Hybrid materials: synthesis, characterization, and applications
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVII, 498 S. Ill., graph. Darst. |
ISBN: | 3527312994 9783527312993 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021732226 | ||
003 | DE-604 | ||
005 | 20071206 | ||
007 | t | ||
008 | 060915s2007 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N22,0935 |2 dnb | ||
016 | 7 | |a 979609852 |2 DE-101 | |
020 | |a 3527312994 |c Gb. : ca. EUR 149.00 (freier Pr.), ca. sfr 235.00 (freier Pr.) |9 3-527-31299-4 | ||
020 | |a 9783527312993 |9 978-3-527-31299-3 | ||
024 | 3 | |a 9783527312993 | |
028 | 5 | 2 | |a 1131299 000 |
035 | |a (OCoLC)254253596 | ||
035 | |a (DE-599)BVBBV021732226 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-91G |a DE-29T |a DE-1102 |a DE-703 |a DE-1046 |a DE-19 |a DE-384 |a DE-11 | ||
050 | 0 | |a TA418.9.C6 | |
082 | 0 | |a 547.7 | |
084 | |a UQ 8320 |0 (DE-625)146595: |2 rvk | ||
084 | |a UQ 8420 |0 (DE-625)146597: |2 rvk | ||
084 | |a VE 9670 |0 (DE-625)147161:253 |2 rvk | ||
084 | |a ZM 7020 |0 (DE-625)157098: |2 rvk | ||
084 | |a CHE 380f |2 stub | ||
084 | |a 540 |2 sdnb | ||
245 | 1 | 0 | |a Hybrid materials |b synthesis, characterization, and applications |c ed. by Guido Kickelbick |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2007 | |
300 | |a XVII, 498 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Organisch-anorganischer Hybridwerkstoff | |
650 | 7 | |a Biomaterialen. |2 gtt | |
650 | 7 | |a Blokcopolymeren. |2 gtt | |
650 | 4 | |a Chemical structure | |
650 | 7 | |a Composieten. |2 gtt | |
650 | 7 | |a Hybridisering. |2 gtt | |
650 | 7 | |a Intercalatieverbindingen. |2 gtt | |
650 | 4 | |a Macromolecules | |
650 | 7 | |a Nanokristallijne materialen. |2 gtt | |
650 | 7 | |a Nanostructuren. |2 gtt | |
650 | 7 | |a Polymeren. |2 gtt | |
650 | 4 | |a Polymeric composites | |
650 | 7 | |a Poreuze media. |2 gtt | |
650 | 0 | 7 | |a Nanokomposit |0 (DE-588)4768127-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hybrides System |0 (DE-588)4510314-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Organisch-anorganischer Hybridwerkstoff |0 (DE-588)4763543-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hybridwerkstoff |0 (DE-588)4160847-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoff |0 (DE-588)4065579-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Organisch-anorganischer Hybridwerkstoff |0 (DE-588)4763543-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Werkstoff |0 (DE-588)4065579-9 |D s |
689 | 1 | 1 | |a Hybrides System |0 (DE-588)4510314-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Hybridwerkstoff |0 (DE-588)4160847-1 |D s |
689 | 2 | 1 | |a Nanokomposit |0 (DE-588)4768127-5 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Kickelbick, Guido |d 1968- |e Sonstige |0 (DE-588)115473726 |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2804422&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014945717&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014945717 |
Datensatz im Suchindex
_version_ | 1804135579507490816 |
---|---|
adam_text | Contents
1
Introduction to Hybrid Materials
1
Cuido
Kickelbick
1.1
Introduction
1
1.1.1
Natural Origins
1
1.1.2
The Development of Hybrid Materials
2
1.1.3
Definition: Hybrid Materials and Nanocomposites
3
1.1.4
Advantages of Combining Inorganic and Organic Species in One
Material
7
1.1.5
Interface-determined Materials
10
1.1.6
The Role of the Interaction Mechanisms
11
1.2
Synthetic Strategies towards Hybrid Materials
12
1.2.1
In situ Formation of Inorganic Materials
13
1.2.1.1
Sol-Gel Process
14
1.2.1.2
Nonhydrolytic Sol-Gel Process
16
1.2.1.3
Sol-Gel Reactions of Non-Silicates
16
1.2.1.4
Hybrid Materials by the Sol-Gel Process
17
1.2.1.5
Hybrid Materials Derived by Combining the Sol-Gel Approach and
Organic Polymers
19
1.2.2
Formation of Organic Polymers in Presence of Preformed Inorganic
Materials
20
1.2.3
Hybrid Materials by Simultaneous Formation of Both Components
22
1.2.4
Building Block Approach
23
1.2.4.1
Inorganic Building Blocks
24
1.2.4.2
Organic Building Blocks
32
1.3
Structural Engineering
35
1.4
Properties and Applications
39
1.5
Characterization of Materials
41
1.6
Summary
46
2
Nanocomposites of Polymers and Inorganic Particles
49
Waiter
Casen
2.1
Introduction
49
2.2
Consequences of Very Small Particle Sizes
53
Hybrid Materials. Synthesis, Characterization, and Applicatiom. Edited by
Guido
Kickelbick
Copyright
