Advanced Linear Algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Springer
2005
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Graduate Texts in Mathematics
135 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Auch als Internetausgabe |
Beschreibung: | XVI, 482 S. Ill., graph. Darst. |
ISBN: | 0387247661 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021718506 | ||
003 | DE-604 | ||
005 | 20080117 | ||
007 | t | ||
008 | 060904s2005 gw ad|| |||| 00||| eng d | ||
015 | |a 05,N20,0758 |2 dnb | ||
016 | 7 | |a 97452963X |2 DE-101 | |
020 | |a 0387247661 |c Gb. : EUR 58.80 (freier Pr.), sfr 97.50 (freier Pr.) |9 0-387-24766-1 | ||
024 | 3 | |a 9780387247663 | |
028 | 5 | 2 | |a 10997574 |
035 | |a (OCoLC)57452536 | ||
035 | |a (DE-599)BVBBV021718506 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-573 |a DE-706 |a DE-384 |a DE-634 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA184.2 | |
082 | 0 | |a 512/.5 |2 22 | |
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Roman, Steven |e Verfasser |4 aut | |
245 | 1 | 0 | |a Advanced Linear Algebra |c Steven Roman |
250 | |a 2. ed. | ||
264 | 1 | |a New York |b Springer |c 2005 | |
300 | |a XVI, 482 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate Texts in Mathematics |v 135 | |
500 | |a Auch als Internetausgabe | ||
650 | 4 | |a Algèbre linéaire | |
650 | 7 | |a Valores próprios |2 larpcal | |
650 | 7 | |a Álgebra linear |2 larpcal | |
650 | 7 | |a Álgebra |2 larpcal | |
650 | 4 | |a Algebras, Linear | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Graduate Texts in Mathematics |v 135 |w (DE-604)BV000000067 |9 135 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2624019&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | |u http://www3.ub.tu-berlin.de/ihv/001730417.pdf |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014932208&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014932208 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135559001538560 |
---|---|
adam_text | STEVEN ROMAN ADVANCED LINEAR ALGEBRA SECOND EDITION SPRINGER CONTENTS
PREFACE TO THE SECOND EDITION, VII PREFACE TO THE FIRST EDITION, IX
PRELIMINARIES, 1 PART 1 PRELIMINARIES, 1 PART 2 ALGEBRAIC STRUCTURES, 16
PART I*BASIC LINEAR ALGEBRA, 31 1 VECTOR SPACES, 33 VECTOR SPACES, 33
SUBSPACES, 35 DIRECT SUMS, 38 SPANNING SETS AND LINEAR INDEPENDENCE, 41
THE DIMENSION OF A VECTOR SPACE, 44 ORDERED BASES AND COORDINATE
MATRICES, 47 THE ROW AND COLUMN SPACES OF A MATRIX, 48 THE
COMPLEXIFICATION OF A REAL VECTOR SPACE, 49 EXERCISES, 51 2 LINEAR
TRANSFORMATIONS, 55 LINEAR TRANSFORMATIONS, 55 ISOMORPHISMS, 57 THE
KERNEL AND IMAGE OF A LINEAR TRANSFORMATION, 57 LINEAR TRANSFORMATIONS
FROM F N TO F M , 59 THE RANK PLUS NULLITY THEOREM, 59 CHANGE OF BASIS
MATRICES, 60 THE MATRIX OF A LINEAR TRANSFORMATION, 61 CHANGE OF BASES
FOR LINEAR TRANSFORMATIONS, 63 EQUIVALENCE OF MATRICES, 64 SIMILARITY OF
MATRICES, 65 SIMILARITY OF OPERATORS, 66 INVARIANT SUBSPACES AND
