Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2006
|
Ausgabe: | 2., updated and enl. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Früher mit der Nummer 9783527404070. - Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XV, 292 S. Ill., graph. Darst. |
ISBN: | 9783527406517 3527406514 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021733149 | ||
003 | DE-604 | ||
005 | 20121001 | ||
007 | t | ||
008 | 060918s2006 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N30,0910 |2 dnb | ||
016 | 7 | |a 980328136 |2 DE-101 | |
020 | |a 9783527406517 |c Pb. : EUR 59.00 (freier Pr.), sfr 94.00 (freier Pr.) |9 978-3-527-40651-7 | ||
020 | |a 3527406514 |c Pb. : EUR 59.00 (freier Pr.), sfr 94.00 (freier Pr.) |9 3-527-40651-4 | ||
024 | 3 | |a 9783527406517 | |
028 | 5 | 2 | |a 1140651 000 |
035 | |a (OCoLC)76163139 | ||
035 | |a (DE-599)BVBBV021733149 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-91G |a DE-20 |a DE-703 |a DE-29T |a DE-1043 |a DE-1051 |a DE-355 |a DE-19 |a DE-634 |a DE-83 |a DE-11 |a DE-188 |a DE-B768 | ||
050 | 0 | |a QC176.8.N35 | |
082 | 0 | |a 620/.5 |2 22 | |
084 | |a UP 3150 |0 (DE-625)146377: |2 rvk | ||
084 | |a UP 7500 |0 (DE-625)146433: |2 rvk | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
084 | |a ZN 4980 |0 (DE-625)157428: |2 rvk | ||
084 | |a TEC 030f |2 stub | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Wolf, E. L. |d 1936- |e Verfasser |0 (DE-588)129512176 |4 aut | |
245 | 1 | 0 | |a Nanophysics and nanotechnology |b an introduction to modern concepts in nanoscience |c Edward L. Wolf |
250 | |a 2., updated and enl. ed. | ||
264 | 1 | |a Weinheim |b WILEY-VCH |c 2006 | |
300 | |a XV, 292 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Früher mit der Nummer 9783527404070. - Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2831467&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014946629&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-014946629 |
Datensatz im Suchindex
_version_ | 1805088414360403968 |
---|---|
adam_text |
XI
Contents
Preface
Víl
Preface
to 1st Edition IX
1
Introduction
1
1.1
Nanometers, Micrometers, Millimeters
3
1.2
Moore's Law
7
1.3
Esaki's Quantum Tunneling Diode
8
1.4
Quantum Dots of Many Colors
9
1.5
GMR 100Gb Hard Drive "Read" Heads
11
1.6
Accelerometers in your Car
13
1.7
Nanopore Filters
34
1.8
Nanoscale Elements in Traditional Technologies
14
2
Systematic^ of Making Things Smaller, Pre-quantum
17
2.1
Mechanical Frequencies Increase in Small Systems
17
2.2
Scaling Relations Illustrated by a Simple Harmonic Oscillator
20
2.3
Scaling Relations Illustrated by Simple Circuit Elements
21
2.4
Thermal Time Constants and Temperature Differences Decrease
22
2.5
Viscous Forces Become Dominant for Small Particles in Fluid Media
22
2.6
Frictional Forces can Disappear in Symmetric Molecular Scale
Systems
24
3
What are Limits to Smallness?
27
3.1
Particle (Quantum) Nature of Marten Photons, Electrons, Atoms,
Molecules
27
3.2
Biological Examples of Nanomotors and Nanodevices
28
3.2.1
Linear Spring Motors
29
3.2.2
linear Engines on Tracks
30
3.2.3
Rotary Motors
33
3.2.4
Ion Channels, the Nanotransistors of Biology
36
3.3
How Small can you Make it?
38
3.3.1
What are the Methods for Making Small Objects?
38
XII
I
Contents
3.3.2
How Can you See What you Want to Make?
39
3.3.3
How Can you Connect it to the Outside World?
41
3.3.4
If you Can't See it or Connect to it, Can you Make it Self-assemble and
Work on its Own?