© 2007
Wiley-VCH
Verlag
GmbH
&
Co. KGaA, Weinheim
ISBN:
978-3-527-31299-3
VI Contents
2.3
Historical Reports on Inorganic Nanoparticles and Polymer
Nanocomposites
63
2.4
Preparation of Polymer Nanocomposites
65
2.4.1
Mixing of Dispersed Particles with Polymers in Liquids
67
2.4.2
Mixing of Particles with Monomers Followed by Polymerization
71
2.4.3
Nanocomposite Formation by means of Molten or Solid Polymers
73
2.4.4
Concomitant Formation of Particles and Polymers
74
2.5
Properties and Applications of Polymer Nanocomposites
75
2.5.1
Properties
75
2.5.2
Applications
78
2.5.2.1
Catalysts
78
2.5.2.2
Gas Sensors
79
2.5.2.3
Materials with Improved Flame Retardance
80
2.5.2.4
Optical Filters
80
2.5.2.5
Dichroic Materials
81
2.5.2.6
High and Low Refractive Index Materials
81
2.6
Summary
83
3
Hybrid Organic/Inorganic Particles
87
Elodie Bourgeat-Lami
3.1
Introduction
87
3.2
Methods [or creating Particles
92
3.2.1
Polymer Particles
92
3.2.1.1
Oil-in-water Suspension Polymerization
92
3.2.1.2
Precipitation and Dispersion Polymerizations
93
3.2.1.3
Oil-in-water Emulsion Polymerization
94
3.2.1.4
Oil-in-water
Mimemulsion
Polymerization
95
3.2.1.5
Oil-in-water
Microemulsion
Polymerization
95
3.2.2
Vesicles, Assemblies and Dendrimers
95
3.2.2.1
Vesicles
95
3.2.2.2
Block Copolymer Assemblies
96
3.2.2.3
Dendrimers
97
3.2.3
Inorganic Particles
98
3.2.3.1
Metal Oxide Particles
98
3.2.3.2
Metallic Particles
99
3.2.3.3
Semiconductor Nanoparticles
101
3.2.3.4
Synthesis in
Microemulsion 102
3.3
Hybrid Nanoparticles Obtained Through Self-assembly
Techniques
103
3.3.1
Electrostatically Driven Self-assembly
103
3.3.1.1
Heterocoagulation
103
3.3.1.2
Layer-by-layer Assembly
107
3.3.2
Molecular Recognition Assembly
109
3.4
O/I Nanoparticles Obtained by in situ Polymerization
Techniques 111
Contents
ЗАЛ
Polymerizations Performed in the Presence of Preformed Mineral
Particles
111
3.4.1.1
Surface Modification of Inorganic Particles
112
3.4.1.2
Polymerizations in Multiphase Systems
113
3.4.1.3
Surface-initiated Polymerizations
124
3.4.2
In situ Formation of Minerals in the Presence of Polymer
Colloids
130
3.4.2.1
Polymer Particles Templating
130
3.4.2.2
Block Copolymers, Dendrimers and
Microgels
Templating
134
3.5
Hybrid Particles Obtained by Simultaneously Reacting Organic
Monomers and Mineral Precursors
137
3.5.1
Poly(organosiloxane/vinylic) Copolymer Hybrids
137
3.5.2
Polyorganosiloxane Colloids
140
3.6
Conclusion
142
4
Intercalation Compounds and Clay Nanocomposites
151
Jin Zhu and Charles A. Wilkie
4.1
Introduction
151
4.2
Polymer Lamellar Material Nanocomposites
253
4.2.1
Types of Lamellar Nano-additives
153
4.2.2
Montmorillonite Layer Structure ]54
4.2.3
Modification of Clay
154
4.3
Nanostructures and Characterization
156
4.3.1
X-ray Diffraction and Transmission Electron Microscopy to Probe
Morphology
256
4.3.2
Other Techniques to Probe Morphology
158
4.4
Preparation of Polymer-clay Nanocomposites
260
4.4.1
Solution Mixing
161
4.4.2
Polymerization
261
4.4.3
Melt Compounding
263
4.5
Polymer-graphite and Polymer Layered Double Hydroxide
Nanocomposites
164
4.5.1
Nanocomposites Based on Layered Double Hydroxides and Salts
166
4.6
Properties of Polymer Nanocomposites
167
4.7
Potential Applications
268
4.8
Conclusion and Prospects for the Future
269
5
Porous Hybrid Materials
175
Nicola Hüsing
5.1
General Introduction and Historical Development
175
5.1.1
Definition of Terms
177
5.1.2
Porous (Hybrid) Matrices
279
5.1.2.1
Microporous Materials: Zeolites
280
5.1.2.2
Mesoporous Materials: M41S and FSM Materials
282
5.1.2.3
Metal-Organic Frameworks (MOFs)
284
VIII Contents
5.2
General Routes towards Hybrid Materials
185
5.2.1
Post-synthesis Modification of the Final Dried Porous Product by
Gaseous, Liquid or Dissolved Organic or Organometallic Species
185
5.2.2
Liquid-phase Modification in the Wet Nanocomposite Stage or
-
for
Mesostructured Materials and Zeolites
-
Prior to Removal of the
Template
187
5.2.3
Addition of Molecular, but Nonreactive Compounds to the Precursor
Solution
188
5.2.4
Co-condensation Reactions by the use of Organically-substituted Co-
precursors
188
5.2.5
The Organic Entity as an Integral Part of the Porous Framework
190
5.3
Classification of Porous Hybrid Materials by the Type of Interaction
192
5.3.1
Incorporation of Organic Functions Without Covalent Attachment to the
Porous Host
192
5.3.1.1
Doping with Small Molecules
192
5.3.1.2
Doping with Polymeric Species
296
5.3.1.3
Incorporation of Biomolecules