REDUCING PAIRS, 68 XII CONTENTS TOPOLOGICAL VECTOR SPACES, 68 LINEAR
OPERATORS ON V C , 71 EXERCISES, 72 THE ISOMORPHISM THEOREMS, 75
QUOTIENT SPACES, 75 THE UNIVERSAL PROPERTY OF QUOTIENTS AND THE FIRST
ISOMORPHISM THEOREM, 77 QUOTIENT SPACES, COMPLEMENTS AND CODIMENSION, 79
ADDITIONAL ISOMORPHISM THEOREMS, 80 LINEAR FUNCTIONALS, 82 DUAL BASES,
83 REFLEXIVITY, 84 ANNIHILATORS, 86 OPERATOR ADJOINTS, 88 EXERCISES, 90
MODULES I: BASIC PROPERTIES, 93 MODULES, 93 MOTIVATION, 93 SUBMODULES,
95 SPANNING SETS, 96 LINEAR INDEPENDENCE, 98 TORSION ELEMENTS, 99
ANNIHILATORS, 99 FREE MODULES, 99 HOMOMORPHISMS, 100 QUOTIENT MODULES,
101 THE CORRESPONDENCE AND ISOMORPHISM THEOREMS, 102 DIRECT SUMS AND
DIRECT SUMMANDS, 102 MODULES ARE NOT AS NICE AS VECTOR SPACES, 106
EXERCISES, 106 MODULES II: FREE AND NOETHERIAN MODULES, 109 THE RANK OF
A FREE MODULE, 109 FREE MODULES AND EPIMORPHISMS, 114 NOETHERIAN
MODULES, 115 THE HILBERT BASIS THEOREM, 118 EXERCISES, 119 MODULES OVER
A PRINCIPAL IDEAL DOMAIN, 121 ANNIHILATORS AND ORDERS, 121 CYCLIC
MODULES, 122 FREE MODULES OVER A PRINCIPAL IDEAL DOMAIN, 123
TORSION-FREE AND FREE MODULES, 125 CONTENTS XLLL 10 PRELUDE TO
DECOMPOSITION: CYCLIC MODULES, 126 THE FIRST DECOMPOSITION, 127 A LOOK
AHEAD, 127 THE PRIMARY DECOMPOSITION, 128 THE CYCLIC DECOMPOSITION OF A
PRIMARY MODULE, 130 THE PRIMARY CYCLIC DECOMPOSITION THEOREM, 134 THE
INVARIANT FACTOR DECOMPOSITION, 135 EXERCISES, 138 THE STRUCTURE OF A
LINEAR OPERATOR, 141 A BRIEF REVIEW, 141 THE MODULE ASSOCIATED WITH A
LINEAR OPERATOR, 142 ORDERS AND THE MINIMAL POLYNOMIAL, 144 CYCLIC
SUBMODULES AND CYCLIC SUBSPACES, 145 SUMMARY, 147 THE DECOMPOSITION OF V
TI 147 THE RATIONAL CANONICAL FORM, 148 EXERCISES, 151 EIGENVALUES AND
EIGENVECTORS, 153 THE CHARACTERISTIC POLYNOMIAL OF AN OPERATOR, 153
EIGENVALUES AND EIGENVECTORS, 155 GEOMETRIC AND ALGEBRAIC
MULTIPLICITIES, 157 THE JORDAN CANONICAL FORM, 158 TRIANGULARIZABILITY
AND SCHUR S LEMMA, 160 DIAGONALIZABLE OPERATORS, 165 PROJECTIONS, 166
THE ALGEBRA OF PROJECTIONS, 167 RESOLUTIONS OF THE IDENTITY, 170
SPECTRAL RESOLUTIONS, 172 PROJECTIONS AND INVARIANCE, 173 EXERCISES, 174
REAL AND COMPLEX INNER PRODUCT SPACES , 181 NORM AND DISTANCE, 183
ISOMETRIES, 186 ORTHOGONALITY, 187 ORTHOGONAL AND ORTHONORMAL SETS, 188
THE PROJECTION THEOREM AND BEST APPROXIMATIONS, 192 ORTHOGONAL DIRECT
SUMS, 194 THE RIESZ REPRESENTATION THEOREM, 195 EXERCISES, 196 STRUCTURE
THEORY FOR NORMAL OPERATORS, 201 THE ADJOINT OF A LINEAR OPERATOR, 201
XIV CONTENTS UNITARY DIAGONALIZABILITY, 204 NORMAL OPERATORS, 205
SPECIAL TYPES OF NORMAL OPERATORS, 207 SELF-ADJOINT OPERATORS, 208
UNITARY OPERATORS AND ISOMETRIES, 210 THE STRUCTURE OF NORMAL OPERATORS,
215 MATRIX VERSIONS, 222 ORTHOGONAL PROJECTIONS, 223 ORTHOGONAL
RESOLUTIONS OF THE IDENTITY, 226 THE SPECTRAL THEOREM, 227 SPECTRAL
RESOLUTIONS AND FUNCTIONAL CALCULUS, 228 POSITIVE OPERATORS, 230 THE
POLAR DECOMPOSITION OF AN OPERATOR, 232 EXERCISES, 234 PART II*TOPICS,
