Asymmetric synthesis with chemical and biological methods:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XXIV, 445 S. Ill., graph. Darst. |
ISBN: | 9783527314737 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021728764 | ||
003 | DE-604 | ||
005 | 20101105 | ||
007 | t | ||
008 | 060913s2007 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N30,0778 |2 dnb | ||
016 | 7 | |a 980328748 |2 DE-101 | |
020 | |a 9783527314737 |c Gb. : ca. EUR 149.00 (freier Pr.), ca. sfr 235.00 (freier Pr.) |9 978-3-527-31473-7 | ||
024 | 3 | |a 9783527314737 | |
028 | 5 | 2 | |a 1131473 000 |
035 | |a (OCoLC)255377947 | ||
035 | |a (DE-599)BVBBV021728764 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-91G |a DE-703 |a DE-29T |a DE-19 |a DE-11 |a DE-M49 | ||
082 | 0 | |a 547.2 | |
084 | |a VK 5500 |0 (DE-625)147401:253 |2 rvk | ||
084 | |a CHE 624f |2 stub | ||
084 | |a 570 |2 sdnb | ||
084 | |a CHE 623f |2 stub | ||
245 | 1 | 0 | |a Asymmetric synthesis with chemical and biological methods |c Ed. by Dieter Enders ... |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2007 | |
300 | |a XXIV, 445 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Asymmetrische Synthese - Enzymkatalyse | |
650 | 4 | |a Asymmetrische Synthese - Katalyse | |
650 | 4 | |a Asymmertric synthesis | |
650 | 0 | 7 | |a Katalyse |0 (DE-588)4029921-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Enzymkatalyse |0 (DE-588)4152480-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymmetrische Synthese |0 (DE-588)4135603-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Asymmetrische Synthese |0 (DE-588)4135603-2 |D s |
689 | 0 | 1 | |a Katalyse |0 (DE-588)4029921-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Asymmetrische Synthese |0 (DE-588)4135603-2 |D s |
689 | 1 | 1 | |a Enzymkatalyse |0 (DE-588)4152480-9 |D s |
689 | 1 | |C b |5 DE-604 | |
700 | 1 | |a Enders, Dieter |d 1946-2019 |e Sonstige |0 (DE-588)142730548 |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2831410&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014942306&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-014942306 |
Datensatz im Suchindex
_version_ | 1805088407723966464 |
---|---|
adam_text |
I VII
Contents
Foreword V
Preface XVII
List of Contributors XIX
1 Stoichiometric Asymmetrie Synthesis 1
1.1 Development of Novel Enantioselective Synthetic Methods 1
Dieter Enders and Wolfgang Bettray
1.1.1 Introduction 1
1.1.2 a Silyl Ketone Controlled Asymmetrie Syntheses 1
1.1.2.1 Regio and Enantioselective a Fluorination of Ketones 2
1.1.2.2 a Silyl Controlled Asymmetrie Mannich Reactions 3
1.1.3 Asymmetrie Hetero Michael Additions 5
1.1.3.1 Asymmetrie Aza Michael Additions 5
1.1.3.2 Asymmetrie Oxa Michael Additions 10
1.1.3.3 Asymmetrie Phospha Michael Additions 11
1.1.4 Asymmetrie Syntheses with Lithiated a Aminonitriles 14
1.1.4.1 Asymmetrie Nucleophilic a Aminoacylation 14
1.1.4.2 Asymmetrie Nucleophilic Alkenoylation of Aldehydes 16
1.1.5 Asymmetrie Electrophilic a Substitution of Lactones and Lactams 18
1.1.6 Asymmetrie Synthesis of a Phosphino Ketones and 2 Phosphino
Alcohols 22
1.1.7 Asymmetrie Synthesis of 1,3 Diols and anti l,3 Polyols 24
1.1.8 Asymmetrie Synthesis of a Substituted Sulfonamides and
Sulfonates 26
1.2 Asymmetrie Synthesis of Natural Products Employing the SAMP/
RAMP Hydrazone Methodology 38
Dieter Enders and Wolfgang Bettray
1.2.1 Introduction 38
1.2.2 Stigmatellin A 38
Asymmetrie Synthesis with Chemical and Biological Methods. Edited by Dieter Enders and Karl Erich Jaeger
Copyright © 2007 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN 978 3 527 31473 7
VIII I Contents
1.2.3 Callistatin A 41
1.2.4 Dehydroiridodiol(dial) and Neonepetalactone 51
1.2.5 First Enantioselective Synthesis of Dendrobatid Alkaloids Indolizidine
2091 and 223J 53
1.2.6 Efficient Synthesis of (2S,12'R) 2 (12' Aminotridecyl)pyrrolidine, a
Defense Alkaloid of the Mexican Bean Beetle 57
1.2.7 2 epi Deoxoprosopinine 58
1.2.8 Attenol A and B 62
1.2.9 Asymmetrie Synthesis of(+) and ( ) Streptenol A 64
1.2.10 Sordidin 66
1.2.11 Prelactone B and V 69
1.3 Asymmetrie Synthesis Based on Sulfonimidoyl Substituted
Allyltitanium Complexes 75
Hans Joachim Gais
1.3.1 Introduction 75
1.3.2 Hydroxyalkylation of Sulfonimidoyl Substituted Allylltitanium
Complexes 80
1.3.2.1 Sulfonimidoyl Substituted Bis(allyl)titanium Complexes 80
1.3.2.2 Sulfonimidoyl Substituted Mono(allyl)tris(diethylamino)titanium
Complexes 82
1.3.3 Aminoalkylation of Sulfonimidoyl Substituted Allyltitanium
Complexes 85
1.3.3.1 Sulfonimidoyl Substituted Bis(allyl)titanium Complexes 85
1.3.3.2 Sulfonimidoyl Substituted Mono (allyl)tris (diethylamino)titanium
Complexes 86
1.3.4 Structure and Reactivity of Sulfonimidoyl Substituted Allyltitanium
Complexes 88
1.3.4.1 Sulfonimidoyl Substituted Bis(allyl)titanium Complexes 88
1.3.4.2 Sulfonimidoyl Substituted Mono (allyl) titanium Complexes 91
1.3.5 Asymmetrie Synthesis of Homopropargyl Alcohols 95
1.3.6 Asymmetrie Synthesis of 2,3 Dihydrofurans 96
1.3.7 Synthesis of Bicyclic Unsaturated Tetrahydrofurans 98
1.3.8 Asymmetrie Synthesis of Alkenyloxiranes 100
1.3.9 Asymmetrie Synthesis of Unsaturated Mono and Bicyclic
Prolines 102