199
5.3.2
Incorporation of Organic Functions with Covalent Attachment to the
Porous Host
201
5.3.2.1
Grafting Reactions
201
5.3.2.2
Co-condensation Reactions
203
5.3.3
The Organic Function as an Integral Part of the Porous Network
Structure
209
5.3.3.1
ZOL
and PMO: Zeolites with Organic Groups as Lattice and Periodically
Mesostructured Organosilicas
209
5.3.3.2
Metal-Organic Frameworks
213
5.4
Applications and Properties of Porous Hybrid Materials
219
б
Sol-Gel Processing of Hybrid Organic-Inorganic Materials Based on
Polysilsesquioxanes
225
Douglas A. Loy
6.1
Introduction
225
6.1.1
Definition of Terms
226
6.2
Forming Polysilsesquioxanes
228
6.2.1
Hydrolysis and Condensation Chemistry
228
6.2.2
Alternative Polymerization Chemistries
234
6.2.3
Characterizing Silsesquioxane Sol-Gels with NMR
235
6.2.4
Cyclization in Polysilsesquioxanes
237
6.3
Type I Structures: Polyhedral Oligosilsesquioxanes (POSS)
240
6.3.1
Homogenously Functionalized POSS
240
6.3.2
Stability of Siioxane Bonds in Silsesquioxanes
242
6.4
Type II Structures: Amorphous Oligo- and Polysilsesquioxanes
243
6.4.1
Gelation of Polysilsesquioxanes
243
6.4.2
Effects of
pH
on Gelation
245
Contents
IX
6.4.3 Polysilsesquioxane Gels 246
6.4.4 Polysilsesquioxane-Silica Copolymers 247
6.5
Type III: Bridged Polysilsesquioxanes
248
6.5.1
Molecular Bridges
248
6.5.2 Macromolecule-bridged Polysilsesquioxanes 252
6.6
Summary
252
6.6.1
Properties of
Polysilsesquioxanes 253
6.6.2
Existing and Potential Applications
253
7
Natural and Artificial Hybrid
Biomaterials
255
Heather A. Currie, Siddharth V. Patwardhan, Carole C. Perry, Paul Roach,
NeilJ. Shirtcliffe
7.1
Introduction
255
7.2
Building Blocks
256
7.2.1
Inorganic Building Blocks
256
7.2.1.1
Nucleation and Growth
259
7.2.2
Organic Building Blocks
262
7.2.2.1
Proteins and
DNA 262
7.2.2.2
Carbohydrates
264
7.2.2.3
Lipids
266
7.2.2.4
Collagen
266
7.3
Biomineralization
269
7.3.1
Introduction
269
7.3.1.1
Biomineral Types and Occurrence
269
7.3.1.2
Functions of
Biominerals 270
7.3.1.3
Properties of
Biominerals 270
7.3.2
Control Strategies in Biomineralization
272
133
The Role of the Organic Phase in Biomineralization
275
7.3.4
Mineral or Precursor
-
Organic Phase Interactions
276
7.3.5
Examples of Non-bonded Interactions in Bioinspired Silkification
279
7.3.5.1
Effect of Electrostatic Interactions
279
7.3.5.2
Effect of Hydrogen Bonding Interactions
279
7.3.5.3
Effect of the
Hydrophobie
Effect
280
7.3.6
Roles of the Organic Phase in Biomineralization
280
7.4
Bioinspired Hybrid Materials
281
7.4.1
Natural Hybrid Materials
283
7.4.1.1
Bone
283
7.4.1.2 Dentin 285
7.4.1.3
Nacre
287
7.4.1.4
Wood
287
7.4.2
Artificial Hybrid
Biomaterials
289
7.4.2.1
Ancient materials
289
7.4.2.2
Structural Materials
290
7.4.2.3
Non-structural Materials
290
7.4.3
Construction of Artificial Hybrid
Biomaterials
291
Contents
7.4.3.1
Organie
Templates
to Dictate Shape and Form
291
7.4.3.2
Integrated Nanoparticle-Biomolecule Hybrid Systems
292
7.4.3.3
Routes to
Bio-nano
Hybrid Systems
292
7.5
Responses
294
7.5.1
Biological Performance
294
7.5.2
Protein Adsorption
295
7.5.3
Cell Adhesion
295
7.5.4
Evaluation of
Biomaterials
296
7.6
Summary
298
8
Medical Applications of Hybrid Materials
301
Kcmji Tsuru, Satosbi Hayakawa, and Akiyoshi Osaka
8.1
Introduction
301
8.1.1
Composites, Solutions, and Hybrids
301
8.1.2
Artificial Materials for Repairing Damaged Tissues and Organs
306
8.1.3
Tissue-Material Interactions
310
8.1.4
Material-Tissue Bonding; Bioactivity
313
8.1.5
Blood-compatible Materials
318
8.2
Bioactive Inorganic-Organic Hybrids
339
8.2.1
Concepts of Designing Hybrids
319
8.2.2
Concepts of Organic-Inorganic Hybrid Scaffolds and Membranes
321
8.2.3
PDMS-Silica Hybrids
323
8.2.4
Organoalkoxysilane Hybrids
324
8.2.5
Gelatin-Silicate Hybrids
326
8.2.6
Chitosan-Silicate Hybrids
327
8.3
Surface Modifications for
Biocompatible
Materials
328
8.3.1
Molecular Brush Structure Developed on
Biocompatible
Materials
328
8.3.2
Alginic Acid Molecular Brush Layers on Metal Implants
329
8.3.3
Organotitanium Molecular Layers with Blood Compatibility
330
8.4
Porous Hybrids for Tissue Engineering Scaffolds and Bioreactors
331
8.4.1
PDMS-Silica Porous Hybrids for Bioreactors
331
8.4.2
Gelatin-Silicate Porous Hybrids
332
8.4.3
Chitosan-Silicate Porous Hybrids for Scaffold Applications
333
8.5
Chitosan-based Hybrids for Drug Delivery Systems
334
8.6
Summary
335
9
Hybrid Materials for Optical Applications
337
Luís António Dias
Carlos,
R.