235 11 METRIC VECTOR SPACES: THE THEORY OF BILINEAR FORMS, 239
SYMMETRIC, SKEW-SYMMETRIC AND ALTERNATE FORMS, 239 THE MATRIX OF A
BILINEAR FORM, 242 QUADRATIC FORMS, 244 ORTHOGONALITY, 245 LINEAR
FUNCTIONALS, 248 ORTHOGONAL COMPLEMENTS AND ORTHOGONAL DIRECT SUMS, 249
ISOMETRIES, 252 HYPERBOLIC SPACES, 253 NONSINGULAR COMPLETIONS OF A
SUBSPACE, 254 THE WITT THEOREMS: A PREVIEW, 256 THE CLASSIFICATION
PROBLEM FOR METRIC VECTOR SPACES, 257 SYMPLECTIC GEOMETRY, 258 THE
STRUCTURE OF ORTHOGONAL GEOMETRIES: ORTHOGONAL BASES, 264 THE
CLASSIFICATION OF ORTHOGONAL GEOMETRIES: CANONICAL FORMS, 266 THE
ORTHOGONAL GROUP, 272 THE WITT S THEOREMS FOR ORTHOGONAL GEOMETRIES, 275
MAXIMAL HYPERBOLIC SUBSPACES OF AN ORTHOGONAL GEOMETRY, 277 EXERCISES,
279 12 METRIC SPACES, 283 THE DEFINITION, 283 OPEN AND CLOSED SETS, 286
CONVERGENCE IN A METRIC SPACE, 287 THE CLOSURE OF A SET, 288 CONTENTS XV
DENSE SUBSETS, 290 CONTINUITY, 292 COMPLETENESS, 293 ISOMETRIES, 297 THE
COMPLETION OF A METRIC SPACE, 298 EXERCISES, 303 13 HILBERT SPACES, 307
A BRIEF REVIEW, 307 HILBERT SPACES, 308 INFINITE SERIES, 312 AN
APPROXIMATION PROBLEM, 313 HILBERT BASES, 317 FOURIER EXPANSIONS, 318 A
CHARACTERIZATION OF HILBERT BASES, 328 HILBERT DIMENSION, 328 A
CHARACTERIZATION OF HILBERT SPACES, 329 THE RIESZ REPRESENTATION
THEOREM, 331 EXERCISES, 334 14 TENSOR PRODUCTS, 337 UNIVERSALITY, 337
BILINEAR MAPS, 341 TENSOR PRODUCTS, 343 WHEN IS A TENSOR PRODUCT ZERO?
348 COORDINATE MATRICES AND RANK, 350 CHARACTERIZING VECTORS IN A TENSOR
PRODUCT, 354 DEFINING LINEAR TRANSFORMATIONS ON A TENSOR PRODUCT, 355
THE TENSOR PRODUCT OF LINEAR TRANSFORMATIONS, 357 CHANGE OF BASE FIELD,
359 MULTILINEAR MAPS AND ITERATED TENSOR PRODUCTS, 363 TENSOR SPACES,
366 SPECIAL MULTILINEAR MAPS, 371 GRADED ALGEBRAS, 372 THE SYMMETRIC
TENSOR ALGEBRA, 374 THE ANTISYMMETRIC TENSOR ALGEBRA: THE EXTERIOR
PRODUCT SPACE, 380 THE DETERMINANT, 387 EXERCISES, 391 15 POSITIVE
SOLUTIONS TO LINEAR SYSTEMS: CONVEXITY AND SEPARATION 395 CONVEX, CLOSED
AND COMPACT SETS, 398 CONVEX HULLS, 399 XVI CONTENTS LINEAR AND AFFINE
HYPERPLANES, 400 SEPARATION, 402 EXERCISES, 407 16 AFFINE GEOMETRY, 409
AFFINE GEOMETRY, 409 AFFINE COMBINATIONS, 41 AFFINE HULLS, 412 THE
LATTICE OF FLATS, 413 AFFINE INDEPENDENCE, 416 AFFINE TRANSFORMATIONS,
417 PROJECTIVE GEOMETRY, 419 EXERCISES, 423 17 OPERATOR FACTORIZATIONS:
QR AND SINGULAR VALUE, 425 THE QR DECOMPOSITION, 425 SINGULAR VALUES,
428 THE MOORE-PENROSE GENERALIZED INVERSE, 430 LEAST SQUARES
APPROXIMATION, 433 EXERCISES, 434 18 THE UMBRAL CALCULUS, 437 FORMAL
POWER SERIES, 437 THE UMBRAL ALGEBRA, 439 FORMAL POWER SERIES AS LINEAR
OPERATORS, 443 SHEFFER SEQUENCES, 446 EXAMPLES OF SHEFFER SEQUENCES, 454
UMBRAL OPERATORS AND UMBRAL SHIFTS, 456 CONTINUOUS OPERATORS ON THE
UMBRAL ALGEBRA, 458 OPERATOR ADJOINTS, 459 UMBRAL OPERATORS AND
AUTOMORPHISMS OF THE UMBRAL ALGEBRA, 460 UMBRAL SHIFTS AND DERIVATIONS
OF THE UMBRAL ALGEBRA, 465 THE TRANSFER FORMULAS, 470 A FINAL REMARK,