41
3.3.5
Approaches to Assembly of Small Three-dimensional Objects
41
3.3.6
Use of
DNA
Strands in Guiding Self-assembly of Nanometer Size
Structures
45
4
Quantum Nature of the Nanoworid
49
4.1
Bohr's Model of the Nuclear Atom
49
4.1.1
Quantization of Angular Momentum
50
4.1.2
Extensions of Bohr's Model
51
4.2
Particle-wave Nature of light and Matter, DeBroglie Formulas A= h/p,
E=hv
52
4.3
Wavefimction
Ψ
for Electron, Probability Density
Ψ*Ψ,
Traveling and
Standing Waves
53
4.4
MaxweU's Equations;
E
and
В
as Wavefunctions for Photons, Optical
Fiber Modes
57
4.5
The
Heisenberg
Uncertainty Principle
58
4.6
Schrodinger Equation, Quantum States and Energies, Barrier
Tunneling
59
4.6.1
Schrodinger Equations in one Dimension
60
4.6.2
The Trapped Particle in one Dimension
61
4.6.3
Reflection and Tunneling at a Potential Step
63
4.6.4
Penetration of a Barrier, Escape Time from a Well, Resonant Tunneling
Diode
65
4.6.5
Trapped Particles in Two and Three Dimensions: Quantum Dot
66
4.6.6
2D Bands and Quantum Wires
69
4.6.7
The Simple Harmonic Oscillator
70
4.6.8
Schrodinger Equation in Spherical Polar Coordinates
72
4.7
The Hydrogen Atom, One-electron Atoms,
Excitons
72
4.7.1
Magnetic Moments
76
4.7.2
Magnetization and Magnetic Susceptibility
77
4.7.3
Positronium and
Excitons
78
4.8
Fermions,
Bosons and Occupation Rules
79
5
Quantum Consequences for the Macroworid
Sí
5.1
Chemical Table of the Elements
81
5.2
Nano-symmetry, Di-atoms, and Ferratnagnets
82
5.2.1
Indistinguishable Particles, and their Exchange
82
5.2.2
The Hydrogen Molecule, Di-hydrogen: the Covalent Bond
84
5.3
More Purely Nanophysical Forces: van
der Waals,
Casimir,
and Hydrogen
Bonding
86
5.3.1
The Polar and van
der Waals
Fluctuation Forces
87
5.3.2
The
Casimir
Force
90
Contents
І
XIII
5.3.3
The Hydrogen Bond
94
5.4
Metals as Boxes of Free Electrons: Fermi Level, DOS,
Dimensionality
95
5.4.1
Electronic Conduction, Resistivity, Mean Free Path, Hall Effect,
Magnetoresistance 98
5.5
Periodic Structures (e.g. Si, GaAs, InSb, Cu): Kronig-Penney Model for
Electron Bands and Gaps
100
5.6
Electron Bands and Conduction in Semiconductors and Insulators;
Localization vs. Delocalization
305
5.7
Hydrogenic Donors and Acceptors
109
5.7.1
Carrier Concentrations in Semiconductors, Metallic Doping
110
5.7.2
PN Junction, Electrical Diode I(V) Characteristic, Injection Laser
114
5.8
More about Ferromagnetism, the Nanophysical Basis of Disk
Memory
119
5.9
Surfaces are Different; Schottky Barrier Thickness
W = [2e£oVB/eND]1/2
122
5.10
Ferroelectrics, Piezoelectrics and Pyroelectrics: Recent Applications to
Advancing Nanotechnology
123
6
Self-assembled Nanostructures in Nature and Industry
133
6.1
Carbon Atom 126C Is2 2p4
(0.07
nm)
134
6.2
Methane CH4, Ethane C2H6, and Octane C8H18
135
6.3
Ethylene C2H4,
Benzene C6H6, and Acetylene C2H2
136
6.4
QoBuckyballHlSnm)
136
6.5
CM Nanotube
(-0.5
nm)
137
6.5.1
Si Nanowire (~5 nm)
139
6.6
InAs Quantum Dot (Snm)
140
6.7
AgBr Nanocrystal
(0.1-2
μτη)
142
6.8
Fe3O4 Magnetite and Fe3S4 Greigite Nanopartides in Magnetotactic
Bacteria
143
6.9
Self-assembled Monolayers on
Au
and Other Smooth Surfaces
144
7
Physics-based Experimental Approaches to Nanofabrication
and Nanotechnology
147
7.1
Silicon Technology: the INTEL-IBM Approach to Nanotechnology
148
7.1.1
Patterning, Masks, and Photolithography
148
7.1.2
Etching Silicon
149
7.1.3
Defining Highly Conducting Electrode Regions
150
7.1.4
Methods of Deposition of Metal and Insulating Films
150
7.2
Lateral Resolution (Linewidths) Limited by Wavelength of light,
now
65
nm
152
7.2.1
Optical and X-ray Lithography
152
7.2.2
Electron-beam Lithography
153
7.3
Sacrificial Layers, Suspended Bridges, Single-electron Transistors
153
7.4
What is the Future of Silicon Computer Technology?