A. Sá Ferreira
and V.
de Zea
Bermudez
9.1
Introduction
337
9.2
Synthesis Strategy for Optical Applications
339
9.3
Hybrids for Coatings
343
9.4
Hybrids for Light-emitting and Electro-optic Purposes
353
9.4.1
Photoluminescence
and Absorption
353
9.4.2
Electroluminescence
359
9.4.3
Quantifying Luminescence
365
Contents
XI
9.4.3.1
Color Coordinates, Hue, Dominant Wavelength and Purity
365
9.4.3.2
Emission Quantum Yield and Radiance
368
9.4.4
Recombination Mechanisms and Nature of the Emitting Centers
372
9.4.5
Lanthanide-doped Hybrids
374
9.4.6
Solid-state Dye-lasers
379
9.5
Hybrids for Photochromic and Photovoltaic Devices
381
9.6
Hybrids for Integrated and Nonlinear Optics
387
9.6.1
Planar Waveguides and Direct Writing
387
9.6.2
Nonlinear Optics
393
9.7
Summary
398
10
Electronic and Electrochemical Applications of Hybrid Materials
401
Jason E. Ritchie
10.1
Introduction
401
10.2
Historical Background
402
10.3
Fundamental Mechanisms of Conductivity in Hybrid Materials
403
10.3.1
Electrical Conductivity
403
10.3.2
Li- Conductivity
407
10.3.3
H
Conductivity
409
10.4
Explanation of the Different Materials
411
10.4.1
Sol-Gel Based Systems
411
10.4.2
Nanocomposites
412
10.4.3
Preparation of Electrochemically Active Films (and Chemically Modified
Electrodes)
414
10.5
Special Analytical Techniques
415
10.5.1
Electrochemical Techniques
415
10.5.2
Pulsed Field Gradient NMR
418
10.6
Applications
419
10.6.1
Electrochemical Sensors
419
10.6.2
Optoelectronic Applications
421
10.6.3
H-conducting Electrolytes for Fuel Cell Applications
423
10.6.4
Li-conducting Electrolytes for Battery Applications
426
10.6.5
Other Ion Conducting Systems
429
10.7
Summary
430
Π
Inorganic/Organic Hybrid Coatings
433
Mark D.
Souček
11.1
General Introduction to Commodity Organic Coatings
433
11.2
General Formation of Inorganic/Organic Hybrid Coatings
435
11.2.1
Acid and Base Catalysis within an Organic Matrix
436
11.2.2
Thermally Cured Inorganic/Organic Seed Oils Coatings
443
11.2.3
Drying Oil Auto-oxidation Mechanism
444
11.2.4
Metal Catalysts
445
11.3
Alkyds and Other Polyester Coatings
449
11.3.1
inorganic/Organic Alkyd Coatings
450
XII Contents
11.4 Polyurethane
and Polyurea Coatings
451
11.4.1
Polyurea
Inorganic/Organic Hybrid Coatings
452
11.4.2
Polyurethane/Polysiloxane Inorganic/Organic Coating System
455
11.5
Radiation Curable Coatings
459
11.5.1
UV-curable Inorganic/Organic Hybrid Coatings
461
11.5.2
Models for Inorganic/Organic Hybrid Coatings
465
11.5.3
Film Morphology
468
11.6
Applications
470
11.7
Summary
471
Index
477
|
adam_txt |
Contents
1
Introduction to Hybrid Materials
1
Cuido
Kickelbick
1.1
Introduction
1
1.1.1
Natural Origins
1
1.1.2
The Development of Hybrid Materials
2
1.1.3
Definition: Hybrid Materials and Nanocomposites
3
1.1.4
Advantages of Combining Inorganic and Organic Species in One
Material
7
1.1.5
Interface-determined Materials
10
1.1.6
The Role of the Interaction Mechanisms
11
1.2
Synthetic Strategies towards Hybrid Materials
12
1.2.1
In situ Formation of Inorganic Materials
13
1.2.1.1
Sol-Gel Process
14
1.2.1.2
Nonhydrolytic Sol-Gel Process
16
1.2.1.3
Sol-Gel Reactions of Non-Silicates
16
1.2.1.4
Hybrid Materials by the Sol-Gel Process
17
1.2.1.5
Hybrid Materials Derived by Combining the Sol-Gel Approach and
Organic Polymers
19
1.2.2
Formation of Organic Polymers in Presence of Preformed Inorganic
Materials
20
1.2.3
Hybrid Materials by Simultaneous Formation of Both Components
22
1.2.4
Building Block Approach
23
1.2.4.1
Inorganic Building Blocks
24
1.2.4.2
Organic Building Blocks
32
1.3
Structural Engineering
35
1.4
Properties and Applications
39
1.5
Characterization of Materials
41
1.6
Summary
46
2
Nanocomposites of Polymers and Inorganic Particles
49
Waiter
Casen
2.1
Introduction
49
2.2
Consequences of Very Small Particle Sizes
53
Hybrid Materials. Synthesis, Characterization, and Applicatiom. Edited by
Guido
Kickelbick
Copyright
© 2007
Wiley-VCH
Verlag
GmbH
&
Co. KGaA, Weinheim
ISBN:
978-3-527-31299-3
VI Contents
2.3
Historical Reports on Inorganic Nanoparticles and Polymer
Nanocomposites
63
2.4
Preparation of Polymer Nanocomposites
65
2.4.1
Mixing of Dispersed Particles with Polymers in Liquids
67
2.4.2
Mixing of Particles with Monomers Followed by Polymerization
71
2.4.3