471 EXERCISES, 472 REFERENCES, 473 INDEX, 475
|
adam_txt |
STEVEN ROMAN ADVANCED LINEAR ALGEBRA SECOND EDITION SPRINGER CONTENTS
PREFACE TO THE SECOND EDITION, VII PREFACE TO THE FIRST EDITION, IX
PRELIMINARIES, 1 PART 1 PRELIMINARIES, 1 PART 2 ALGEBRAIC STRUCTURES, 16
PART I*BASIC LINEAR ALGEBRA, 31 1 VECTOR SPACES, 33 VECTOR SPACES, 33
SUBSPACES, 35 DIRECT SUMS, 38 SPANNING SETS AND LINEAR INDEPENDENCE, 41
THE DIMENSION OF A VECTOR SPACE, 44 ORDERED BASES AND COORDINATE
MATRICES, 47 THE ROW AND COLUMN SPACES OF A MATRIX, 48 THE
COMPLEXIFICATION OF A REAL VECTOR SPACE, 49 EXERCISES, 51 2 LINEAR
TRANSFORMATIONS, 55 LINEAR TRANSFORMATIONS, 55 ISOMORPHISMS, 57 THE
KERNEL AND IMAGE OF A LINEAR TRANSFORMATION, 57 LINEAR TRANSFORMATIONS
FROM F N TO F M , 59 THE RANK PLUS NULLITY THEOREM, 59 CHANGE OF BASIS
MATRICES, 60 THE MATRIX OF A LINEAR TRANSFORMATION, 61 CHANGE OF BASES
FOR LINEAR TRANSFORMATIONS, 63 EQUIVALENCE OF MATRICES, 64 SIMILARITY OF
MATRICES, 65 SIMILARITY OF OPERATORS, 66 INVARIANT SUBSPACES AND
REDUCING PAIRS, 68 XII CONTENTS TOPOLOGICAL VECTOR SPACES, 68 LINEAR
OPERATORS ON V C , 71 EXERCISES, 72 THE ISOMORPHISM THEOREMS, 75
QUOTIENT SPACES, 75 THE UNIVERSAL PROPERTY OF QUOTIENTS AND THE FIRST
ISOMORPHISM THEOREM, 77 QUOTIENT SPACES, COMPLEMENTS AND CODIMENSION, 79
ADDITIONAL ISOMORPHISM THEOREMS, 80 LINEAR FUNCTIONALS, 82 DUAL BASES,
83 REFLEXIVITY, 84 ANNIHILATORS, 86 OPERATOR ADJOINTS, 88 EXERCISES, 90
MODULES I: BASIC PROPERTIES, 93 MODULES, 93 MOTIVATION, 93 SUBMODULES,
95 SPANNING SETS, 96 LINEAR INDEPENDENCE, 98 TORSION ELEMENTS, 99
ANNIHILATORS, 99 FREE MODULES, 99 HOMOMORPHISMS, 100 QUOTIENT MODULES,
101 THE CORRESPONDENCE AND ISOMORPHISM THEOREMS, 102 DIRECT SUMS AND
DIRECT SUMMANDS, 102 MODULES ARE NOT AS NICE AS VECTOR SPACES, 106
EXERCISES, 106 MODULES II: FREE AND NOETHERIAN MODULES, 109 THE RANK OF
A FREE MODULE, 109 FREE MODULES AND EPIMORPHISMS, 114 NOETHERIAN
MODULES, 115 THE HILBERT BASIS THEOREM, 118 EXERCISES, 119 MODULES OVER
A PRINCIPAL IDEAL DOMAIN, 121 ANNIHILATORS AND ORDERS, 121 CYCLIC
MODULES, 122 FREE MODULES OVER A PRINCIPAL IDEAL DOMAIN, 123
TORSION-FREE AND FREE MODULES, 125 CONTENTS XLLL 10 PRELUDE TO
DECOMPOSITION: CYCLIC MODULES, 126 THE FIRST DECOMPOSITION, 127 A LOOK
AHEAD, 127 THE PRIMARY DECOMPOSITION, 128 THE CYCLIC DECOMPOSITION OF A
PRIMARY MODULE, 130 THE PRIMARY CYCLIC DECOMPOSITION THEOREM, 134 THE
INVARIANT FACTOR DECOMPOSITION, 135 EXERCISES, 138 THE STRUCTURE OF A
LINEAR OPERATOR, 141 A BRIEF REVIEW, 141 THE MODULE ASSOCIATED WITH A
LINEAR OPERATOR, 142 ORDERS AND THE MINIMAL POLYNOMIAL, 144 CYCLIC
SUBMODULES AND CYCLIC SUBSPACES, 145 SUMMARY, 147 THE DECOMPOSITION OF V
TI 147 THE RATIONAL CANONICAL FORM, 148 EXERCISES, 151 EIGENVALUES AND
EIGENVECTORS, 153 THE CHARACTERISTIC POLYNOMIAL OF AN OPERATOR, 153
EIGENVALUES AND EIGENVECTORS, 155 GEOMETRIC AND ALGEBRAIC
MULTIPLICITIES, 157 THE JORDAN CANONICAL FORM, 158 TRIANGULARIZABILITY