255
XIV Contents
7.5
Heat
Dissipation
and the RSFQ Technology
256
7.6
Scanning Probe (Machine) Methods: One Atom at a Time
160
7.7
Scanning Tunneling Microscope (STM) as Prototype Molecular
Assembler
162
7.7.1
Moving
Au
Atoms, Making Surface Molecules
162
7.7.2
Assembling Organic Molecules with an STM
165
7.8
Atomic Force Microscope (AFM) Arrays
166
7.8.1
Cantilever Arrays by Photolithography
166
7.8.2
Nanofabrication with an AFM
167
7.8.3
Imaging a Single Electron Spin by a Magnetic-resonance AFM
168
7.9
Fundamental Questions: Rates, Accuracy and More
170
8
Quantum Technologies Based on Magnetism, Electron and Nuclear Spin,
and Superconductivity
173
8.1
The Stern-Gerlach Experiment: Observation of Spin
Vi
Angular
Momentum of the Electron
176
8.2
Two Nuclear Spin Effects:
MRI
(Magnetic Resonance Imaging) and the
"21.1
cm line"
177
8.3
Electron Spin
Vi
as a Qubit for a Quantum Computer
Quantum Superposition, Coherence
180
8.4
Hard and Soft Ferromagnets
183
8.5
The Origins of GMR (Giant
Magnetoresistance):
Spin-dependent
Scattering of Electrons
184
8.6
The GMR Spin Valve, a Nanophysical
Magnetoresistance
Sensor
186
8.7
The Tunnel Valve, a Better (TMR) Nanophysical Magnetic Field
Sensor
188
8.8
Magnetic Random Access Memory (MRAM)
190
8.8.1
Magnetic Tunnel Junction MRAM Arrays
190
8.8.2
Hybrid Ferromagnet-Semiconductor Nonvolatile Hall Effect Gate
Devices
191
8.9
Spin Injection: the Johnson-Silsbee Effect
192
8.9.1
Apparent Spin Injection from a Ferromagnet into a Carbon
Nanotube
195
8.10
Magnetic Logic Devices: a Majority Universal Logic Gate
196
8.11
Superconductors and the Superconducting (Magnetic) Flux
Quantum
198
8.12
Josephson
Effect and the Superconducting Quantum Interference
Detector (SQUID)
200
8.13
Superconducting (RSFQ) Logic/Memory Computer Elements
203
9
Silicon Nanoelectronics and Beyond
207
9.1
Electron Interference Devices with Coherent Electrons
208
9.1.1
Ballistic Electron Transport in Stubbed Quantum Waveguides:
Experiment and Theory
210
9.1.2
Well-defined Quantum Interference Effects in Carbon Nanotubes
212
Contents
I XV
9.2 Carbon Nanotube Sensors
and Dense Nonvolatile Random
Access
Memories
214
9.2.1
A Carbon Nanotube Sensor of Polar Molecules, Making Use of the
Inherently Large Electric Fields
214
9.2.2
Carbon Nanotube Cross-bar Arrays for Ultra-dense Ultra-fast Nonvolatile
Random Access Memory
216
9.3
Resonant Tunneling Diodes, Tunneling Hot Electron Transistors
220
9.4
Double-well Potential Charge Qubits
222
9.4.1
Silicon-based Quantum Computer Qubits
225
9.5
Single Electron Transistors
226
9.5.1
The Radio-frequency Single Electron Transistor (RFSET), a Useful
Proven Research Tool
229
9.5.2
Readout of the Charge Qubit, with Sub-electron Charge Resolution
229
9.5.3
A Comparison of SET and
RTD
(Resonant Tunneling Diode)
Behaviors
231
9.6
Experimental Approaches to the Double-well Charge Qubit
232
9.6.1
Coupling of Two Charge Qubits in a Solid State (Superconducting)
Context
237
9.7
Ion Trap on a GaAs Chip, Pointing to a New Qubit
238
9.8
Single Molecules as Active Elements in Electronic Circuits
240
9.9
Hybrid Nanoelectronics Combining Si CMOS and Molecular Electronics:
CMOL
243
10
Looking into the Future
247
10.1
Drexler's Mechanical (Molecular) Axle and Bearing
247
10.1.1
Smalley's Refutation of Machine Assembly
248
10.1.2
Van
der Waals
Forces for Frictionless Bearings?