1.3.10 Asymmetrie Synthesis of Bicyclic Amino Acids 105
1.3.11 Asymmetrie Synthesis ofß Amino Acids 108
1.3.12 Conclusion 111
1.4 The "Daniphos" Ligands: Synthesis and Catalytic Applications 115
Albrecht Salzer and Wolfgang Braun
1.4.1 Introduction 115
1.4.2 General Synthesis 116
Contents IX
1.4.3 Applications in Stereoselective Catalysis 120
1.4.3.1 Enantioselective Hydrogenations 120
1.4.3.2 Diastereoselective Hydrogenation of Folie Arid Ester 122
1.4.3.3 Enantioselective Isomerization of Geranylamine to Citronellal 124
1.4.3.4 Nucleophilic Asymmetrie Ring Opening of
Oxabenzonorbornadiene 124
1.4.3.5 Enantioselective Suzuki Coupling 126
1.4.3.6 Asymmetrie Hydrovinylation 126
1.4.3.7 Allylic Sulfonation 128
1.4.4 Conclusion 129
1.5 New Chiral Ligands Based on Substituted
Heterometallocenes 130
Christian Ganter
1.5.1 Introduction 130
1.5.2 General Properties of Phosphaferrocenes 131
1.5.3 Synthesis of Phosphaferrocenes 132
1.5.4 Preparation ofBidentate P,P and P,N Ligands 133
1.5.5 Modifikation of the Backbone Structure 136
1.5.6 Cp Phosphaferrocene Hybrid Systems 139
1.5.7 Catalytic Applications 145
1.5.8 Conclusion 146
2 Catalytic Asymmetrie Synthesis 149
2.1 Chemical Methods 149
2.1.1 Sulfoximines as Ligands in Asymmetrie Metal Catalysis 149
Carsten Bolm
2.1.1.1 Introduction 149
2.1.1.2 Development of Methods for Sulfoximine Modifkation 150
2.1.1.3 Sulfoximines as Ligands in Asymmetrie Metal Catalysis 162
2.1.1.4 Conclusions 170
2.1.2 Catalyzed Asymmetrie Aryl Transfer Reactions 176
Carsten Bolm
2.1.2.1 Introduction 176
2.1.2.2 Catalyst Design 177
2.1.2.3 Catalyzed Aryl Transfer Reactions 180
2.1.3 Substituted [2.2]Paracyclophane Derivatives as Effkient Ligands for
Asymmetrie 1,2 and 1,4 Addition Reactions 396
Stefan Bräse
X Contents
2.1.3.1 [2.2]Paracyclophanes as Chiral Ligands 196
2.1.3.2 Synthesis of [2.2]Paracyclophane Ligands 199
2.1.3.2.1 Preparation of FHPC , AHPC , and BHPC Based Imines 199
2.1.3.2 Structural Information on AHPC Based Imines 199
2.1.3.3 Asymmetrie 1,2 Addition Reactions to Aryl Aldehydes 200
2.1.3.3.1 Initial Considerations 200
2.1.3.3.2 Asymmetrie Addition Reactions to Aromatic Aldehydes: Scope of
Substrates 203
2.1.3.4 Asymmetrie Addition Reactions to Aliphatic Aldehydes 205
2.1.3.5 Addition of Alkenylzinc Reagents to Aldehydes 206
2.1.3.6 Asymmetrie Conjugate Addition Reactions 208
2.1.3.7 Asymmetrie Addition Reactions to Imines 208
2.1.3.8 Asymmetrie Addition Reactions on Solid Supports 212
2.1.3.8.1 Applications 213
2.1.3.9 Conclusions and Future Perspective 213
2.1.4 Palladium Catalyzed Allylic Alkylation of Sulfur and Oxygen
Nucleophiles Asymmetrie Synthesis, Kinetic Resolution and
Dynamic Kinetic Resolution 215
Hans Joachim Gais
2.1.4.1 Introduction 215
2.1.4.2 Asymmetrie Synthesis of Allylic Sulfones and Allylic Sulfides and
Kinetic Resolution of Allylic Esters 216
2.1.4.2.1 Kinetic Resolution 216
2.1.4.2.2 Selectivity 220
2.1.4.2.3 Asymmetrie Synthesis 220
2.1.4.2.4 Synthesis of Enantiopure Allylic Alcohols 224
2.1.4.3 Asymmetrie Rearrangment and Kinetic Resolution of Allylic
Sulfinates 225
2.1.4.3.1 Introduction 225
2.1.4.3.2 Synthesis of Racemic Allylic Sulfinates 225
2.1.4.3.3 Pd Catalyzed Rearrangement 226
2.1.4.3.4 Kinetic Resolution 227
2.1.4.3.5 Mechanistic Considerations 228
2.1.4.4 Asymmetrie Rearrangment of Allylic Thiocarbamates 229
2.1.4.4.1 Introduction 229
2.1.4.4.2 Synthesis of Racemic O Allylic Thiocarbamates 229
2.1.4.4.3 Acyclic Carbamates 229
2.1.4.4.4 Cyclic Carbamates 231
2.1.4.4.5 Mechanistic Considerations 232
2.1.4.4.6 Synthesis of Allylic Sulfides 232
2.1.4.5 Asymmetrie Synthesis of Allylic Thioesters and Kinetic Resolution of
Allylic Esters 233
2.1.4.5.1 Introduction 233
Contents I XI
2.1.4.5.2 Asymmetrie Synthesis of Allylic Thioesters 234
2.1.4.5.3 Kinetic Resolution of Allylic Esters 235
2.1.4.5.4 Memory Effect and Dynamic Kinetic Resolution of the Five
Membered Cyclic Acetate 238
2.1.4.5.5 Asymmetrie Synthesis of Cyclopentenyl Thioacetate 242
2.1.4.6 Kinetic and Dynamic Kinetic Resolution of Allylic
Alcohols 242
2.1.4.6.1 Introduction 242
2.1.4.6.2 Asymmetrie Synthesis of Symmetrical Allylic Alcohols 242
2.1.4.6.3 Asymmetrie Synthesis of Unsymmetrical Allylic Alcohols 244
2.1.4.6.4 Asymmetrie Synthesis of a Prostaglandin Building Block 245
2.1.4.6.5 Investigation of an Unsaturated Analogue of BPA 245
2.1.4.7 Conclusions 246
2.1.5 The QUINAPHOS Ligand Family and its Application in Asymmetrie
Catalysis 250
Giancarlo Franciö, Feiice Faraone, and Walter Leitner
2.1.5.1 Introduction 250
2.1.5.2 Synthetic Strategy 252
2.1.5.3 Stereochemistry and Coordination Properties 254
2.1.5.3.1 Free Ligands 254
2.1.5.3.2 Complexes 256
2.1.5.4 Catalytic Applications 261
2.1.5.4.1 Rhodium Catalyzed Asymmetrie Hydroformylation of
Styrene 261
2.1.5.4.2 Rhodium Catalyzed Asymmetrie Hydrogenation of Functionalized
Alkenes 263
2.1.5.4.3 Ruthenium Catalyzed Asymmetrie Hydrogenation of Aromatic
Ketones 265
2.1.5.4.4 Copper Catalyzed Enantioselective Conjugate Addition of Diethylzinc
to Enones 267
2.1.5.4.5 Nickel Catalyzed Asymmetrie Hydrovinylation 268
2.1.5.4.6 Nickel Catalyzed Cycloisomerization of 1,6 Dienes 270
2.1.5.5 Conclusions 273
2.1.6 Immobilization of Transition Metal Complexes and Their Application