AND SCHUR'S LEMMA, 160 DIAGONALIZABLE OPERATORS, 165 PROJECTIONS, 166
THE ALGEBRA OF PROJECTIONS, 167 RESOLUTIONS OF THE IDENTITY, 170
SPECTRAL RESOLUTIONS, 172 PROJECTIONS AND INVARIANCE, 173 EXERCISES, 174
REAL AND COMPLEX INNER PRODUCT SPACES , 181 NORM AND DISTANCE, 183
ISOMETRIES, 186 ORTHOGONALITY, 187 ORTHOGONAL AND ORTHONORMAL SETS, 188
THE PROJECTION THEOREM AND BEST APPROXIMATIONS, 192 ORTHOGONAL DIRECT
SUMS, 194 THE RIESZ REPRESENTATION THEOREM, 195 EXERCISES, 196 STRUCTURE
THEORY FOR NORMAL OPERATORS, 201 THE ADJOINT OF A LINEAR OPERATOR, 201
XIV CONTENTS UNITARY DIAGONALIZABILITY, 204 NORMAL OPERATORS, 205
SPECIAL TYPES OF NORMAL OPERATORS, 207 SELF-ADJOINT OPERATORS, 208
UNITARY OPERATORS AND ISOMETRIES, 210 THE STRUCTURE OF NORMAL OPERATORS,
215 MATRIX VERSIONS, 222 ORTHOGONAL PROJECTIONS, 223 ORTHOGONAL
RESOLUTIONS OF THE IDENTITY, 226 THE SPECTRAL THEOREM, 227 SPECTRAL
RESOLUTIONS AND FUNCTIONAL CALCULUS, 228 POSITIVE OPERATORS, 230 THE
POLAR DECOMPOSITION OF AN OPERATOR, 232 EXERCISES, 234 PART II*TOPICS,
235 11 METRIC VECTOR SPACES: THE THEORY OF BILINEAR FORMS, 239
SYMMETRIC, SKEW-SYMMETRIC AND ALTERNATE FORMS, 239 THE MATRIX OF A
BILINEAR FORM, 242 QUADRATIC FORMS, 244 ORTHOGONALITY, 245 LINEAR
FUNCTIONALS, 248 ORTHOGONAL COMPLEMENTS AND ORTHOGONAL DIRECT SUMS, 249
ISOMETRIES, 252 HYPERBOLIC SPACES, 253 NONSINGULAR COMPLETIONS OF A
SUBSPACE, 254 THE WITT THEOREMS: A PREVIEW, 256 THE CLASSIFICATION
PROBLEM FOR METRIC VECTOR SPACES, 257 SYMPLECTIC GEOMETRY, 258 THE
STRUCTURE OF ORTHOGONAL GEOMETRIES: ORTHOGONAL BASES, 264 THE
CLASSIFICATION OF ORTHOGONAL GEOMETRIES: CANONICAL FORMS, 266 THE
ORTHOGONAL GROUP, 272 THE WITT'S THEOREMS FOR ORTHOGONAL GEOMETRIES, 275
MAXIMAL HYPERBOLIC SUBSPACES OF AN ORTHOGONAL GEOMETRY, 277 EXERCISES,
279 12 METRIC SPACES, 283 THE DEFINITION, 283 OPEN AND CLOSED SETS, 286
CONVERGENCE IN A METRIC SPACE, 287 THE CLOSURE OF A SET, 288 CONTENTS XV
DENSE SUBSETS, 290 CONTINUITY, 292 COMPLETENESS, 293 ISOMETRIES, 297 THE
COMPLETION OF A METRIC SPACE, 298 EXERCISES, 303 13 HILBERT SPACES, 307
A BRIEF REVIEW, 307 HILBERT SPACES, 308 INFINITE SERIES, 312 AN
APPROXIMATION PROBLEM, 313 HILBERT BASES, 317 FOURIER EXPANSIONS, 318 A
CHARACTERIZATION OF HILBERT BASES, 328 HILBERT DIMENSION, 328 A
CHARACTERIZATION OF HILBERT SPACES, 329 THE RIESZ REPRESENTATION
THEOREM, 331 EXERCISES, 334 14 TENSOR PRODUCTS, 337 UNIVERSALITY, 337
BILINEAR MAPS, 341 TENSOR PRODUCTS, 343 WHEN IS A TENSOR PRODUCT ZERO?
348 COORDINATE MATRICES AND RANK, 350 CHARACTERIZING VECTORS IN A TENSOR
PRODUCT, 354 DEFINING LINEAR TRANSFORMATIONS ON A TENSOR PRODUCT, 355
THE TENSOR PRODUCT OF LINEAR TRANSFORMATIONS, 357 CHANGE OF BASE FIELD,
359 MULTILINEAR MAPS AND ITERATED TENSOR PRODUCTS, 363 TENSOR SPACES,
366 SPECIAL MULTILINEAR MAPS, 371 GRADED ALGEBRAS, 372 THE SYMMETRIC
TENSOR ALGEBRA, 374 THE ANTISYMMETRIC TENSOR ALGEBRA: THE EXTERIOR
PRODUCT SPACE, 380 THE DETERMINANT, 387 EXERCISES, 391 15 POSITIVE