250
10.2
The Concept of the Molecular Assembler is Flawed
250
10.3
Could Molecular Machines Revolutionize Technology or even Self-
replicate to Threaten Terrestrial life?
252
10.4
What about Genetic Engineering and Robotics?
253
10.5
Possible Social and Ethical Implications of Biotechnology and Synthetic
Biology
255
10.6
Is there
a
Posthuman
Future as Envisioned by Fukuyama?
257
Glossary of Abbreviations
261
Exercises
265
Some Useful Constants
275
Index
277 |
adam_txt |
XI
Contents
Preface
Víl
Preface
to 1st Edition IX
1
Introduction
1
1.1
Nanometers, Micrometers, Millimeters
3
1.2
Moore's Law
7
1.3
Esaki's Quantum Tunneling Diode
8
1.4
Quantum Dots of Many Colors
9
1.5
GMR 100Gb Hard Drive "Read" Heads
11
1.6
Accelerometers in your Car
13
1.7
Nanopore Filters
34
1.8
Nanoscale Elements in Traditional Technologies
14
2
Systematic^ of Making Things Smaller, Pre-quantum
17
2.1
Mechanical Frequencies Increase in Small Systems
17
2.2
Scaling Relations Illustrated by a Simple Harmonic Oscillator
20
2.3
Scaling Relations Illustrated by Simple Circuit Elements
21
2.4
Thermal Time Constants and Temperature Differences Decrease
22
2.5
Viscous Forces Become Dominant for Small Particles in Fluid Media
22
2.6
Frictional Forces can Disappear in Symmetric Molecular Scale
Systems
24
3
What are Limits to Smallness?
27
3.1
Particle (Quantum) Nature of Marten Photons, Electrons, Atoms,
Molecules
27
3.2
Biological Examples of Nanomotors and Nanodevices
28
3.2.1
Linear Spring Motors
29
3.2.2
linear Engines on Tracks
30
3.2.3
Rotary Motors
33
3.2.4
Ion Channels, the Nanotransistors of Biology
36
3.3
How Small can you Make it?
38
3.3.1
What are the Methods for Making Small Objects?
38
XII
I
Contents
3.3.2
How Can you See What you Want to Make?
39
3.3.3
How Can you Connect it to the Outside World?
41
3.3.4
If you Can't See it or Connect to it, Can you Make it Self-assemble and
Work on its Own?
41
3.3.5
Approaches to Assembly of Small Three-dimensional Objects
41
3.3.6
Use of
DNA
Strands in Guiding Self-assembly of Nanometer Size
Structures
45
4
Quantum Nature of the Nanoworid
49
4.1
Bohr's Model of the Nuclear Atom
49
4.1.1
Quantization of Angular Momentum
50
4.1.2
Extensions of Bohr's Model
51
4.2
Particle-wave Nature of light and Matter, DeBroglie Formulas A= h/p,
E=hv
52
4.3
Wavefimction
Ψ
for Electron, Probability Density
Ψ*Ψ,
Traveling and
Standing Waves
53
4.4
MaxweU's Equations;
E
and
В
as Wavefunctions for Photons, Optical
Fiber Modes
57
4.5
The
Heisenberg
Uncertainty Principle
58
4.6
Schrodinger Equation, Quantum States and Energies, Barrier
Tunneling
59
4.6.1
Schrodinger Equations in one Dimension
60
4.6.2
The Trapped Particle in one Dimension
61
4.6.3
Reflection and Tunneling at a Potential Step
63
4.6.4
Penetration of a Barrier, Escape Time from a Well, Resonant Tunneling
Diode
65
4.6.5