to Enantioselective Catalysis 277
Adrian Crosman, Carmen Schuster, Hans Hermann Wagner,
Melinda Batorfi, Jairo Cubillos, and Wolfgang Hölderich
2.1.6.1 Introduction 277
2.1.6.2 Immobilized Rh Diphosphino Complexes as Catalysts for Asymmetrie
Hydrogenation 278
2.1.6.2.1 Preparation and Characterization of the Immobilized
Rh Diphosphine Complexes 279
XII I Contents
2.1.6.2.2 Enantioselective Hydrogenation over Immobilized Rhodium
Diphosphine Complexes 282
2.1.6.3 Heterogeneous Asymmetrie Epoxidation of Olefins over Jacobsen's
Catalyst Immobilized in Inorganic Porous Materials 284
2.1.6.3.1 Preparation and Characterization of Immobilized Jacobsen's
Catalysts 285
2.1.6.3.2 Epoxidation of Olefins over Immobilized Jacobsen Catalysts 287
2.1.6.4 Novel Heterogenized Catalysts for Asymmetrie Ring Opening
Reactions of Epoxides 291
2.1.6.4.1 Synthesis and Characterization of the Heterogenized
Catalysts 291
2.1.6.4.2 Asymmetrie Ring Opening of Epoxides over New Heterogenized
Catalysts 293
2.1.6.5 Conclusions 295
2.2 Biological Methods 298
2.2.1 Directed Evolution to Increase the Substrate Range of Benzoylformate
Decarboxylase from Pseudomonas putida 298
Marion Wendorff, Thorsten Eggert, Martina Pohl, Carola Dresen,
Michael Müller, and Karl Erich Jaeger
2.2.1.1 Introduction 298
2.2.1.2 Materials and Methods 300
2.2.1.2.1 Reagents 300
2.2.1.2.2 Construction of Strains for Heterologous Expression of BFD and
BAL 300
2.2.1.2.3 Polymerase Chain Reactions 301
2.2.1.2.4 Generation of a BFD Variant Library by Random
Mutagenesis 302
2.2.1.2.5 High Throughput Screening for Carboligation Activity with the
Substrates Benzaldehyde and Dimethoxyacetaldehyde 303
2.2.1.2.6 Expression and Purification of BFD Variants 303
2.2.1.2.7 Protein Analysis Methods 304
2.2.1.2.8 Enzyme Activity Assays 304
2.2.1.3 Results and Discussion 304
2.2.1.3.1 Overexpression of BFD in Escherichia coli 304
2.2.1.3.2 Random Mutagenesis of BFD Variant L476Q 305
2.2.1.3.3 Development of a High Throughput Screening Assay for Carboligase
Activity 305
2.2.1.3.4 Identification of a BFD Variant with an Optimized Acceptor Aldehyde
Spectrum 306
2.2.1.3.5 Biochemical Characterization of the BFD Variants 308
2.2.1.3.6 Decreased Benzoyl Formate Decarboxylation Activity of Variant
55E4 308
Contents XIII
2.2.1.3.7 Formation of 2 Hydroxy 3,3 dimethoxypropiophenone and
Benzoin 308
2.2.1.3.8 Enantioselectivity of the Carboligation Reaction 310
2.2.1.4 Conclusions 311
2.2.2 C C Bonding Microbial Enzymes: Thiamine Diphosphate Dependent
Enzymes and Class I Aldolases 312
Georg A. Sprenger, Melanie Schürmann, Martin Schürmann,
Sandra Johnen, Gerda Sprenger, Hermann Sahm, Tomoyuki Inoue,
and Ulrich Schörken
2.2.2.1 Introduction 312
2.2.2.2 Thiamine Diphosphate (ThDP) Dependent Enzymes 312
2.2.2.2.1 Transketolase (TKT) 313
2.2.2.2.2 1 Deoxy D xylulose 5 Phosphate Synthase (DXS) 317
2.2.2.2.3 Phosphonopyruvate Decarboxylase (PPD) from Streptomyces
viridochromogen.es 318
2.2.2.3 Class I Aldolases 318
2.2.2.3.1 Transaldolase (TAL) 320
2.2.2.3.2 Fructose 6 Phosphate Aldolase (FSA) 321
2.2.2.4 Summary and Outlook 321
2.2.3 Enzymes for Carboligation 2 Ketoacid Decarboxylases and
Hydroxynitrile Lyases 327
Martina Pohl, Holger Breittaupt, Bettina Frölich, Petra Heim, Hans
Iding, Bettina Juchem, Petra Siegert, and Maria Regina Kula
2.2.3.1 Introduction 327
2.2.3.2 2 Ketoacid Decarboxylases 327
2.2.3.2.1 Comparative Biochemical Characterization of Wild Type PDC and
BFD 328
2.2.3.2.2 Identification of Amino Acid Residues Relevant to Substrate
Specificity and Enantioselectivity 330
2.2.3.2.3 Optimization of the Substrate Range of BFD by Site Directed
Mutagenesis 330
2.2.3.2.4 Optimization of Stability and Substrate Range of BFD by Directed
Evolution 330
2.2.3.3 Hydroxynitrile Lyases 332
2.2.3.3.1 HNL from Sorghum bicolor 333
2.2.3.3.2 HNL from Linum usitatissimum 337
2.2.4 Preparative Syntheses of Chiral Alcohols using (K) Specifk Alcohol
Dehydrogenases from Lactobacillus Strains 341
Andrea Weckbecker, Michael Müller, and Werner Hummel
2.2.4.1 Introduction 341
2.2.4.2 (i?) Specific Alcohol Dehydrogenase from Lactobacillus kefir 341
XIV I Contents
2.2.4.3 Comparison of (Ä) Specific ADHs from L. kefir and L. brevis 342
2.2.4.4 Preparative Applications of ADHs from L. kefir and L. brevis 345
2.2.4.4.1 Synthesis of (R,Ä) Diols 346
2.2.4.4.2 Synthesis of Enantiopure l Phenylpropane l,2 diols 346
2.2.4.4.3 Synthesis of Enantiopure Propargylic Alcohols 346
2.2.4.4.4 Regioselective Reduction of f Butyl 6 chloro 3,5 dioxohexanoate to the
Corresponding Enantiopure (S) 5 Hydroxy Compound 346
2.2.4.5 Coenzyme Regeneration and the Construction and Use of "Designer
Cells" 347
2.2.4.6 Discussion 349
2.2.5 Biocatalytic C C Bond Formation in Asymmetrie Synthesis 351
Wolf Dieter Fessner
2.2.5.1 Introduction 351
2.2.5.2 Enzyme Mechanisms 352
2.2.5.2.1 Class II Aldolases 352
2.2.5.2.2 Class I Fructose 1,6 Bisphosphate Aldolase 355
2.2.5.2.3 Sialic Acid Synthase 355
2.2.5.2.4 Rhamnose Isomerase 356
2.2.5.3 New Synthetic Strategies 357
2.2.5.3.1 Sugar Phosphonates 357
2.2.5.3.2 Xylulose 5 Phosphate 359
2.2.5.3.3 RhuA Stereoselectivity 359
2.2.5.3.4 Aldolase Screening Assay 361
2.2.5.3.5 Aldose Synthesis 361
