The size of maximal almost disjoint families:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Warszawa
Inst. of Mathematics, Polish Acad. of Sciences
2006
|
Schriftenreihe: | Dissertationes mathematicae
437 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 47 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021716379 | ||
003 | DE-604 | ||
005 | 20070208 | ||
007 | t | ||
008 | 060901s2006 |||| 00||| eng d | ||
035 | |a (OCoLC)70574124 | ||
035 | |a (DE-599)BVBBV021716379 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-703 |a DE-188 | ||
050 | 0 | |a QA3 | |
084 | |a SI 390 |0 (DE-625)143141: |2 rvk | ||
084 | |a MAT 040d |2 stub | ||
100 | 1 | |a Monk, J. Donald |e Verfasser |4 aut | |
245 | 1 | 0 | |a The size of maximal almost disjoint families |c J. D. Monk |
264 | 1 | |a Warszawa |b Inst. of Mathematics, Polish Acad. of Sciences |c 2006 | |
300 | |a 47 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Dissertationes mathematicae |v 437 | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ordinalzahl |0 (DE-588)4172728-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kardinalzahl |0 (DE-588)4163318-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ordinalzahl |0 (DE-588)4172728-9 |D s |
689 | 0 | 1 | |a Kardinalzahl |0 (DE-588)4163318-0 |D s |
689 | 0 | 2 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Dissertationes mathematicae |v 437 |w (DE-604)BV000003039 |9 437 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014930114&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-014930114 |
Datensatz im Suchindex
_version_ | 1804135555759341568 |
---|---|
adam_text | Titel: The size of maximal almost disjoint families
Autor: Monk, James Donald
Jahr: 2006
CONTENTS
The concepts studied in this paper........................................................ 5
ZFC results............................................................................... 7
1. Simple facts............................................................................ 7
2. Fundamental results.................................................................... 8
3. Concerning AD(«, k,v)................................................................. 9
4. On MAD(k) and MAD(«,/i,fi)......................................................... 12
5. The notion MADi..................................................................... 17
Consistency results....................................................................... 22
6. MAD families under GCH.............................................................. 22
7. Many members of MAD(k, k,v)........................................................ 23
8. Specifying MAD(k).................................................................... 34
9. Specifying MAD(«,/i^)................................................................41
References................................................................................ 47
2000 Mathematics Subject Classification: 03E05, 03E35.
Received 17.2.2004; revised version 13.11.2005.
[3]
|
adam_txt |
Titel: The size of maximal almost disjoint families
Autor: Monk, James Donald
Jahr: 2006
CONTENTS
The concepts studied in this paper. 5
ZFC results. 7
1. Simple facts. 7
2. Fundamental results. 8
3. Concerning AD(«, k,v). 9
4. On MAD(k) and MAD(«,/i,fi). 12
5. The notion MADi. 17
Consistency results. 22
6. MAD families under GCH. 22
7. Many members of MAD(k, k,v). 23
8. Specifying MAD(k). 34
9. Specifying MAD(«,/i^).41
References. 47
2000 Mathematics Subject Classification: 03E05, 03E35.
Received 17.2.2004; revised version 13.11.2005.
[3] |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Monk, J. Donald |
author_facet | Monk, J. Donald |
author_role | aut |
author_sort | Monk, J. Donald |
author_variant | j d m jd jdm |
building | Verbundindex |
bvnumber | BV021716379 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 390 |
classification_tum | MAT 040d |
ctrlnum | (OCoLC)70574124 (DE-599)BVBBV021716379 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01579nam a2200421 cb4500</leader><controlfield tag="001">BV021716379</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070208 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060901s2006 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70574124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021716379</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 390</subfield><subfield code="0">(DE-625)143141:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 040d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Monk, J. Donald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The size of maximal almost disjoint families</subfield><subfield code="c">J. D. Monk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Warszawa</subfield><subfield code="b">Inst. of Mathematics, Polish Acad. of Sciences</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">47 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">437</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ordinalzahl</subfield><subfield code="0">(DE-588)4172728-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ordinalzahl</subfield><subfield code="0">(DE-588)4172728-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">437</subfield><subfield code="w">(DE-604)BV000003039</subfield><subfield code="9">437</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014930114&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014930114</subfield></datafield></record></collection> |
id | DE-604.BV021716379 |
illustrated | Not Illustrated |
index_date | 2024-07-02T15:22:10Z |
indexdate | 2024-07-09T20:42:22Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014930114 |
oclc_num | 70574124 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-703 DE-188 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-703 DE-188 |
physical | 47 S. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Inst. of Mathematics, Polish Acad. of Sciences |
record_format | marc |
series | Dissertationes mathematicae |
series2 | Dissertationes mathematicae |
spelling | Monk, J. Donald Verfasser aut The size of maximal almost disjoint families J. D. Monk Warszawa Inst. of Mathematics, Polish Acad. of Sciences 2006 47 S. txt rdacontent n rdamedia nc rdacarrier Dissertationes mathematicae 437 Set theory Mengenlehre (DE-588)4074715-3 gnd rswk-swf Ordinalzahl (DE-588)4172728-9 gnd rswk-swf Kardinalzahl (DE-588)4163318-0 gnd rswk-swf Ordinalzahl (DE-588)4172728-9 s Kardinalzahl (DE-588)4163318-0 s Mengenlehre (DE-588)4074715-3 s DE-604 Dissertationes mathematicae 437 (DE-604)BV000003039 437 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014930114&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Monk, J. Donald The size of maximal almost disjoint families Dissertationes mathematicae Set theory Mengenlehre (DE-588)4074715-3 gnd Ordinalzahl (DE-588)4172728-9 gnd Kardinalzahl (DE-588)4163318-0 gnd |
subject_GND | (DE-588)4074715-3 (DE-588)4172728-9 (DE-588)4163318-0 |
title | The size of maximal almost disjoint families |
title_auth | The size of maximal almost disjoint families |
title_exact_search | The size of maximal almost disjoint families |
title_exact_search_txtP | The size of maximal almost disjoint families |
title_full | The size of maximal almost disjoint families J. D. Monk |
title_fullStr | The size of maximal almost disjoint families J. D. Monk |
title_full_unstemmed | The size of maximal almost disjoint families J. D. Monk |
title_short | The size of maximal almost disjoint families |
title_sort | the size of maximal almost disjoint families |
topic | Set theory Mengenlehre (DE-588)4074715-3 gnd Ordinalzahl (DE-588)4172728-9 gnd Kardinalzahl (DE-588)4163318-0 gnd |
topic_facet | Set theory Mengenlehre Ordinalzahl Kardinalzahl |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014930114&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003039 |
work_keys_str_mv | AT monkjdonald thesizeofmaximalalmostdisjointfamilies |