Nanocomposite Formation by means of Molten or Solid Polymers
73
2.4.4
Concomitant Formation of Particles and Polymers
74
2.5
Properties and Applications of Polymer Nanocomposites
75
2.5.1
Properties
75
2.5.2
Applications
78
2.5.2.1
Catalysts
78
2.5.2.2
Gas Sensors
79
2.5.2.3
Materials with Improved Flame Retardance
80
2.5.2.4
Optical Filters
80
2.5.2.5
Dichroic Materials
81
2.5.2.6
High and Low Refractive Index Materials
81
2.6
Summary
83
3
Hybrid Organic/Inorganic Particles
87
Elodie Bourgeat-Lami
3.1
Introduction
87
3.2
Methods [or creating Particles
92
3.2.1
Polymer Particles
92
3.2.1.1
Oil-in-water Suspension Polymerization
92
3.2.1.2
Precipitation and Dispersion Polymerizations
93
3.2.1.3
Oil-in-water Emulsion Polymerization
94
3.2.1.4
Oil-in-water
Mimemulsion
Polymerization
95
3.2.1.5
Oil-in-water
Microemulsion
Polymerization
95
3.2.2
Vesicles, Assemblies and Dendrimers
95
3.2.2.1
Vesicles
95
3.2.2.2
Block Copolymer Assemblies
96
3.2.2.3
Dendrimers
97
3.2.3
Inorganic Particles
98
3.2.3.1
Metal Oxide Particles
98
3.2.3.2
Metallic Particles
99
3.2.3.3
Semiconductor Nanoparticles
101
3.2.3.4
Synthesis in
Microemulsion 102
3.3
Hybrid Nanoparticles Obtained Through Self-assembly
Techniques
103
3.3.1
Electrostatically Driven Self-assembly
103
3.3.1.1
Heterocoagulation
103
3.3.1.2
Layer-by-layer Assembly
107
3.3.2
Molecular Recognition Assembly
109
3.4
O/I Nanoparticles Obtained by in situ Polymerization
Techniques 111
Contents
ЗАЛ
Polymerizations Performed in the Presence of Preformed Mineral
Particles
111
3.4.1.1
Surface Modification of Inorganic Particles
112
3.4.1.2
Polymerizations in Multiphase Systems
113
3.4.1.3
Surface-initiated Polymerizations
124
3.4.2
In situ Formation of Minerals in the Presence of Polymer
Colloids
130
3.4.2.1
Polymer Particles Templating
130
3.4.2.2
Block Copolymers, Dendrimers and
Microgels
Templating
134
3.5
Hybrid Particles Obtained by Simultaneously Reacting Organic
Monomers and Mineral Precursors
137
3.5.1
Poly(organosiloxane/vinylic) Copolymer Hybrids
137
3.5.2
Polyorganosiloxane Colloids
140
3.6
Conclusion
142
4
Intercalation Compounds and Clay Nanocomposites
151
Jin Zhu and Charles A. Wilkie
4.1
Introduction
151
4.2
Polymer Lamellar Material Nanocomposites
253
4.2.1
Types of Lamellar Nano-additives
153
4.2.2
Montmorillonite Layer Structure ]54
4.2.3
Modification of Clay
154
4.3
Nanostructures and Characterization
156
4.3.1
X-ray Diffraction and Transmission Electron Microscopy to Probe
Morphology
256
4.3.2
Other Techniques to Probe Morphology
158
4.4
Preparation of Polymer-clay Nanocomposites
260
4.4.1
Solution Mixing
161
4.4.2
Polymerization
261
4.4.3
Melt Compounding
263
4.5
Polymer-graphite and Polymer Layered Double Hydroxide
Nanocomposites
164
4.5.1
Nanocomposites Based on Layered Double Hydroxides and Salts
166
4.6
Properties of Polymer Nanocomposites
167
4.7
Potential Applications
268
4.8
Conclusion and Prospects for the Future
269
5
Porous Hybrid Materials
175
Nicola Hüsing
5.1
General Introduction and Historical Development
175
5.1.1
Definition of Terms
177
5.1.2
Porous (Hybrid) Matrices
279
5.1.2.1
Microporous Materials: Zeolites
280
5.1.2.2
Mesoporous Materials: M41S and FSM Materials
282
5.1.2.3
Metal-Organic Frameworks (MOFs)
284
VIII Contents
5.2
General Routes towards Hybrid Materials
185
5.2.1
Post-synthesis Modification of the Final Dried Porous Product by
Gaseous, Liquid or Dissolved Organic or Organometallic Species
185
5.2.2
Liquid-phase Modification in the Wet Nanocomposite Stage or
-
for
Mesostructured Materials and Zeolites
-
Prior to Removal of the
Template
187
5.2.3
Addition of Molecular, but Nonreactive Compounds to the Precursor
Solution
188
5.2.4
Co-condensation Reactions by the use of Organically-substituted Co-
precursors
188
5.2.5
The Organic Entity as an Integral Part of the Porous Framework
190
5.3
Classification of Porous Hybrid Materials by the Type of Interaction
192
5.3.1
Incorporation of Organic Functions Without Covalent Attachment to the
Porous Host
192
5.3.1.1
Doping with Small Molecules
192
5.3.1.2
Doping with Polymeric Species
296
5.3.1.3
Incorporation of Biomolecules
199
5.3.2
Incorporation of Organic Functions with Covalent Attachment to the
Porous Host
201
5.3.2.1
Grafting Reactions
201
5.3.2.2
Co-condensation Reactions
203
5.3.3