2.2.5.3.6 Tandem Chain Extension Isomerization Chain Extension 362
2.2.5.^.7 Tandem Bidirectional Chain Extensions 363
2.2.5.3.8 Non Natural Sialoconjugates 369
2.2.5.4 Summary and Outlook 373
2.2.6 Exploring and Broadening the Biocatalytic Properties of
Recombinant Sucrose Synthase 1 for the Synthesis of Sucrose
Analogues 376
Lothar Elling
2.2.6.1 Introduction 376
2.2.6.2 Characteristics of Recombinant Sucrose Synthase 1 (SuSyl) Expressed
in Saccharomyces cerevisiae 377
2.2.6.2.1 Expression and Purification of SuSyl from Yeast 377
2.2.6.2.2 The Substrate Spectrum of SuSyl from Yeast 378
2.2.6.3 Characteristics of Recombinant Sucrose Synthase 1 (SuSyl) Expressed
in Escherichia coli 381
2.2.6.3.1 Expression and Purification of SuSyl from E. coli 381
2.2.6.3.2 The Substrate Spectrum of SuSyl from E. coli 382
2.2.6.4 Sucrose Synthase 1 Mutants Expressed in S. cerevisiae and E. coli 383
2.2.6.5 Outlook 384
Contents XV
2.2.7 Flexible Asymmetrie Redox Reactions and C C Bond Formation by
Bioorganic Synthetic Strategies 386
Michael Müller, Michael Wolberg, Silke Bode, Ralf Feldmann,
Petra Geilenkirchen, Thomas Schubert, Lydia Walter, Werner Hummel,
Thomas Dünnwald, Ayhan S. Demir, Doris Kolter Jung, Adam Nitsche,
Pascal Dünkelmann, Annabel Cosp, Martina Pohl, Bettina hingen, and
Maria Regina Kula
2.2.7.1 Introduction 386
2.2.7.2 Diversity Oriented Access to 1,3 Diols Through Regio and
Enantioselective Reduction of 3,5 Dioxocarboxylates 386
2.2.7.2.1 Regio and Enantioselective Enzymatic Reduction 387
2.2.7.2.2 Dynamic Kinetic Resolution 388
2.2.7.2.3 Stereoselective Access to 1,3 Diols by Diastereoselective
Reduction 389
2.2.7.2.4 Nucleophilic Substitution of Chlorine 390
2.2.7.2.5 Application in Natural Product Syntheses 391
2.2.7.2.6 Discussion and Outlook 392
2.2.7.3 Chemo and Enantioselective Reduction of Propargylic Ketones 395
2.2.7.3.1 Enantioselective Reduction ofAryl Alkynones 395
2.2.7.3.2 Synthesis of Enantiopure 3 Butyn 2 ol 396
2.2.7.3.3 Enzymatic Reduction of a Halogenated Propargylic Ketones 397
2.2.7.3.4 Modifikation of a Halogenated Propargylic Akohols 398
2.2.7.3.5 Olefinic Substrates 399
2.2.7.3.6 Discussion and Outlook 401
2.2.7.4 Thiamine Diphosphate Dependent Enzymes: Multi purpose Catalysts
in Asymmetrie Synthesis 401
2.2.7.4.1 Formation of Chiral 2 Hydroxy Ketones Through BFD Catalyzed
Reactions 402
2.2.7.4.2 BAL as a Versatile Catalyst for C C Bond Formation and Cleavage
Reactions 405
2.2.7.4.3 Asymmetrie Cross Benzoin Condensation 407
2.2.7.4.4 Discussion and Outlook 408
2.2.7.5 Summary 409
3 Reaction Technology in Asymmetrie Synthesis 415
3.1 Reaction Engineering in Asymmetrie Synthesis 415
Stephan Lutz, Udo Kragl, Andreas Liese, and Christian Wandrey
3.1.1 Introduction 415
3.1.2 Membrane Reactors with Chemical Catalysts 418
3.1.3 Membrane Reactors with Biological Catalysts 420
3.1.3.1 Membrane Reactors with Whole Cells 420
3.1.3.2 Membrane Reactors with Isolated Enzymes 421
3.1.4 Two Phase Systems 422
3.1.5 Conclusions 425
XVI I Contents
3.2 Biocatalyzed Asymmetrie Syntheses Using Gel Stabilized Aqueous
Organic Two Phase Systems 427
Marion B. Ansorge Schumacher
3.2.1 Gel Stabilized Two Phase Systems 428
3.2.2 Benzoin Condensation with Entrapped Benzaldehyde Lyase 430
3.2.3 Reduction of Ketones with Entrapped Alcohol Dehydrogenase 432
3.2.4 Conclusion 433
Index 435
Name Index 443 |
adam_txt |
I VII
Contents
Foreword V
Preface XVII
List of Contributors XIX
1 Stoichiometric Asymmetrie Synthesis 1
1.1 Development of Novel Enantioselective Synthetic Methods 1
Dieter Enders and Wolfgang Bettray
1.1.1 Introduction 1
1.1.2 a Silyl Ketone Controlled Asymmetrie Syntheses 1
1.1.2.1 Regio and Enantioselective a Fluorination of Ketones 2
1.1.2.2 a Silyl Controlled Asymmetrie Mannich Reactions 3
1.1.3 Asymmetrie Hetero Michael Additions 5
1.1.3.1 Asymmetrie Aza Michael Additions 5
1.1.3.2 Asymmetrie Oxa Michael Additions 10
1.1.3.3 Asymmetrie Phospha Michael Additions 11
1.1.4 Asymmetrie Syntheses with Lithiated a Aminonitriles 14
1.1.4.1 Asymmetrie Nucleophilic a Aminoacylation 14
1.1.4.2 Asymmetrie Nucleophilic Alkenoylation of Aldehydes 16
1.1.5 Asymmetrie Electrophilic a Substitution of Lactones and Lactams 18
1.1.6 Asymmetrie Synthesis of a Phosphino Ketones and 2 Phosphino
Alcohols 22
1.1.7 Asymmetrie Synthesis of 1,3 Diols and anti l,3 Polyols 24
1.1.8 Asymmetrie Synthesis of a Substituted Sulfonamides and
Sulfonates 26
1.2 Asymmetrie Synthesis of Natural Products Employing the SAMP/
RAMP Hydrazone Methodology 38
Dieter Enders and Wolfgang Bettray
1.2.1 Introduction 38
1.2.2 Stigmatellin A 38
Asymmetrie Synthesis with Chemical and Biological Methods. Edited by Dieter Enders and Karl Erich Jaeger
Copyright © 2007 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN 978 3 527 31473 7
VIII I Contents
1.2.3 Callistatin A 41
1.2.4 Dehydroiridodiol(dial) and Neonepetalactone 51
1.2.5 First Enantioselective Synthesis of Dendrobatid Alkaloids Indolizidine
2091 and 223J 53
1.2.6 Efficient Synthesis of (2S,12'R) 2 (12' Aminotridecyl)pyrrolidine, a
Defense Alkaloid of the Mexican Bean Beetle 57
1.2.7 2 epi Deoxoprosopinine 58
1.2.8 Attenol A and B 62
1.2.9 Asymmetrie Synthesis of(+) and ( ) Streptenol A 64
1.2.10 Sordidin 66
1.2.11 Prelactone B and V 69
