR
OPERATORS 16 1.5 SUPERPOSITION PRINCIPLE 20 1.6 EXERCISES 22 2
FIRST-ORDER, QUASI-LINEAR EQUATIONS AND METHOD OF CHARACTERISTICS 27 2.1
INTRODUCTION 27 2.2 CLASSIFICATION OF FIRST-ORDER EQUATIONS 27 2.3
CONSTRUCTION OF A FIRST-ORDER EQUATION 29 2.4 GEOMETRICAL INTERPRETATION
OF A FIRST-ORDER EQUATION . . 33 2.5 METHOD OF CHARACTERISTICS AND
GENERAL SOLUTIONS 35 2.6 CANONICAL FORMS OF FIRST-ORDER LINEAR EQUATIONS
. . . . 49 2.7 METHOD OF SEPARATION OF VARIABLES 51 2.8 EXERCISES 55 3
MATHEMATICAL MODELS 63 3.1 CLASSICAL EQUATIONS 63 3.2 THE VIBRATING
STRING 65 3.3 THE VIBRATING MEMBRANE 67 3.4 WAVES IN AN ELASTIC MEDIUM
69 3.5 CONDUCTION OF HEAT IN SOLIDS 75 3.6 THE GRAVITATIONAL POTENTIAL
76 3.7 CONSERVATION LAWS AND THE BURGERS EQUATION 79 3.8 THE SCHRODINGER
AND THE KORTEWEG-DE VRIES EQUATIONS . 81 3.9 EXERCISES 83 4
CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS 91 4.1 SECOND-ORDER
EQUATIONS IN TWO INDEPENDENT VARIABLES . 91 CONTENTS 4.2 CANONICAL FORMS
93 4.3 EQUATIONS WITH CONSTANT COEFFICIENTS 99 4.4 GENERAL SOLUTIONS 107
4.5 SUMMARY AND FURTHER SIMPLIFICATION ILL 4.6 EXERCISES 113 THE CAUCHY
PROBLEM AND WAVE EQUATIONS 117 5.1 THE CAUCHY PROBLEM 117 5.2 THE
CAUCHY-KOWALEWSKAYA THEOREM 120 5.3 HOMOGENEOUS WAVE EQUATIONS 121 5.4
INITIAL BOUNDARY-VALUE PROBLEMS 130 5.5 EQUATIONS WITH NONHOMOGENEOUS
BOUNDARY CONDITIONS . 134 5.6 VIBRATION OF FINITE STRING WITH FIXED ENDS
136 5.7 NONHOMOGENEOUS WAVE EQUATIONS 139 5.8 THE RIEMANN METHOD 142 5.9
SOLUTION OF THE GOURSAT PROBLEM 149 5.10 SPHERICAL WAVE EQUATION 153
5.11 CYLINDRICAL WAVE EQUATION 155 5.12 EXERCISES 158 FOURIER SERIES AND
INTEGRALS WITH APPLICATIONS 167 6.1 INTRODUCTION 167 6.2 PIECEWISE
CONTINUOUS FUNCTIONS AND PERIODIC FUNCTIONS . 168 6.3 SYSTEMS OF
ORTHOGONAL FUNCTIONS 170 6.4 FOURIER SERIES 171 6.5 CONVERGENCE OF
FOURIER SERIES 173 6.6 EXAMPLES AND APPLICATIONS OF FOURIER SERIES 177
6.7 EXAMPLES AND APPLICATIONS OF COSINE AND SINE FOURIER SERIES 183 6.8
COMPLEX FOURIER SERIES 194 6.9 FOURIER SERIES ON AN ARBITRARY INTERVAL
196 6.10 THE RIEMANN-LEBESGUE LEMMA AND POINT WISE CONVERGENCE THEOREM
201 6.11 UNIFORM CONVERGENCE, DIFFERENTIATION, AND INTEGRATION . . 208