Trapped Particles in Two and Three Dimensions: Quantum Dot
66
4.6.6
2D Bands and Quantum Wires
69
4.6.7
The Simple Harmonic Oscillator
70
4.6.8
Schrodinger Equation in Spherical Polar Coordinates
72
4.7
The Hydrogen Atom, One-electron Atoms,
Excitons
72
4.7.1
Magnetic Moments
76
4.7.2
Magnetization and Magnetic Susceptibility
77
4.7.3
Positronium and
Excitons
78
4.8
Fermions,
Bosons and Occupation Rules
79
5
Quantum Consequences for the Macroworid
Sí
5.1
Chemical Table of the Elements
81
5.2
Nano-symmetry, Di-atoms, and Ferratnagnets
82
5.2.1
Indistinguishable Particles, and their Exchange
82
5.2.2
The Hydrogen Molecule, Di-hydrogen: the Covalent Bond
84
5.3
More Purely Nanophysical Forces: van
der Waals,
Casimir,
and Hydrogen
Bonding
86
5.3.1
The Polar and van
der Waals
Fluctuation Forces
87
5.3.2
The
Casimir
Force
90
Contents
І
XIII
5.3.3
The Hydrogen Bond
94
5.4
Metals as Boxes of Free Electrons: Fermi Level, DOS,
Dimensionality
95
5.4.1
Electronic Conduction, Resistivity, Mean Free Path, Hall Effect,
Magnetoresistance 98
5.5
Periodic Structures (e.g. Si, GaAs, InSb, Cu): Kronig-Penney Model for
Electron Bands and Gaps
100
5.6
Electron Bands and Conduction in Semiconductors and Insulators;
Localization vs. Delocalization
305
5.7
Hydrogenic Donors and Acceptors
109
5.7.1
Carrier Concentrations in Semiconductors, Metallic Doping
110
5.7.2
PN Junction, Electrical Diode I(V) Characteristic, Injection Laser
114
5.8
More about Ferromagnetism, the Nanophysical Basis of Disk
Memory
119
5.9
Surfaces are Different; Schottky Barrier Thickness
W = [2e£oVB/eND]1/2
122
5.10
Ferroelectrics, Piezoelectrics and Pyroelectrics: Recent Applications to
Advancing Nanotechnology
123
6
Self-assembled Nanostructures in Nature and Industry
133
6.1
Carbon Atom 126C Is2 2p4
(0.07
nm)
134
6.2
Methane CH4, Ethane C2H6, and Octane C8H18
135
6.3
Ethylene C2H4,
Benzene C6H6, and Acetylene C2H2
136
6.4
QoBuckyballHlSnm)
136
6.5
CM Nanotube
(-0.5
nm)
137
6.5.1
Si Nanowire (~5 nm)
139
6.6
InAs Quantum Dot (Snm)
140
6.7
AgBr Nanocrystal
(0.1-2
μτη)
142
6.8
Fe3O4 Magnetite and Fe3S4 Greigite Nanopartides in Magnetotactic
Bacteria
143
6.9
Self-assembled Monolayers on
Au
and Other Smooth Surfaces
144
7
Physics-based Experimental Approaches to Nanofabrication
and Nanotechnology
147
7.1
Silicon Technology: the INTEL-IBM Approach to Nanotechnology
148
7.1.1
Patterning, Masks, and Photolithography
148
7.1.2
Etching Silicon
149
7.1.3
Defining Highly Conducting Electrode Regions
150
7.1.4
Methods of Deposition of Metal and Insulating Films
150
7.2
Lateral Resolution (Linewidths) Limited by Wavelength of light,
now
65
nm
152
7.2.1
Optical and X-ray Lithography
152
7.2.2
Electron-beam Lithography
153
7.3
Sacrificial Layers, Suspended Bridges, Single-electron Transistors
153
7.4
What is the Future of Silicon Computer Technology?