SOLUTIONS TO LINEAR SYSTEMS: CONVEXITY AND SEPARATION 395 CONVEX, CLOSED
AND COMPACT SETS, 398 CONVEX HULLS, 399 XVI CONTENTS LINEAR AND AFFINE
HYPERPLANES, 400 SEPARATION, 402 EXERCISES, 407 16 AFFINE GEOMETRY, 409
AFFINE GEOMETRY, 409 AFFINE COMBINATIONS, 41 AFFINE HULLS, 412 THE
LATTICE OF FLATS, 413 AFFINE INDEPENDENCE, 416 AFFINE TRANSFORMATIONS,
417 PROJECTIVE GEOMETRY, 419 EXERCISES, 423 17 OPERATOR FACTORIZATIONS:
QR AND SINGULAR VALUE, 425 THE QR DECOMPOSITION, 425 SINGULAR VALUES,
428 THE MOORE-PENROSE GENERALIZED INVERSE, 430 LEAST SQUARES
APPROXIMATION, 433 EXERCISES, 434 18 THE UMBRAL CALCULUS, 437 FORMAL
POWER SERIES, 437 THE UMBRAL ALGEBRA, 439 FORMAL POWER SERIES AS LINEAR
OPERATORS, 443 SHEFFER SEQUENCES, 446 EXAMPLES OF SHEFFER SEQUENCES, 454
UMBRAL OPERATORS AND UMBRAL SHIFTS, 456 CONTINUOUS OPERATORS ON THE
UMBRAL ALGEBRA, 458 OPERATOR ADJOINTS, 459 UMBRAL OPERATORS AND
AUTOMORPHISMS OF THE UMBRAL ALGEBRA, 460 UMBRAL SHIFTS AND DERIVATIONS
OF THE UMBRAL ALGEBRA, 465 THE TRANSFER FORMULAS, 470 A FINAL REMARK,
471 EXERCISES, 472 REFERENCES, 473 INDEX, 475 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Roman, Steven |
author_facet | Roman, Steven |
author_role | aut |
author_sort | Roman, Steven |
author_variant | s r sr |
building | Verbundindex |
bvnumber | BV021718506 |
callnumber-first | Q - Science |
callnumber-label | QA184 |
callnumber-raw | QA184.2 |
callnumber-search | QA184.2 |
callnumber-sort | QA 3184.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 200 SK 220 |
ctrlnum | (OCoLC)57452536 (DE-599)BVBBV021718506 |
dewey-full | 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.5 |
dewey-search | 512/.5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02227nam a2200577 cb4500</leader><controlfield tag="001">BV021718506</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080117 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060904s2005 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N20,0758</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">97452963X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387247661</subfield><subfield code="c">Gb. : EUR 58.80 (freier Pr.), sfr 97.50 (freier Pr.)</subfield><subfield code="9">0-387-24766-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387247663</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10997574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57452536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021718506</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA184.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roman, Steven</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced Linear Algebra</subfield><subfield code="c">Steven Roman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 482 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">135</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre linéaire</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Valores próprios</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra linear</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">135</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">135</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2624019&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www3.ub.tu-berlin.de/ihv/001730417.