1.3 Asymmetrie Synthesis Based on Sulfonimidoyl Substituted
Allyltitanium Complexes 75
Hans Joachim Gais
1.3.1 Introduction 75
1.3.2 Hydroxyalkylation of Sulfonimidoyl Substituted Allylltitanium
Complexes 80
1.3.2.1 Sulfonimidoyl Substituted Bis(allyl)titanium Complexes 80
1.3.2.2 Sulfonimidoyl Substituted Mono(allyl)tris(diethylamino)titanium
Complexes 82
1.3.3 Aminoalkylation of Sulfonimidoyl Substituted Allyltitanium
Complexes 85
1.3.3.1 Sulfonimidoyl Substituted Bis(allyl)titanium Complexes 85
1.3.3.2 Sulfonimidoyl Substituted Mono (allyl)tris (diethylamino)titanium
Complexes 86
1.3.4 Structure and Reactivity of Sulfonimidoyl Substituted Allyltitanium
Complexes 88
1.3.4.1 Sulfonimidoyl Substituted Bis(allyl)titanium Complexes 88
1.3.4.2 Sulfonimidoyl Substituted Mono (allyl) titanium Complexes 91
1.3.5 Asymmetrie Synthesis of Homopropargyl Alcohols 95
1.3.6 Asymmetrie Synthesis of 2,3 Dihydrofurans 96
1.3.7 Synthesis of Bicyclic Unsaturated Tetrahydrofurans 98
1.3.8 Asymmetrie Synthesis of Alkenyloxiranes 100
1.3.9 Asymmetrie Synthesis of Unsaturated Mono and Bicyclic
Prolines 102
1.3.10 Asymmetrie Synthesis of Bicyclic Amino Acids 105
1.3.11 Asymmetrie Synthesis ofß Amino Acids 108
1.3.12 Conclusion 111
1.4 The "Daniphos" Ligands: Synthesis and Catalytic Applications 115
Albrecht Salzer and Wolfgang Braun
1.4.1 Introduction 115
1.4.2 General Synthesis 116
Contents IX
1.4.3 Applications in Stereoselective Catalysis 120
1.4.3.1 Enantioselective Hydrogenations 120
1.4.3.2 Diastereoselective Hydrogenation of Folie Arid Ester 122
1.4.3.3 Enantioselective Isomerization of Geranylamine to Citronellal 124
1.4.3.4 Nucleophilic Asymmetrie Ring Opening of
Oxabenzonorbornadiene 124
1.4.3.5 Enantioselective Suzuki Coupling 126
1.4.3.6 Asymmetrie Hydrovinylation 126
1.4.3.7 Allylic Sulfonation 128
1.4.4 Conclusion 129
1.5 New Chiral Ligands Based on Substituted
Heterometallocenes 130
Christian Ganter
1.5.1 Introduction 130
1.5.2 General Properties of Phosphaferrocenes 131
1.5.3 Synthesis of Phosphaferrocenes 132
1.5.4 Preparation ofBidentate P,P and P,N Ligands 133
1.5.5 Modifikation of the Backbone Structure 136
1.5.6 Cp Phosphaferrocene Hybrid Systems 139
1.5.7 Catalytic Applications 145
1.5.8 Conclusion 146
2 Catalytic Asymmetrie Synthesis 149
2.1 Chemical Methods 149
2.1.1 Sulfoximines as Ligands in Asymmetrie Metal Catalysis 149
Carsten Bolm
2.1.1.1 Introduction 149
2.1.1.2 Development of Methods for Sulfoximine Modifkation 150
2.1.1.3 Sulfoximines as Ligands in Asymmetrie Metal Catalysis 162
2.1.1.4 Conclusions 170
2.1.2 Catalyzed Asymmetrie Aryl Transfer Reactions 176
Carsten Bolm
2.1.2.1 Introduction 176
2.1.2.2 Catalyst Design 177
2.1.2.3 Catalyzed Aryl Transfer Reactions 180
2.1.3 Substituted [2.2]Paracyclophane Derivatives as Effkient Ligands for
Asymmetrie 1,2 and 1,4 Addition Reactions 396
Stefan Bräse
X Contents
2.1.3.1 [2.2]Paracyclophanes as Chiral Ligands 196
2.1.3.2 Synthesis of [2.2]Paracyclophane Ligands 199
2.1.3.2.1 Preparation of FHPC , AHPC , and BHPC Based Imines 199
2.1.3.2 Structural Information on AHPC Based Imines 199
2.1.3.3 Asymmetrie 1,2 Addition Reactions to Aryl Aldehydes 200
2.1.3.3.1 Initial Considerations 200
2.1.3.3.2 Asymmetrie Addition Reactions to Aromatic Aldehydes: Scope of
Substrates 203
2.1.3.4 Asymmetrie Addition Reactions to Aliphatic Aldehydes 205
2.1.3.5 Addition of Alkenylzinc Reagents to Aldehydes 206
2.1.3.6 Asymmetrie Conjugate Addition Reactions 208
2.1.3.7 Asymmetrie Addition Reactions to Imines 208
2.1.3.8 Asymmetrie Addition Reactions on Solid Supports 212
2.1.3.8.1 Applications 213
2.1.3.9 Conclusions and Future Perspective 213
2.1.4 Palladium Catalyzed Allylic Alkylation of Sulfur and Oxygen
Nucleophiles Asymmetrie Synthesis, Kinetic Resolution and
Dynamic Kinetic Resolution 215
Hans Joachim Gais
2.1.4.1 Introduction 215
2.1.4.2 Asymmetrie Synthesis of Allylic Sulfones and Allylic Sulfides and
Kinetic Resolution of Allylic Esters 216
2.1.4.2.1 Kinetic Resolution 216
2.1.4.2.2 Selectivity 220
2.1.4.2.3 Asymmetrie Synthesis 220
2.1.4.2.4 Synthesis of Enantiopure Allylic Alcohols 224
2.1.4.3 Asymmetrie Rearrangment and Kinetic Resolution of Allylic
Sulfinates 225
2.1.4.3.1 Introduction 225
2.1.4.3.2 Synthesis of Racemic Allylic Sulfinates 225
2.1.4.3.3 Pd Catalyzed Rearrangement 226
2.1.4.3.4 Kinetic Resolution 227
2.1.4.3.5 Mechanistic Considerations 228
2.1.4.4 Asymmetrie Rearrangment of Allylic Thiocarbamates 229
2.1.4.4.1 Introduction 229
2.1.4.4.2 Synthesis of Racemic O Allylic Thiocarbamates 229
2.1.4.4.3 Acyclic Carbamates 229
2.1.4.4.4 Cyclic Carbamates 231
2.1.4.4.5 Mechanistic Considerations 232
2.1.4.4.6 Synthesis of Allylic Sulfides 232
2.1.4.5 Asymmetrie Synthesis of Allylic Thioesters and Kinetic Resolution of
Allylic Esters 233
2.1.4.5.1 Introduction 233
Contents I XI
2.1.4.5.2 Asymmetrie Synthesis of Allylic Thioesters 234
2.1.4.5.3 Kinetic Resolution of Allylic Esters 235
2.1.4.5.4 Memory Effect and Dynamic Kinetic Resolution of the Five
Membered Cyclic Acetate 238
2.1.4.5.5 Asymmetrie Synthesis of Cyclopentenyl Thioacetate 242
2.1.4.6 Kinetic and Dynamic Kinetic Resolution of Allylic
Alcohols 242
2.1.4.6.1 Introduction 242