255
XIV Contents
7.5
Heat
Dissipation
and the RSFQ Technology
256
7.6
Scanning Probe (Machine) Methods: One Atom at a Time
160
7.7
Scanning Tunneling Microscope (STM) as Prototype Molecular
Assembler
162
7.7.1
Moving
Au
Atoms, Making Surface Molecules
162
7.7.2
Assembling Organic Molecules with an STM
165
7.8
Atomic Force Microscope (AFM) Arrays
166
7.8.1
Cantilever Arrays by Photolithography
166
7.8.2
Nanofabrication with an AFM
167
7.8.3
Imaging a Single Electron Spin by a Magnetic-resonance AFM
168
7.9
Fundamental Questions: Rates, Accuracy and More
170
8
Quantum Technologies Based on Magnetism, Electron and Nuclear Spin,
and Superconductivity
173
8.1
The Stern-Gerlach Experiment: Observation of Spin
Vi
Angular
Momentum of the Electron
176
8.2
Two Nuclear Spin Effects:
MRI
(Magnetic Resonance Imaging) and the
"21.1
cm line"
177
8.3
Electron Spin
Vi
as a Qubit for a Quantum Computer
Quantum Superposition, Coherence
180
8.4
Hard and Soft Ferromagnets
183
8.5
The Origins of GMR (Giant
Magnetoresistance):
Spin-dependent
Scattering of Electrons
184
8.6
The GMR Spin Valve, a Nanophysical
Magnetoresistance
Sensor
186
8.7
The Tunnel Valve, a Better (TMR) Nanophysical Magnetic Field
Sensor
188
8.8
Magnetic Random Access Memory (MRAM)
190
8.8.1
Magnetic Tunnel Junction MRAM Arrays
190
8.8.2
Hybrid Ferromagnet-Semiconductor Nonvolatile Hall Effect Gate
Devices
191
8.9
Spin Injection: the Johnson-Silsbee Effect
192
8.9.1
Apparent Spin Injection from a Ferromagnet into a Carbon
Nanotube
195
8.10
Magnetic Logic Devices: a Majority Universal Logic Gate
196
8.11
Superconductors and the Superconducting (Magnetic) Flux
Quantum
198
8.12
Josephson
Effect and the Superconducting Quantum Interference
Detector (SQUID)
200
8.13
Superconducting (RSFQ) Logic/Memory Computer Elements
203
9
Silicon Nanoelectronics and Beyond
207
9.1
Electron Interference Devices with Coherent Electrons
208
9.1.1
Ballistic Electron Transport in Stubbed Quantum Waveguides:
Experiment and Theory
210
9.1.2
Well-defined Quantum Interference Effects in Carbon Nanotubes
212
Contents
I XV
9.2 Carbon Nanotube Sensors
and Dense Nonvolatile Random
Access
Memories
214
9.2.1
A Carbon Nanotube Sensor of Polar Molecules, Making Use of the
Inherently Large Electric Fields
214
9.2.2
Carbon Nanotube Cross-bar Arrays for Ultra-dense Ultra-fast Nonvolatile
Random Access Memory
216
9.3
Resonant Tunneling Diodes, Tunneling Hot Electron Transistors
220
9.4
Double-well Potential Charge Qubits
222
9.4.1
Silicon-based Quantum Computer Qubits
225
9.5
Single Electron Transistors
226
9.5.1
The Radio-frequency Single Electron Transistor (RFSET), a Useful
Proven Research Tool
229
9.5.2
Readout of the Charge Qubit, with Sub-electron Charge Resolution
229
9.5.3
A Comparison of SET and
RTD
(Resonant Tunneling Diode)
Behaviors
231
9.6
Experimental Approaches to the Double-well Charge Qubit
232
9.6.1
Coupling of Two Charge Qubits in a Solid State (Superconducting)
Context
237
9.7
Ion Trap on a GaAs Chip, Pointing to a New Qubit
238
9.8
Single Molecules as Active Elements in Electronic Circuits
240
9.9
Hybrid Nanoelectronics Combining Si CMOS and Molecular Electronics:
CMOL
243
10
Looking into the Future
247
10.1
Drexler's Mechanical (Molecular) Axle and Bearing
247
10.1.1
Smalley's Refutation of Machine Assembly
248
10.1.2
Van
der Waals
Forces for Frictionless Bearings?
250
10.2
The Concept of the Molecular Assembler is Flawed
250
10.3
Could Molecular Machines Revolutionize Technology or even Self-
replicate to Threaten Terrestrial life?
252
10.4
What about Genetic Engineering and Robotics?
253
10.5
Possible Social and Ethical Implications of Biotechnology and Synthetic
Biology
255
10.6
Is there
a
Posthuman
Future as Envisioned by Fukuyama?