6.12 DOUBLE FOURIER SERIES 212 6.13 FOURIER INTEGRALS 214 6.14 EXERCISES
220 METHOD OF SEPARATION OF VARIABLES 231 7.1 INTRODUCTION 231 7.2
SEPARATION OF VARIABLES 232 7.3 THE VIBRATING STRING PROBLEM 235 7.4
EXISTENCE AND UNIQUENESS OF SOLUTION OF THE VIBRATING STRING PROBLEM 243
7.5 THE HEAT CONDUCTION PROBLEM 248 CONTENTS XI 7.6 EXISTENCE AND
UNIQUENESS OF SOLUTION OF THE HEAT CONDUCTION PROBLEM 251 7.7 THE
LAPLACE AND BEAM EQUATIONS 254 7.8 NONHOMOGENEOUS PROBLEMS 258 7.9
EXERCISES 265 8 EIGENVALUE PROBLEMS AND SPECIAL FUNCTIONS 273 8.1
STURM-LIOUVILLE SYSTEMS 273 8.2 EIGENVALUES AND EIGENFUNCTIONS 277 8.3
EIGENFUNCTION EXPANSIONS 283 8.4 CONVERGENCE IN THE MEAN 284 8.5
COMPLETENESS AND PARSEVAL S EQUALITY 286 8.6 BESSEL S EQUATION AND
BESSEL S FUNCTION 289 8.7 ADJOINT FORMS AND LAGRANGE IDENTITY 295 8.8
SINGULAR STURM-LIOUVILLE SYSTEMS 297 8.9 LEGENDRE S EQUATION AND
LEGENDRE S FUNCTION 302 8.10 BOUNDARY-VALUE PROBLEMS INVOLVING ORDINARY
DIFFERENTIAL EQUATIONS 308 8.11 GREEN S FUNCTIONS FOR ORDINARY
DIFFERENTIAL EQUATIONS . . 310 8.12 CONSTRUCTION OF GREEN S FUNCTIONS
315 8.13 THE SCHRODINGER EQUATION AND LINEAR HARMONIC OSCILLATOR 317
8.14 EXERCISES 321 9 BOUNDARY-VALUE PROBLEMS AND APPLICATIONS 329 9.1
BOUNDARY-VALUE PROBLEMS 329 9.2 MAXIMUM AND MINIMUM PRINCIPLES 332 9.3
UNIQUENESS AND CONTINUITY THEOREMS 333 9.4 DIRICHLET PROBLEM FOR A
CIRCLE 334 9.5 DIRICHLET PROBLEM FOR A CIRCULAR ANNULUS 340 9.6 NEUMANN
PROBLEM FOR A CIRCLE 341 9.7 DIRICHLET PROBLEM FOR A RECTANGLE 343 9.8
DIRICHLET PROBLEM INVOLVING THE POISSON EQUATION . . . . 346 9.9 THE
NEUMANN PROBLEM FOR A RECTANGLE 348 9.10 EXERCISES 351 10
HIGHER-DIMENSIONAL BOUNDARY-VALUE PROBLEMS 361 10.1 INTRODUCTION 361
10.2 DIRICHLET PROBLEM FOR A CUBE 361 10.3 DIRICHLET PROBLEM FOR A
CYLINDER 363 10.4 DIRICHLET PROBLEM FOR A SPHERE 367 10.5
THREE-DIMENSIONAL WAVE AND HEAT EQUATIONS 372 10.6 VIBRATING MEMBRANE
372 10.7 HEAT FLOW IN A RECTANGULAR PLATE 375 10.8 WAVES IN THREE
DIMENSIONS 379 XII CONTENTS 10.9 HEAT CONDUCTION IN A RECTANGULAR VOLUME
381 10.10 THE SCHRODINGER EQUATION AND THE HYDROGEN ATOM . . . 382 10.11
METHOD OF EIGENFUNCTIONS AND VIBRATION OF MEMBRANE . . 392 10.12