2.1.4.6.2 Asymmetrie Synthesis of Symmetrical Allylic Alcohols 242
2.1.4.6.3 Asymmetrie Synthesis of Unsymmetrical Allylic Alcohols 244
2.1.4.6.4 Asymmetrie Synthesis of a Prostaglandin Building Block 245
2.1.4.6.5 Investigation of an Unsaturated Analogue of BPA 245
2.1.4.7 Conclusions 246
2.1.5 The QUINAPHOS Ligand Family and its Application in Asymmetrie
Catalysis 250
Giancarlo Franciö, Feiice Faraone, and Walter Leitner
2.1.5.1 Introduction 250
2.1.5.2 Synthetic Strategy 252
2.1.5.3 Stereochemistry and Coordination Properties 254
2.1.5.3.1 Free Ligands 254
2.1.5.3.2 Complexes 256
2.1.5.4 Catalytic Applications 261
2.1.5.4.1 Rhodium Catalyzed Asymmetrie Hydroformylation of
Styrene 261
2.1.5.4.2 Rhodium Catalyzed Asymmetrie Hydrogenation of Functionalized
Alkenes 263
2.1.5.4.3 Ruthenium Catalyzed Asymmetrie Hydrogenation of Aromatic
Ketones 265
2.1.5.4.4 Copper Catalyzed Enantioselective Conjugate Addition of Diethylzinc
to Enones 267
2.1.5.4.5 Nickel Catalyzed Asymmetrie Hydrovinylation 268
2.1.5.4.6 Nickel Catalyzed Cycloisomerization of 1,6 Dienes 270
2.1.5.5 Conclusions 273
2.1.6 Immobilization of Transition Metal Complexes and Their Application
to Enantioselective Catalysis 277
Adrian Crosman, Carmen Schuster, Hans Hermann Wagner,
Melinda Batorfi, Jairo Cubillos, and Wolfgang Hölderich
2.1.6.1 Introduction 277
2.1.6.2 Immobilized Rh Diphosphino Complexes as Catalysts for Asymmetrie
Hydrogenation 278
2.1.6.2.1 Preparation and Characterization of the Immobilized
Rh Diphosphine Complexes 279
XII I Contents
2.1.6.2.2 Enantioselective Hydrogenation over Immobilized Rhodium
Diphosphine Complexes 282
2.1.6.3 Heterogeneous Asymmetrie Epoxidation of Olefins over Jacobsen's
Catalyst Immobilized in Inorganic Porous Materials 284
2.1.6.3.1 Preparation and Characterization of Immobilized Jacobsen's
Catalysts 285
2.1.6.3.2 Epoxidation of Olefins over Immobilized Jacobsen Catalysts 287
2.1.6.4 Novel Heterogenized Catalysts for Asymmetrie Ring Opening
Reactions of Epoxides 291
2.1.6.4.1 Synthesis and Characterization of the Heterogenized
Catalysts 291
2.1.6.4.2 Asymmetrie Ring Opening of Epoxides over New Heterogenized
Catalysts 293
2.1.6.5 Conclusions 295
2.2 Biological Methods 298
2.2.1 Directed Evolution to Increase the Substrate Range of Benzoylformate
Decarboxylase from Pseudomonas putida 298
Marion Wendorff, Thorsten Eggert, Martina Pohl, Carola Dresen,
Michael Müller, and Karl Erich Jaeger
2.2.1.1 Introduction 298
2.2.1.2 Materials and Methods 300
2.2.1.2.1 Reagents 300
2.2.1.2.2 Construction of Strains for Heterologous Expression of BFD and
BAL 300
2.2.1.2.3 Polymerase Chain Reactions 301
2.2.1.2.4 Generation of a BFD Variant Library by Random
Mutagenesis 302
2.2.1.2.5 High Throughput Screening for Carboligation Activity with the
Substrates Benzaldehyde and Dimethoxyacetaldehyde 303
2.2.1.2.6 Expression and Purification of BFD Variants 303
2.2.1.2.7 Protein Analysis Methods 304
2.2.1.2.8 Enzyme Activity Assays 304
2.2.1.3 Results and Discussion 304
2.2.1.3.1 Overexpression of BFD in Escherichia coli 304
2.2.1.3.2 Random Mutagenesis of BFD Variant L476Q 305
2.2.1.3.3 Development of a High Throughput Screening Assay for Carboligase
Activity 305
2.2.1.3.4 Identification of a BFD Variant with an Optimized Acceptor Aldehyde
Spectrum 306
2.2.1.3.5 Biochemical Characterization of the BFD Variants 308
2.2.1.3.6 Decreased Benzoyl Formate Decarboxylation Activity of Variant
55E4 308
Contents XIII
2.2.1.3.7 Formation of 2 Hydroxy 3,3 dimethoxypropiophenone and
Benzoin 308
2.2.1.3.8 Enantioselectivity of the Carboligation Reaction 310
2.2.1.4 Conclusions 311
2.2.2 C C Bonding Microbial Enzymes: Thiamine Diphosphate Dependent
Enzymes and Class I Aldolases 312
Georg A. Sprenger, Melanie Schürmann, Martin Schürmann,
Sandra Johnen, Gerda Sprenger, Hermann Sahm, Tomoyuki Inoue,
and Ulrich Schörken
2.2.2.1 Introduction 312
2.2.2.2 Thiamine Diphosphate (ThDP) Dependent Enzymes 312
2.2.2.2.1 Transketolase (TKT) 313
2.2.2.2.2 1 Deoxy D xylulose 5 Phosphate Synthase (DXS) 317
2.2.2.2.3 Phosphonopyruvate Decarboxylase (PPD) from Streptomyces
viridochromogen.es 318
2.2.2.3 Class I Aldolases 318
2.2.2.3.1 Transaldolase (TAL) 320
2.2.2.3.2 Fructose 6 Phosphate Aldolase (FSA) 321
2.2.2.4 Summary and Outlook 321
2.2.3 Enzymes for Carboligation 2 Ketoacid Decarboxylases and
Hydroxynitrile Lyases 327
Martina Pohl, Holger Breittaupt, Bettina Frölich, Petra Heim, Hans
Iding, Bettina Juchem, Petra Siegert, and Maria Regina Kula
2.2.3.1 Introduction 327
2.2.3.2 2 Ketoacid Decarboxylases 327
2.2.3.2.1 Comparative Biochemical Characterization of Wild Type PDC and
BFD 328
2.2.3.2.2 Identification of Amino Acid Residues Relevant to Substrate
Specificity and Enantioselectivity 330
2.2.3.2.3 Optimization of the Substrate Range of BFD by Site Directed
Mutagenesis 330
2.2.3.2.4 Optimization of Stability and Substrate Range of BFD by Directed
Evolution 330
2.2.3.3 Hydroxynitrile Lyases 332
2.2.3.3.1 HNL from Sorghum bicolor 333
2.2.3.3.2 HNL from Linum usitatissimum 337
2.2.4 Preparative Syntheses of Chiral Alcohols using (K) Specifk Alcohol
Dehydrogenases from Lactobacillus Strains 341
Andrea Weckbecker, Michael Müller, and Werner Hummel
2.2.4.1 Introduction 341