257
Glossary of Abbreviations
261
Exercises
265
Some Useful Constants
275
Index
277 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Wolf, E. L. 1936- |
author_GND | (DE-588)129512176 |
author_facet | Wolf, E. L. 1936- |
author_role | aut |
author_sort | Wolf, E. L. 1936- |
author_variant | e l w el elw |
building | Verbundindex |
bvnumber | BV021733149 |
callnumber-first | Q - Science |
callnumber-label | QC176 |
callnumber-raw | QC176.8.N35 |
callnumber-search | QC176.8.N35 |
callnumber-sort | QC 3176.8 N35 |
callnumber-subject | QC - Physics |
classification_rvk | UP 3150 UP 7500 VE 9850 ZN 3700 ZN 4980 |
classification_tum | TEC 030f |
ctrlnum | (OCoLC)76163139 (DE-599)BVBBV021733149 |
dewey-full | 620/.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620/.5 |
dewey-search | 620/.5 |
dewey-sort | 3620 15 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Maschinenbau / Maschinenwesen Physik Technik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Maschinenbau / Maschinenwesen Physik Technik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 2., updated and enl. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV021733149</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121001</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060918s2006 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N30,0910</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">980328136</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527406517</subfield><subfield code="c">Pb. : EUR 59.00 (freier Pr.), sfr 94.00 (freier Pr.)</subfield><subfield code="9">978-3-527-40651-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527406514</subfield><subfield code="c">Pb. : EUR 59.00 (freier Pr.), sfr 94.00 (freier Pr.)</subfield><subfield code="9">3-527-40651-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527406517</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1140651 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)76163139</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021733149</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-B768</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC176.8.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3150</subfield><subfield code="0">(DE-625)146377:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 7500</subfield><subfield code="0">(DE-625)146433:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4980</subfield><subfield code="0">(DE-625)157428:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 030f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wolf, E. L.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129512176</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanophysics and nanotechnology</subfield><subfield code="b">an introduction to modern concepts in nanoscience</subfield><subfield code="c">Edward L. Wolf</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., updated and enl. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 292 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Früher mit der Nummer 9783527404070. - Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2831467&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014946629&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014946629</subfield></datafield></record></collection> |
id | DE-604.BV021733149 |
illustrated | Illustrated |
index_date | 2024-07-02T15:27:04Z |
indexdate | 2024-07-20T09:07:38Z |
institution | BVB |
isbn | 9783527406517 3527406514 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014946629 |
oclc_num | 76163139 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-20 DE-703 DE-29T DE-1043 DE-1051 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 DE-B768 |
owner_facet | DE-91G DE-BY-TUM DE-20 DE-703 DE-29T DE-1043 DE-1051 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-634 DE-83 DE-11 DE-188 DE-B768 |
physical | XV, 292 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Wolf, E. L. 1936- Verfasser (DE-588)129512176 aut Nanophysics and nanotechnology an introduction to modern concepts in nanoscience Edward L. Wolf 2., updated and enl. ed. Weinheim WILEY-VCH 2006 XV, 292 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Früher mit der Nummer 9783527404070. - Hier auch später erschienene, unveränderte Nachdrucke Nanotechnologie (DE-588)4327470-5 gnd rswk-swf Nanotechnologie (DE-588)4327470-5 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2831467&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014946629&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wolf, E. L. 1936- Nanophysics and nanotechnology an introduction to modern concepts in nanoscience Nanotechnologie (DE-588)4327470-5 gnd |
subject_GND | (DE-588)4327470-5 |
title | Nanophysics and nanotechnology an introduction to modern concepts in nanoscience |
title_auth | Nanophysics and nanotechnology an introduction to modern concepts in nanoscience |
title_exact_search | Nanophysics and nanotechnology an introduction to modern concepts in nanoscience |
title_exact_search_txtP | Nanophysics and nanotechnology an introduction to modern concepts in nanoscience |
title_full | Nanophysics and nanotechnology an introduction to modern concepts in nanoscience Edward L. Wolf |
title_fullStr | Nanophysics and nanotechnology an introduction to modern concepts in nanoscience Edward L. Wolf |
title_full_unstemmed | Nanophysics and nanotechnology an introduction to modern concepts in nanoscience Edward L. Wolf |
title_short | Nanophysics and nanotechnology |
title_sort | nanophysics and nanotechnology an introduction to modern concepts in nanoscience |
title_sub | an introduction to modern concepts in nanoscience |
topic | Nanotechnologie (DE-588)4327470-5 gnd |
topic_facet | Nanotechnologie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2831467&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014946629&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wolfel nanophysicsandnanotechnologyanintroductiontomodernconceptsinnanoscience |