TIME-DEPENDENT BOUNDARY-VALUE PROBLEMS 395 10.13 EXERCISES 398 11
GREEN S FUNCTIONS AND BOUNDARY-VALUE PROBLEMS 407 11.1 INTRODUCTION 407
11.2 THE DIRAC DELTA FUNCTION 409 11.3 PROPERTIES OF GREEN S FUNCTIONS
412 11.4 METHOD OF GREEN S FUNCTIONS 414 11.5 DIRICHLET S PROBLEM FOR
THE LAPLACE OPERATOR 416 11.6 DIRICHLET S PROBLEM FOR THE HELMHOLTZ
OPERATOR 418 11.7 METHOD OF IMAGES 420 11.8 METHOD OF EIGENFUNCTIONS 423
11.9 HIGHER-DIMENSIONAL PROBLEMS 425 11.10 NEUMANN PROBLEM 430 11.11
EXERCISES 433 12 INTEGRAL TRANSFORM METHODS WITH APPLICATIONS 439 12.1
INTRODUCTION 439 12.2 FOURIER TRANSFORMS 440 12.3 PROPERTIES OF FOURIER
TRANSFORMS 444 12.4 CONVOLUTION THEOREM OF THE FOURIER TRANSFORM 448
12.5 THE FOURIER TRANSFORMS OF STEP AND IMPULSE FUNCTIONS . 453 12.6
FOURIER SINE AND COSINE TRANSFORMS 456 12.7 ASYMPTOTIC APPROXIMATION OF
INTEGRALS BY STATIONARY PHASE METHOD 458 12.8 LAPLACE TRANSFORMS 460
12.9 PROPERTIES OF LAPLACE TRANSFORMS 463 12.10 CONVOLUTION THEOREM OF
THE LAPLACE TRANSFORM 467 12.11 LAPLACE TRANSFORMS OF THE HEAVISIDE AND
DIRAC DELTA FUNCTIONS 470 12.12 HANKEL TRANSFORMS 488 12.13 PROPERTIES
OF HANKEL TRANSFORMS AND APPLICATIONS . . . . 491 12.14 MELLIN
TRANSFORMS AND THEIR OPERATIONAL PROPERTIES . . . 495 12.15 FINITE
FOURIER TRANSFORMS AND APPLICATIONS 499 12.16 FINITE HANKEL TRANSFORMS
AND APPLICATIONS 504 12.17 SOLUTION OF FRACTIONAL PARTIAL DIFFERENTIAL
EQUATIONS . . . 510 12.18 EXERCISES 521 13 NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS WITH APPLICATIONS 535 13.1 INTRODUCTION 535
CONTENTS XIII 13.2 ONE-DIMENSIONAL WAVE EQUATION AND METHOD OF
CHARACTERISTICS 536 13.3 LINEAR DISPERSIVE WAVES 540 13.4 NONLINEAR
DISPERSIVE WAVES AND WHITHAM S EQUATIONS . . 545 13.5 NONLINEAR
INSTABILITY 548 13.6 THE TRAFFIC FLOW MODEL 549 13.7 FLOOD WAVES IN
RIVERS 552 13.8 RIEMANN S SIMPLE WAVES OF FINITE AMPLITUDE 553 13.9
DISCONTINUOUS SOLUTIONS AND SHOCK WAVES 561 13.10 STRUCTURE OF SHOCK
WAVES AND BURGERS EQUATION 563 13.11 THE KORTEWEG-DE VRIES EQUATION AND
SOLITONS 573 13.12 THE NONLINEAR SCHRODINGER EQUATION AND SOLITARY
WAVES. 581 13.13 THE LAX PAIR AND THE ZAKHAROV AND SHABAT SCHEME . . .