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014932208&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014932208</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV021718506 |
illustrated | Illustrated |
index_date | 2024-07-02T15:22:38Z |
indexdate | 2024-07-09T20:42:25Z |
institution | BVB |
isbn | 0387247661 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014932208 |
oclc_num | 57452536 |
open_access_boolean | |
owner | DE-573 DE-706 DE-384 DE-634 DE-83 DE-11 |
owner_facet | DE-573 DE-706 DE-384 DE-634 DE-83 DE-11 |
physical | XVI, 482 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
series | Graduate Texts in Mathematics |
series2 | Graduate Texts in Mathematics |
spelling | Roman, Steven Verfasser aut Advanced Linear Algebra Steven Roman 2. ed. New York Springer 2005 XVI, 482 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate Texts in Mathematics 135 Auch als Internetausgabe Algèbre linéaire Valores próprios larpcal Álgebra linear larpcal Álgebra larpcal Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Lineare Algebra (DE-588)4035811-2 s DE-604 Graduate Texts in Mathematics 135 (DE-604)BV000000067 135 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2624019&prov=M&dok_var=1&dok_ext=htm Inhaltstext http://www3.ub.tu-berlin.de/ihv/001730417.pdf Inhaltsverzeichnis HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014932208&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Roman, Steven Advanced Linear Algebra Graduate Texts in Mathematics Algèbre linéaire Valores próprios larpcal Álgebra linear larpcal Álgebra larpcal Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4123623-3 |
title | Advanced Linear Algebra |
title_auth | Advanced Linear Algebra |
title_exact_search | Advanced Linear Algebra |
title_exact_search_txtP | Advanced Linear Algebra |
title_full | Advanced Linear Algebra Steven Roman |
title_fullStr | Advanced Linear Algebra Steven Roman |
title_full_unstemmed | Advanced Linear Algebra Steven Roman |
title_short | Advanced Linear Algebra |
title_sort | advanced linear algebra |
topic | Algèbre linéaire Valores próprios larpcal Álgebra linear larpcal Álgebra larpcal Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Algèbre linéaire Valores próprios Álgebra linear Álgebra Algebras, Linear Lineare Algebra Lehrbuch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2624019&prov=M&dok_var=1&dok_ext=htm http://www3.ub.tu-berlin.de/ihv/001730417.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014932208&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT romansteven advancedlinearalgebra |