2.2.4.2 (i?) Specific Alcohol Dehydrogenase from Lactobacillus kefir 341
XIV I Contents
2.2.4.3 Comparison of (Ä) Specific ADHs from L. kefir and L. brevis 342
2.2.4.4 Preparative Applications of ADHs from L. kefir and L. brevis 345
2.2.4.4.1 Synthesis of (R,Ä) Diols 346
2.2.4.4.2 Synthesis of Enantiopure l Phenylpropane l,2 diols 346
2.2.4.4.3 Synthesis of Enantiopure Propargylic Alcohols 346
2.2.4.4.4 Regioselective Reduction of f Butyl 6 chloro 3,5 dioxohexanoate to the
Corresponding Enantiopure (S) 5 Hydroxy Compound 346
2.2.4.5 Coenzyme Regeneration and the Construction and Use of "Designer
Cells" 347
2.2.4.6 Discussion 349
2.2.5 Biocatalytic C C Bond Formation in Asymmetrie Synthesis 351
Wolf Dieter Fessner
2.2.5.1 Introduction 351
2.2.5.2 Enzyme Mechanisms 352
2.2.5.2.1 Class II Aldolases 352
2.2.5.2.2 Class I Fructose 1,6 Bisphosphate Aldolase 355
2.2.5.2.3 Sialic Acid Synthase 355
2.2.5.2.4 Rhamnose Isomerase 356
2.2.5.3 New Synthetic Strategies 357
2.2.5.3.1 Sugar Phosphonates 357
2.2.5.3.2 Xylulose 5 Phosphate 359
2.2.5.3.3 RhuA Stereoselectivity 359
2.2.5.3.4 Aldolase Screening Assay 361
2.2.5.3.5 Aldose Synthesis 361
2.2.5.3.6 Tandem Chain Extension Isomerization Chain Extension 362
2.2.5.^.7 Tandem Bidirectional Chain Extensions 363
2.2.5.3.8 Non Natural Sialoconjugates 369
2.2.5.4 Summary and Outlook 373
2.2.6 Exploring and Broadening the Biocatalytic Properties of
Recombinant Sucrose Synthase 1 for the Synthesis of Sucrose
Analogues 376
Lothar Elling
2.2.6.1 Introduction 376
2.2.6.2 Characteristics of Recombinant Sucrose Synthase 1 (SuSyl) Expressed
in Saccharomyces cerevisiae 377
2.2.6.2.1 Expression and Purification of SuSyl from Yeast 377
2.2.6.2.2 The Substrate Spectrum of SuSyl from Yeast 378
2.2.6.3 Characteristics of Recombinant Sucrose Synthase 1 (SuSyl) Expressed
in Escherichia coli 381
2.2.6.3.1 Expression and Purification of SuSyl from E. coli 381
2.2.6.3.2 The Substrate Spectrum of SuSyl from E. coli 382
2.2.6.4 Sucrose Synthase 1 Mutants Expressed in S. cerevisiae and E. coli 383
2.2.6.5 Outlook 384
Contents XV
2.2.7 Flexible Asymmetrie Redox Reactions and C C Bond Formation by
Bioorganic Synthetic Strategies 386
Michael Müller, Michael Wolberg, Silke Bode, Ralf Feldmann,
Petra Geilenkirchen, Thomas Schubert, Lydia Walter, Werner Hummel,
Thomas Dünnwald, Ayhan S. Demir, Doris Kolter Jung, Adam Nitsche,
Pascal Dünkelmann, Annabel Cosp, Martina Pohl, Bettina hingen, and
Maria Regina Kula
2.2.7.1 Introduction 386
2.2.7.2 Diversity Oriented Access to 1,3 Diols Through Regio and
Enantioselective Reduction of 3,5 Dioxocarboxylates 386
2.2.7.2.1 Regio and Enantioselective Enzymatic Reduction 387
2.2.7.2.2 Dynamic Kinetic Resolution 388
2.2.7.2.3 Stereoselective Access to 1,3 Diols by Diastereoselective
Reduction 389
2.2.7.2.4 Nucleophilic Substitution of Chlorine 390
2.2.7.2.5 Application in Natural Product Syntheses 391
2.2.7.2.6 Discussion and Outlook 392
2.2.7.3 Chemo and Enantioselective Reduction of Propargylic Ketones 395
2.2.7.3.1 Enantioselective Reduction ofAryl Alkynones 395
2.2.7.3.2 Synthesis of Enantiopure 3 Butyn 2 ol 396
2.2.7.3.3 Enzymatic Reduction of a Halogenated Propargylic Ketones 397
2.2.7.3.4 Modifikation of a Halogenated Propargylic Akohols 398
2.2.7.3.5 Olefinic Substrates 399
2.2.7.3.6 Discussion and Outlook 401
2.2.7.4 Thiamine Diphosphate Dependent Enzymes: Multi purpose Catalysts
in Asymmetrie Synthesis 401
2.2.7.4.1 Formation of Chiral 2 Hydroxy Ketones Through BFD Catalyzed
Reactions 402
2.2.7.4.2 BAL as a Versatile Catalyst for C C Bond Formation and Cleavage
Reactions 405
2.2.7.4.3 Asymmetrie Cross Benzoin Condensation 407
2.2.7.4.4 Discussion and Outlook 408
2.2.7.5 Summary 409
3 Reaction Technology in Asymmetrie Synthesis 415
3.1 Reaction Engineering in Asymmetrie Synthesis 415
Stephan Lutz, Udo Kragl, Andreas Liese, and Christian Wandrey
3.1.1 Introduction 415
3.1.2 Membrane Reactors with Chemical Catalysts 418
3.1.3 Membrane Reactors with Biological Catalysts 420
3.1.3.1 Membrane Reactors with Whole Cells 420
3.1.3.2 Membrane Reactors with Isolated Enzymes 421
3.1.4 Two Phase Systems 422
3.1.5 Conclusions 425
XVI I Contents
3.2 Biocatalyzed Asymmetrie Syntheses Using Gel Stabilized Aqueous
Organic Two Phase Systems 427
Marion B. Ansorge Schumacher
3.2.1 Gel Stabilized Two Phase Systems 428
3.2.2 Benzoin Condensation with Entrapped Benzaldehyde Lyase 430
3.2.3 Reduction of Ketones with Entrapped Alcohol Dehydrogenase 432
3.2.4 Conclusion 433
Index 435
Name Index 443 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)142730548 |
building | Verbundindex |
bvnumber | BV021728764 |
classification_rvk | VK 5500 |
classification_tum | CHE 624f CHE 623f |
ctrlnum | (OCoLC)255377947 (DE-599)BVBBV021728764 |
dewey-full | 547.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547.2 |
dewey-search | 547.2 |
dewey-sort | 3547.2 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Biologie Chemie |