590 13.14 EXERCISES 595 14 NUMERICAL AND APPROXIMATION METHODS 601 14.1
INTRODUCTION 601 14.2 FINITE DIFFERENCE APPROXIMATIONS, CONVERGENCE, AND
STABILITY 602 14.3 LAX-WENDROFF EXPLICIT METHOD 605 14.4 EXPLICIT FINITE
DIFFERENCE METHODS 608 14.5 IMPLICIT FINITE DIFFERENCE METHODS 624 14.6
VARIATIONAL METHODS AND THE EULER-LAGRANGE EQUATIONS . 629 14.7 THE
RAYLEIGH-RITZ APPROXIMATION METHOD 647 14.8 THE GALERKIN APPROXIMATION
METHOD 655 14.9 THE KANTOROVICH METHOD 659 14.10 THE FINITE ELEMENT
METHOD 663 14.11 EXERCISES 668 15 TABLES OF INTEGRAL TRANSFORMS 681 15.1
FOURIER TRANSFORMS 681 15.2 FOURIER SINE TRANSFORMS 683 15.3 FOURIER
COSINE TRANSFORMS 685 15.4 LAPLACE TRANSFORMS 687 15.5 HANKEL TRANSFORMS
691 15.6 FINITE HANKEL TRANSFORMS 695 ANSWERS AND HINTS TO SELECTED
EXERCISES 697 1.6 EXERCISES 697 2.8 EXERCISES 698 3.9 EXERCISES 704 4.6
EXERCISES 707 5.12 EXERCISES 712 6.14 EXERCISES 715 7.9 EXERCISES 724
XIV CONTENTS 8.14 EXERCISES 726 9.10 EXERCISES 727 10.13 EXERCISES 731
11.11 EXERCISES 739 12.18 EXERCISES 740 14.11 EXERCISES 745 APPENDIX:
SOME SPECIAL FUNCTIONS AND THEIR PROPERTIES 749 A-L GAMMA, BETA, ERROR,
AND AIRY FUNCTIONS 749 A-2 HERMITE POLYNOMIALS AND WEBER-HERMITE
FUNCTIONS . . . 757 BIBLIOGRAPHY 761 INDEX 771
|
adam_txt |
TYN MYINT-U LOKENATH DEBNATH LINEAR PARTIAL DIFFERENTIAL EQUATIONS FOR
SCIENTISTS AND ENGINEERS FOURTH EDITION BIRKHAUSER BOSTON * BASEL *
BERLIN CONTENTS PREFACE TO THE FOURTH EDITION XV PREFACE TO THE THIRD
EDITION XIX 1 INTRODUCTION 1 1.1 BRIEF HISTORICAL COMMENTS 1 1.2 BASIC
CONCEPTS AND DEFINITIONS 12 1.3 MATHEMATICAL PROBLEMS 15 1.4 LINEAR
OPERATORS 16 1.5 SUPERPOSITION PRINCIPLE 20 1.6 EXERCISES 22 2
FIRST-ORDER, QUASI-LINEAR EQUATIONS AND METHOD OF CHARACTERISTICS 27 2.1
INTRODUCTION 27 2.2 CLASSIFICATION OF FIRST-ORDER EQUATIONS 27 2.3
CONSTRUCTION OF A FIRST-ORDER EQUATION 29 2.4 GEOMETRICAL INTERPRETATION
OF A FIRST-ORDER EQUATION . . 33 2.5 METHOD OF CHARACTERISTICS AND
GENERAL SOLUTIONS 35 2.6 CANONICAL FORMS OF FIRST-ORDER LINEAR EQUATIONS
. . . . 49 2.7 METHOD OF SEPARATION OF VARIABLES 51 2.8 EXERCISES 55 3
MATHEMATICAL MODELS 63 3.1 CLASSICAL EQUATIONS 63 3.2 THE VIBRATING
STRING 65 3.3 THE VIBRATING MEMBRANE 67 3.4 WAVES IN AN ELASTIC MEDIUM
69 3.5 CONDUCTION OF HEAT IN SOLIDS 75 3.6 THE GRAVITATIONAL POTENTIAL
76 3.7 CONSERVATION LAWS AND THE BURGERS EQUATION 79 3.8 THE SCHRODINGER
AND THE KORTEWEG-DE VRIES EQUATIONS . 81 3.9 EXERCISES 83 4
CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS 91 4.1 SECOND-ORDER
EQUATIONS IN TWO INDEPENDENT VARIABLES . 91 CONTENTS 4.2 CANONICAL FORMS
93 4.3 EQUATIONS WITH CONSTANT COEFFICIENTS 99 4.4 GENERAL SOLUTIONS 107
4.5 SUMMARY AND FURTHER SIMPLIFICATION ILL 4.6 EXERCISES 113 THE CAUCHY
PROBLEM AND WAVE EQUATIONS 117 5.1 THE CAUCHY PROBLEM 117 5.2 THE
CAUCHY-KOWALEWSKAYA THEOREM 120 5.3 HOMOGENEOUS WAVE EQUATIONS 121 5.4
INITIAL BOUNDARY-VALUE PROBLEMS 130 5.5 EQUATIONS WITH NONHOMOGENEOUS
BOUNDARY CONDITIONS . 134 5.6 VIBRATION OF FINITE STRING WITH FIXED ENDS
136 5.7 NONHOMOGENEOUS WAVE EQUATIONS 139 5.8 THE RIEMANN METHOD 142 5.9