The Organic Function as an Integral Part of the Porous Network
Structure
209
5.3.3.1
ZOL
and PMO: Zeolites with Organic Groups as Lattice and Periodically
Mesostructured Organosilicas
209
5.3.3.2
Metal-Organic Frameworks
213
5.4
Applications and Properties of Porous Hybrid Materials
219
б
Sol-Gel Processing of Hybrid Organic-Inorganic Materials Based on
Polysilsesquioxanes
225
Douglas A. Loy
6.1
Introduction
225
6.1.1
Definition of Terms
226
6.2
Forming Polysilsesquioxanes
228
6.2.1
Hydrolysis and Condensation Chemistry
228
6.2.2
Alternative Polymerization Chemistries
234
6.2.3
Characterizing Silsesquioxane Sol-Gels with NMR
235
6.2.4
Cyclization in Polysilsesquioxanes
237
6.3
Type I Structures: Polyhedral Oligosilsesquioxanes (POSS)
240
6.3.1
Homogenously Functionalized POSS
240
6.3.2
Stability of Siioxane Bonds in Silsesquioxanes
242
6.4
Type II Structures: Amorphous Oligo- and Polysilsesquioxanes
243
6.4.1
Gelation of Polysilsesquioxanes
243
6.4.2
Effects of
pH
on Gelation
245
Contents
IX
6.4.3 Polysilsesquioxane Gels 246
6.4.4 Polysilsesquioxane-Silica Copolymers 247
6.5
Type III: Bridged Polysilsesquioxanes
248
6.5.1
Molecular Bridges
248
6.5.2 Macromolecule-bridged Polysilsesquioxanes 252
6.6
Summary
252
6.6.1
Properties of
Polysilsesquioxanes 253
6.6.2
Existing and Potential Applications
253
7
Natural and Artificial Hybrid
Biomaterials
255
Heather A. Currie, Siddharth V. Patwardhan, Carole C. Perry, Paul Roach,
NeilJ. Shirtcliffe
7.1
Introduction
255
7.2
Building Blocks
256
7.2.1
Inorganic Building Blocks
256
7.2.1.1
Nucleation and Growth
259
7.2.2
Organic Building Blocks
262
7.2.2.1
Proteins and
DNA 262
7.2.2.2
Carbohydrates
264
7.2.2.3
Lipids
266
7.2.2.4
Collagen
266
7.3
Biomineralization
269
7.3.1
Introduction
269
7.3.1.1
Biomineral Types and Occurrence
269
7.3.1.2
Functions of
Biominerals 270
7.3.1.3
Properties of
Biominerals 270
7.3.2
Control Strategies in Biomineralization
272
133
The Role of the Organic Phase in Biomineralization
275
7.3.4
Mineral or Precursor
-
Organic Phase Interactions
276
7.3.5
Examples of Non-bonded Interactions in Bioinspired Silkification
279
7.3.5.1
Effect of Electrostatic Interactions
279
7.3.5.2
Effect of Hydrogen Bonding Interactions
279
7.3.5.3
Effect of the
Hydrophobie
Effect
280
7.3.6
Roles of the Organic Phase in Biomineralization
280
7.4
Bioinspired Hybrid Materials
281
7.4.1
Natural Hybrid Materials
283
7.4.1.1
Bone
283
7.4.1.2 Dentin 285
7.4.1.3
Nacre
287
7.4.1.4
Wood
287
7.4.2
Artificial Hybrid
Biomaterials
289
7.4.2.1
Ancient materials
289
7.4.2.2
Structural Materials
290
7.4.2.3
Non-structural Materials
290
7.4.3
Construction of Artificial Hybrid
Biomaterials
291
Contents
7.4.3.1
Organie
Templates
to Dictate Shape and Form
291
7.4.3.2
Integrated Nanoparticle-Biomolecule Hybrid Systems
292
7.4.3.3
Routes to
Bio-nano
Hybrid Systems
292
7.5
Responses
294
7.5.1
Biological Performance
294
7.5.2
Protein Adsorption
295
7.5.3
Cell Adhesion
295
7.5.4
Evaluation of
Biomaterials
296
7.6
Summary
298
8
Medical Applications of Hybrid Materials
301
Kcmji Tsuru, Satosbi Hayakawa, and Akiyoshi Osaka
8.1
Introduction
301
8.1.1
Composites, Solutions, and Hybrids
301
8.1.2
Artificial Materials for Repairing Damaged Tissues and Organs
306
8.1.3
Tissue-Material Interactions
310
8.1.4
Material-Tissue Bonding; Bioactivity
313
8.1.5
Blood-compatible Materials
318
8.2
Bioactive Inorganic-Organic Hybrids
339
8.2.1
Concepts of Designing Hybrids
319
8.2.2
Concepts of Organic-Inorganic Hybrid Scaffolds and Membranes
321
8.2.3
PDMS-Silica Hybrids
323
8.2.4
Organoalkoxysilane Hybrids
324
8.2.5
Gelatin-Silicate Hybrids
326
8.2.6
Chitosan-Silicate Hybrids
327
8.3
Surface Modifications for
Biocompatible
Materials
328
8.3.1
Molecular Brush Structure Developed on
Biocompatible
Materials
328
8.3.2
Alginic Acid Molecular Brush Layers on Metal Implants
329
8.3.3
Organotitanium Molecular Layers with Blood Compatibility
330
8.4
Porous Hybrids for Tissue Engineering Scaffolds and Bioreactors
331
8.4.1
PDMS-Silica Porous Hybrids for Bioreactors
331
8.4.2
Gelatin-Silicate Porous Hybrids
332
8.4.3
Chitosan-Silicate Porous Hybrids for Scaffold Applications
333
8.5
Chitosan-based Hybrids for Drug Delivery Systems
334
8.6
Summary
335
9
Hybrid Materials for Optical Applications
337
Luís António Dias
Carlos,
R.