discipline_str_mv | Chemie / Pharmazie Biologie Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV021728764</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101105</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060913s2007 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N30,0778</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">980328748</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527314737</subfield><subfield code="c">Gb. : ca. EUR 149.00 (freier Pr.), ca. sfr 235.00 (freier Pr.)</subfield><subfield code="9">978-3-527-31473-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527314737</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131473 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255377947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021728764</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-M49</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 5500</subfield><subfield code="0">(DE-625)147401:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 624f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 623f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymmetric synthesis with chemical and biological methods</subfield><subfield code="c">Ed. by Dieter Enders ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 445 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetrische Synthese - Enzymkatalyse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetrische Synthese - Katalyse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmertric synthesis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Enzymkatalyse</subfield><subfield code="0">(DE-588)4152480-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymmetrische Synthese</subfield><subfield code="0">(DE-588)4135603-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Asymmetrische Synthese</subfield><subfield code="0">(DE-588)4135603-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Asymmetrische Synthese</subfield><subfield code="0">(DE-588)4135603-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Enzymkatalyse</subfield><subfield code="0">(DE-588)4152480-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Enders, Dieter</subfield><subfield code="d">1946-2019</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)142730548</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2831410&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014942306&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014942306</subfield></datafield></record></collection> |
id | DE-604.BV021728764 |
illustrated | Illustrated |
index_date | 2024-07-02T15:25:40Z |
indexdate | 2024-07-20T09:07:32Z |
institution | BVB |
isbn | 9783527314737 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014942306 |
oclc_num | 255377947 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-29T DE-19 DE-BY-UBM DE-11 DE-M49 DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-29T DE-19 DE-BY-UBM DE-11 DE-M49 DE-BY-TUM |
physical | XXIV, 445 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Asymmetric synthesis with chemical and biological methods Ed. by Dieter Enders ... Weinheim WILEY-VCH 2007 XXIV, 445 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Asymmetrische Synthese - Enzymkatalyse Asymmetrische Synthese - Katalyse Asymmertric synthesis Katalyse (DE-588)4029921-1 gnd rswk-swf Enzymkatalyse (DE-588)4152480-9 gnd rswk-swf Asymmetrische Synthese (DE-588)4135603-2 gnd rswk-swf Asymmetrische Synthese (DE-588)4135603-2 s Katalyse (DE-588)4029921-1 s DE-604 Enzymkatalyse (DE-588)4152480-9 s b DE-604 Enders, Dieter 1946-2019 Sonstige (DE-588)142730548 oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2831410&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014942306&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Asymmetric synthesis with chemical and biological methods Asymmetrische Synthese - Enzymkatalyse Asymmetrische Synthese - Katalyse Asymmertric synthesis Katalyse (DE-588)4029921-1 gnd Enzymkatalyse (DE-588)4152480-9 gnd Asymmetrische Synthese (DE-588)4135603-2 gnd |
subject_GND | (DE-588)4029921-1 (DE-588)4152480-9 (DE-588)4135603-2 |
title | Asymmetric synthesis with chemical and biological methods |
title_auth | Asymmetric synthesis with chemical and biological methods |
title_exact_search | Asymmetric synthesis with chemical and biological methods |
title_exact_search_txtP | Asymmetric synthesis with chemical and biological methods |
title_full | Asymmetric synthesis with chemical and biological methods Ed. by Dieter Enders ... |
title_fullStr | Asymmetric synthesis with chemical and biological methods Ed. by Dieter Enders ... |
title_full_unstemmed | Asymmetric synthesis with chemical and biological methods Ed. by Dieter Enders ... |
title_short | Asymmetric synthesis with chemical and biological methods |
title_sort | asymmetric synthesis with chemical and biological methods |
topic | Asymmetrische Synthese - Enzymkatalyse Asymmetrische Synthese - Katalyse Asymmertric synthesis Katalyse (DE-588)4029921-1 gnd Enzymkatalyse (DE-588)4152480-9 gnd Asymmetrische Synthese (DE-588)4135603-2 gnd |
topic_facet | Asymmetrische Synthese - Enzymkatalyse Asymmetrische Synthese - Katalyse Asymmertric synthesis Katalyse Enzymkatalyse Asymmetrische Synthese |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2831410&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014942306&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT endersdieter asymmetricsynthesiswithchemicalandbiologicalmethods |