SOLUTION OF THE GOURSAT PROBLEM 149 5.10 SPHERICAL WAVE EQUATION 153
5.11 CYLINDRICAL WAVE EQUATION 155 5.12 EXERCISES 158 FOURIER SERIES AND
INTEGRALS WITH APPLICATIONS 167 6.1 INTRODUCTION 167 6.2 PIECEWISE
CONTINUOUS FUNCTIONS AND PERIODIC FUNCTIONS . 168 6.3 SYSTEMS OF
ORTHOGONAL FUNCTIONS 170 6.4 FOURIER SERIES 171 6.5 CONVERGENCE OF
FOURIER SERIES 173 6.6 EXAMPLES AND APPLICATIONS OF FOURIER SERIES 177
6.7 EXAMPLES AND APPLICATIONS OF COSINE AND SINE FOURIER SERIES 183 6.8
COMPLEX FOURIER SERIES 194 6.9 FOURIER SERIES ON AN ARBITRARY INTERVAL
196 6.10 THE RIEMANN-LEBESGUE LEMMA AND POINT WISE CONVERGENCE THEOREM
201 6.11 UNIFORM CONVERGENCE, DIFFERENTIATION, AND INTEGRATION . . 208
6.12 DOUBLE FOURIER SERIES 212 6.13 FOURIER INTEGRALS 214 6.14 EXERCISES
220 METHOD OF SEPARATION OF VARIABLES 231 7.1 INTRODUCTION 231 7.2
SEPARATION OF VARIABLES 232 7.3 THE VIBRATING STRING PROBLEM 235 7.4
EXISTENCE AND UNIQUENESS OF SOLUTION OF THE VIBRATING STRING PROBLEM 243
7.5 THE HEAT CONDUCTION PROBLEM 248 CONTENTS XI 7.6 EXISTENCE AND
UNIQUENESS OF SOLUTION OF THE HEAT CONDUCTION PROBLEM 251 7.7 THE
LAPLACE AND BEAM EQUATIONS 254 7.8 NONHOMOGENEOUS PROBLEMS 258 7.9
EXERCISES 265 8 EIGENVALUE PROBLEMS AND SPECIAL FUNCTIONS 273 8.1
STURM-LIOUVILLE SYSTEMS 273 8.2 EIGENVALUES AND EIGENFUNCTIONS 277 8.3
EIGENFUNCTION EXPANSIONS 283 8.4 CONVERGENCE IN THE MEAN 284 8.5
COMPLETENESS AND PARSEVAL'S EQUALITY 286 8.6 BESSEL'S EQUATION AND
BESSEL'S FUNCTION 289 8.7 ADJOINT FORMS AND LAGRANGE IDENTITY 295 8.8
SINGULAR STURM-LIOUVILLE SYSTEMS 297 8.9 LEGENDRE'S EQUATION AND
LEGENDRE'S FUNCTION 302 8.10 BOUNDARY-VALUE PROBLEMS INVOLVING ORDINARY
DIFFERENTIAL EQUATIONS 308 8.11 GREEN'S FUNCTIONS FOR ORDINARY
DIFFERENTIAL EQUATIONS . . 310 8.12 CONSTRUCTION OF GREEN'S FUNCTIONS
315 8.13 THE SCHRODINGER EQUATION AND LINEAR HARMONIC OSCILLATOR 317
8.14 EXERCISES 321 9 BOUNDARY-VALUE PROBLEMS AND APPLICATIONS 329 9.1
BOUNDARY-VALUE PROBLEMS 329 9.2 MAXIMUM AND MINIMUM PRINCIPLES 332 9.3
UNIQUENESS AND CONTINUITY THEOREMS 333 9.4 DIRICHLET PROBLEM FOR A
CIRCLE 334 9.5 DIRICHLET PROBLEM FOR A CIRCULAR ANNULUS 340 9.6 NEUMANN
PROBLEM FOR A CIRCLE 341 9.7 DIRICHLET PROBLEM FOR A RECTANGLE 343 9.8
DIRICHLET PROBLEM INVOLVING THE POISSON EQUATION . . . . 346 9.9 THE
NEUMANN PROBLEM FOR A RECTANGLE 348 9.10 EXERCISES 351 10
HIGHER-DIMENSIONAL BOUNDARY-VALUE PROBLEMS 361 10.1 INTRODUCTION 361
10.2 DIRICHLET PROBLEM FOR A CUBE 361 10.3 DIRICHLET PROBLEM FOR A
CYLINDER 363 10.4 DIRICHLET PROBLEM FOR A SPHERE 367 10.5
THREE-DIMENSIONAL WAVE AND HEAT EQUATIONS 372 10.6 VIBRATING MEMBRANE
372 10.7 HEAT FLOW IN A RECTANGULAR PLATE 375 10.8 WAVES IN THREE
DIMENSIONS 379 XII CONTENTS 10.9 HEAT CONDUCTION IN A RECTANGULAR VOLUME
381 10.10 THE SCHRODINGER EQUATION AND THE HYDROGEN ATOM . . . 382 10.11
METHOD OF EIGENFUNCTIONS AND VIBRATION OF MEMBRANE . . 392 10.12
TIME-DEPENDENT BOUNDARY-VALUE PROBLEMS 395 10.13 EXERCISES 398 11
GREEN'S FUNCTIONS AND BOUNDARY-VALUE PROBLEMS 407 11.1 INTRODUCTION 407