A. Sá Ferreira
and V.
de Zea
Bermudez
9.1
Introduction
337
9.2
Synthesis Strategy for Optical Applications
339
9.3
Hybrids for Coatings
343
9.4
Hybrids for Light-emitting and Electro-optic Purposes
353
9.4.1
Photoluminescence
and Absorption
353
9.4.2
Electroluminescence
359
9.4.3
Quantifying Luminescence
365
Contents
XI
9.4.3.1
Color Coordinates, Hue, Dominant Wavelength and Purity
365
9.4.3.2
Emission Quantum Yield and Radiance
368
9.4.4
Recombination Mechanisms and Nature of the Emitting Centers
372
9.4.5
Lanthanide-doped Hybrids
374
9.4.6
Solid-state Dye-lasers
379
9.5
Hybrids for Photochromic and Photovoltaic Devices
381
9.6
Hybrids for Integrated and Nonlinear Optics
387
9.6.1
Planar Waveguides and Direct Writing
387
9.6.2
Nonlinear Optics
393
9.7
Summary
398
10
Electronic and Electrochemical Applications of Hybrid Materials
401
Jason E. Ritchie
10.1
Introduction
401
10.2
Historical Background
402
10.3
Fundamental Mechanisms of Conductivity in Hybrid Materials
403
10.3.1
Electrical Conductivity
403
10.3.2
Li- Conductivity
407
10.3.3
H
Conductivity
409
10.4
Explanation of the Different Materials
411
10.4.1
Sol-Gel Based Systems
411
10.4.2
Nanocomposites
412
10.4.3
Preparation of Electrochemically Active Films (and Chemically Modified
Electrodes)
414
10.5
Special Analytical Techniques
415
10.5.1
Electrochemical Techniques
415
10.5.2
Pulsed Field Gradient NMR
418
10.6
Applications
419
10.6.1
Electrochemical Sensors
419
10.6.2
Optoelectronic Applications
421
10.6.3
H-conducting Electrolytes for Fuel Cell Applications
423
10.6.4
Li-conducting Electrolytes for Battery Applications
426
10.6.5
Other Ion Conducting Systems
429
10.7
Summary
430
Π
Inorganic/Organic Hybrid Coatings
433
Mark D.
Souček
11.1
General Introduction to Commodity Organic Coatings
433
11.2
General Formation of Inorganic/Organic Hybrid Coatings
435
11.2.1
Acid and Base Catalysis within an Organic Matrix
436
11.2.2
Thermally Cured Inorganic/Organic Seed Oils Coatings
443
11.2.3
Drying Oil Auto-oxidation Mechanism
444
11.2.4
Metal Catalysts
445
11.3
Alkyds and Other Polyester Coatings
449
11.3.1
inorganic/Organic Alkyd Coatings
450
XII Contents
11.4 Polyurethane
and Polyurea Coatings
451
11.4.1
Polyurea
Inorganic/Organic Hybrid Coatings
452
11.4.2
Polyurethane/Polysiloxane Inorganic/Organic Coating System
455
11.5
Radiation Curable Coatings
459
11.5.1
UV-curable Inorganic/Organic Hybrid Coatings
461
11.5.2
Models for Inorganic/Organic Hybrid Coatings
465
11.5.3
Film Morphology
468
11.6
Applications
470
11.7
Summary
471
Index
477 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)115473726 |
building | Verbundindex |
bvnumber | BV021732226 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.C6 |
callnumber-search | TA418.9.C6 |
callnumber-sort | TA 3418.9 C6 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UQ 8320 UQ 8420 VE 9670 ZM 7020 |
classification_tum | CHE 380f |
ctrlnum | (OCoLC)254253596 (DE-599)BVBBV021732226 |
dewey-full | 547.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547.7 |
dewey-search | 547.7 |
dewey-sort | 3547.7 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik Chemie Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Chemie / Pharmazie Physik Chemie Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02966nam a2200757 c 4500</leader><controlfield tag="001">BV021732226</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060915s2007 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N22,0935</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">979609852</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527312994</subfield><subfield code="c">Gb. : ca. EUR 149.00 (freier Pr.), ca. sfr 235.00 (freier Pr.)</subfield><subfield code="9">3-527-31299-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527312993</subfield><subfield code="9">978-3-527-31299-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527312993</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131299 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254253596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021732226</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.C6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8320</subfield><subfield code="0">(DE-625)146595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8420</subfield><subfield code="0">(DE-625)146597:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9670</subfield><subfield code="0">(DE-625)147161:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 7020</subfield><subfield code="0">(DE-625)157098:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 380f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid materials</subfield><subfield code="b">synthesis, characterization, and applications</subfield><subfield code="c">ed. by Guido Kickelbick</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 498 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organisch-anorganischer Hybridwerkstoff</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomaterialen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Blokcopolymeren.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical structure</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composieten.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hybridisering.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intercalatieverbindingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macromolecules</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanokristallijne materialen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanostructuren.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymeren.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymeric composites</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Poreuze media.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanokomposit</subfield><subfield code="0">(DE-588)4768127-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hybrides System</subfield><subfield code="0">(DE-588)4510314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organisch-anorganischer Hybridwerkstoff</subfield><subfield code="0">(DE-588)4763543-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hybridwerkstoff</subfield><subfield code="0">(DE-588)4160847-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Organisch-anorganischer Hybridwerkstoff</subfield><subfield code="0">(DE-588)4763543-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hybrides System</subfield><subfield code="0">(DE-588)4510314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hybridwerkstoff</subfield><subfield code="0">(DE-588)4160847-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Nanokomposit</subfield><subfield code="0">(DE-588)4768127-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kickelbick, Guido</subfield><subfield code="d">1968-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)115473726</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2804422&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014945717&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014945717</subfield></datafield></record></collection> |
id | DE-604.BV021732226 |
illustrated | Illustrated |
index_date | 2024-07-02T15:26:44Z |
indexdate | 2024-07-09T20:42:45Z |
institution | BVB |
isbn | 3527312994 9783527312993 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014945717 |
oclc_num | 254253596 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-29T DE-1102 DE-703 DE-1046 DE-19 DE-BY-UBM DE-384 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-29T DE-1102 DE-703 DE-1046 DE-19 DE-BY-UBM DE-384 DE-11 |
physical | XVII, 498 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Hybrid materials synthesis, characterization, and applications ed. by Guido Kickelbick Weinheim WILEY-VCH 2007 XVII, 498 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Organisch-anorganischer Hybridwerkstoff Biomaterialen. gtt Blokcopolymeren. gtt Chemical structure Composieten. gtt Hybridisering. gtt Intercalatieverbindingen. gtt Macromolecules Nanokristallijne materialen. gtt Nanostructuren. gtt Polymeren. gtt Polymeric composites Poreuze media. gtt Nanokomposit (DE-588)4768127-5 gnd rswk-swf Hybrides System (DE-588)4510314-8 gnd rswk-swf Organisch-anorganischer Hybridwerkstoff (DE-588)4763543-5 gnd rswk-swf Hybridwerkstoff (DE-588)4160847-1 gnd rswk-swf Werkstoff (DE-588)4065579-9 gnd rswk-swf Organisch-anorganischer Hybridwerkstoff (DE-588)4763543-5 s DE-604 Werkstoff (DE-588)4065579-9 s Hybrides System (DE-588)4510314-8 s Hybridwerkstoff (DE-588)4160847-1 s Nanokomposit (DE-588)4768127-5 s Kickelbick, Guido 1968- Sonstige (DE-588)115473726 oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2804422&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014945717&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hybrid materials synthesis, characterization, and applications Organisch-anorganischer Hybridwerkstoff Biomaterialen. gtt Blokcopolymeren. gtt Chemical structure Composieten. gtt Hybridisering. gtt Intercalatieverbindingen. gtt Macromolecules Nanokristallijne materialen. gtt Nanostructuren. gtt Polymeren. gtt Polymeric composites Poreuze media. gtt Nanokomposit (DE-588)4768127-5 gnd Hybrides System (DE-588)4510314-8 gnd Organisch-anorganischer Hybridwerkstoff (DE-588)4763543-5 gnd Hybridwerkstoff (DE-588)4160847-1 gnd Werkstoff (DE-588)4065579-9 gnd |
subject_GND | (DE-588)4768127-5 (DE-588)4510314-8 (DE-588)4763543-5 (DE-588)4160847-1 (DE-588)4065579-9 |
title | Hybrid materials synthesis, characterization, and applications |
title_auth | Hybrid materials synthesis, characterization, and applications |
title_exact_search | Hybrid materials synthesis, characterization, and applications |
title_exact_search_txtP | Hybrid materials synthesis, characterization, and applications |
title_full | Hybrid materials synthesis, characterization, and applications ed. by Guido Kickelbick |
title_fullStr | Hybrid materials synthesis, characterization, and applications ed. by Guido Kickelbick |
title_full_unstemmed | Hybrid materials synthesis, characterization, and applications ed. by Guido Kickelbick |
title_short | Hybrid materials |
title_sort | hybrid materials synthesis characterization and applications |
title_sub | synthesis, characterization, and applications |
topic | Organisch-anorganischer Hybridwerkstoff Biomaterialen. gtt Blokcopolymeren. gtt Chemical structure Composieten. gtt Hybridisering. gtt Intercalatieverbindingen. gtt Macromolecules Nanokristallijne materialen. gtt Nanostructuren. gtt Polymeren. gtt Polymeric composites Poreuze media. gtt Nanokomposit (DE-588)4768127-5 gnd Hybrides System (DE-588)4510314-8 gnd Organisch-anorganischer Hybridwerkstoff (DE-588)4763543-5 gnd Hybridwerkstoff (DE-588)4160847-1 gnd Werkstoff (DE-588)4065579-9 gnd |
topic_facet | Organisch-anorganischer Hybridwerkstoff Biomaterialen. Blokcopolymeren. Chemical structure Composieten. Hybridisering. Intercalatieverbindingen. Macromolecules Nanokristallijne materialen. Nanostructuren. Polymeren. Polymeric composites Poreuze media. Nanokomposit Hybrides System Hybridwerkstoff Werkstoff |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2804422&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014945717&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kickelbickguido hybridmaterialssynthesischaracterizationandapplications |