11.2 THE DIRAC DELTA FUNCTION 409 11.3 PROPERTIES OF GREEN'S FUNCTIONS
412 11.4 METHOD OF GREEN'S FUNCTIONS 414 11.5 DIRICHLET'S PROBLEM FOR
THE LAPLACE OPERATOR 416 11.6 DIRICHLET'S PROBLEM FOR THE HELMHOLTZ
OPERATOR 418 11.7 METHOD OF IMAGES 420 11.8 METHOD OF EIGENFUNCTIONS 423
11.9 HIGHER-DIMENSIONAL PROBLEMS 425 11.10 NEUMANN PROBLEM 430 11.11
EXERCISES 433 12 INTEGRAL TRANSFORM METHODS WITH APPLICATIONS 439 12.1
INTRODUCTION 439 12.2 FOURIER TRANSFORMS 440 12.3 PROPERTIES OF FOURIER
TRANSFORMS 444 12.4 CONVOLUTION THEOREM OF THE FOURIER TRANSFORM 448
12.5 THE FOURIER TRANSFORMS OF STEP AND IMPULSE FUNCTIONS . 453 12.6
FOURIER SINE AND COSINE TRANSFORMS 456 12.7 ASYMPTOTIC APPROXIMATION OF
INTEGRALS BY STATIONARY PHASE METHOD 458 12.8 LAPLACE TRANSFORMS 460
12.9 PROPERTIES OF LAPLACE TRANSFORMS 463 12.10 CONVOLUTION THEOREM OF
THE LAPLACE TRANSFORM 467 12.11 LAPLACE TRANSFORMS OF THE HEAVISIDE AND
DIRAC DELTA FUNCTIONS 470 12.12 HANKEL TRANSFORMS 488 12.13 PROPERTIES
OF HANKEL TRANSFORMS AND APPLICATIONS . . . . 491 12.14 MELLIN
TRANSFORMS AND THEIR OPERATIONAL PROPERTIES . . . 495 12.15 FINITE
FOURIER TRANSFORMS AND APPLICATIONS 499 12.16 FINITE HANKEL TRANSFORMS
AND APPLICATIONS 504 12.17 SOLUTION OF FRACTIONAL PARTIAL DIFFERENTIAL
EQUATIONS . . . 510 12.18 EXERCISES 521 13 NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS WITH APPLICATIONS 535 13.1 INTRODUCTION 535
CONTENTS XIII 13.2 ONE-DIMENSIONAL WAVE EQUATION AND METHOD OF
CHARACTERISTICS 536 13.3 LINEAR DISPERSIVE WAVES 540 13.4 NONLINEAR
DISPERSIVE WAVES AND WHITHAM'S EQUATIONS . . 545 13.5 NONLINEAR
INSTABILITY 548 13.6 THE TRAFFIC FLOW MODEL 549 13.7 FLOOD WAVES IN
RIVERS 552 13.8 RIEMANN'S SIMPLE WAVES OF FINITE AMPLITUDE 553 13.9
DISCONTINUOUS SOLUTIONS AND SHOCK WAVES 561 13.10 STRUCTURE OF SHOCK
WAVES AND BURGERS' EQUATION 563 13.11 THE KORTEWEG-DE VRIES EQUATION AND
SOLITONS 573 13.12 THE NONLINEAR SCHRODINGER EQUATION AND SOLITARY
WAVES. 581 13.13 THE LAX PAIR AND THE ZAKHAROV AND SHABAT SCHEME . . .
590 13.14 EXERCISES 595 14 NUMERICAL AND APPROXIMATION METHODS 601 14.1
INTRODUCTION 601 14.2 FINITE DIFFERENCE APPROXIMATIONS, CONVERGENCE, AND
STABILITY 602 14.3 LAX-WENDROFF EXPLICIT METHOD 605 14.4 EXPLICIT FINITE
DIFFERENCE METHODS 608 14.5 IMPLICIT FINITE DIFFERENCE METHODS 624 14.6
VARIATIONAL METHODS AND THE EULER-LAGRANGE EQUATIONS . 629 14.7 THE
RAYLEIGH-RITZ APPROXIMATION METHOD 647 14.8 THE GALERKIN APPROXIMATION
METHOD 655 14.9 THE KANTOROVICH METHOD 659 14.10 THE FINITE ELEMENT
METHOD 663 14.11 EXERCISES 668 15 TABLES OF INTEGRAL TRANSFORMS 681 15.1
FOURIER TRANSFORMS 681 15.2 FOURIER SINE TRANSFORMS 683 15.3 FOURIER
COSINE TRANSFORMS 685 15.4 LAPLACE TRANSFORMS 687 15.5 HANKEL TRANSFORMS
691 15.6 FINITE HANKEL TRANSFORMS 695 ANSWERS AND HINTS TO SELECTED
EXERCISES 697 1.6 EXERCISES 697 2.8 EXERCISES 698 3.9 EXERCISES 704 4.6
EXERCISES 707 5.12 EXERCISES 712 6.14 EXERCISES 715 7.9 EXERCISES 724
XIV CONTENTS 8.14 EXERCISES 726 9.10 EXERCISES 727 10.13 EXERCISES 731
11.11 EXERCISES 739 12.18 EXERCISES 740 14.11 EXERCISES 745 APPENDIX:
SOME SPECIAL FUNCTIONS AND THEIR PROPERTIES 749 A-L GAMMA, BETA, ERROR,
AND AIRY FUNCTIONS 749 A-2 HERMITE POLYNOMIALS AND WEBER-HERMITE
FUNCTIONS . . . 757 BIBLIOGRAPHY 761 INDEX 771 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tyn Myint-U Debnath, Lokenath 1935- |
author_GND | (DE-588)132477033 (DE-588)115600663 |
author_facet | Tyn Myint-U Debnath, Lokenath 1935- |
author_role | aut aut |
author_sort | Tyn Myint-U |
author_variant | t m u tmu l d ld |
building | Verbundindex |
bvnumber | BV021745967 |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 |
callnumber-search | QA377 |
callnumber-sort | QA 3377 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 540 |
classification_tum | MAT 350f |
ctrlnum | (OCoLC)75925404 (DE-599)BVBBV021745967 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 4. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02044nam a2200493 c 4500</leader><controlfield tag="001">BV021745967</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080702 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060927s2007 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N15,0732</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">974202452</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817643931</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">0-8176-4393-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817643935</subfield><subfield code="9">978-0-8176-4393-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780817643935</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11405566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)75925404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021745967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA377</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 350f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tyn Myint-U</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132477033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear partial differential equations for scientists and engineers</subfield><subfield code="c">Tyn Myint-U ; Lokenath Debnath</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 778 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3. Aufl. u.d.T.: Myint-U, Tyn: Partial differential equations for scientists and engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations aux dérivées partielles - Manuels d'enseignement supérieur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Debnath, Lokenath</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115600663</subfield><subfield code="4">aut</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">3. Auflage</subfield><subfield code="a">Tyn Myint-U</subfield><subfield code="t">Partial differential equations for scientists and engineers</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014959239&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014959239</subfield></datafield></record></collection> |
id | DE-604.BV021745967 |
illustrated | Illustrated |
index_date | 2024-07-02T15:30:52Z |
indexdate | 2024-07-09T20:43:05Z |
institution | BVB |
isbn | 0817643931 9780817643935 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014959239 |
oclc_num | 75925404 |
open_access_boolean | |
owner | DE-29T DE-573 DE-703 DE-91G DE-BY-TUM DE-83 DE-20 DE-11 |
owner_facet | DE-29T DE-573 DE-703 DE-91G DE-BY-TUM DE-83 DE-20 DE-11 |
physical | XXII, 778 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Birkhäuser |
record_format | marc |
spelling | Tyn Myint-U Verfasser (DE-588)132477033 aut Linear partial differential equations for scientists and engineers Tyn Myint-U ; Lokenath Debnath 4. ed. Boston [u.a.] Birkhäuser 2007 XXII, 778 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier 3. Aufl. u.d.T.: Myint-U, Tyn: Partial differential equations for scientists and engineers Équations aux dérivées partielles - Manuels d'enseignement supérieur Differential equations, Partial Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd rswk-swf Lineare partielle Differentialgleichung (DE-588)4167708-0 s DE-604 Debnath, Lokenath 1935- Verfasser (DE-588)115600663 aut 3. Auflage Tyn Myint-U Partial differential equations for scientists and engineers HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014959239&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tyn Myint-U Debnath, Lokenath 1935- Linear partial differential equations for scientists and engineers Équations aux dérivées partielles - Manuels d'enseignement supérieur Differential equations, Partial Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd |
subject_GND | (DE-588)4167708-0 |
title | Linear partial differential equations for scientists and engineers |
title_auth | Linear partial differential equations for scientists and engineers |
title_exact_search | Linear partial differential equations for scientists and engineers |
title_exact_search_txtP | Linear partial differential equations for scientists and engineers |
title_full | Linear partial differential equations for scientists and engineers Tyn Myint-U ; Lokenath Debnath |
title_fullStr | Linear partial differential equations for scientists and engineers Tyn Myint-U ; Lokenath Debnath |
title_full_unstemmed | Linear partial differential equations for scientists and engineers Tyn Myint-U ; Lokenath Debnath |
title_old | Tyn Myint-U Partial differential equations for scientists and engineers |
title_short | Linear partial differential equations for scientists and engineers |
title_sort | linear partial differential equations for scientists and engineers |
topic | Équations aux dérivées partielles - Manuels d'enseignement supérieur Differential equations, Partial Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd |
topic_facet | Équations aux dérivées partielles - Manuels d'enseignement supérieur Differential equations, Partial Lineare partielle Differentialgleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014959239&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tynmyintu linearpartialdifferentialequationsforscientistsandengineers AT debnathlokenath linearpartialdifferentialequationsforscientistsandengineers |