Differential geometry and Lie groups for physicists:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge University Press
2006
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Publisher description Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XV, 697 S. graph. Darst. |
ISBN: | 0521845076 9780521845076 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021711148 | ||
003 | DE-604 | ||
005 | 20061109 | ||
007 | t | ||
008 | 060829s2006 d||| |||| 00||| eng d | ||
020 | |a 0521845076 |9 0-521-84507-6 | ||
020 | |a 9780521845076 |9 978-0-521-84507-6 | ||
035 | |a (OCoLC)69022184 | ||
035 | |a (DE-599)BVBBV021711148 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-703 |a DE-824 |a DE-355 |a DE-19 |a DE-29T |a DE-83 |a DE-11 | ||
050 | 0 | |a QC20.7.D52 | |
082 | 0 | |a 530.15636 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a PHY 012f |2 stub | ||
084 | |a PHY 014f |2 stub | ||
100 | 1 | |a Fecko, Marián |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential geometry and Lie groups for physicists |c Marián Fecko |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge University Press |c 2006 | |
300 | |a XV, 697 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Géométrie différentielle | |
650 | 4 | |a Lie, Groupes de | |
650 | 4 | |a Physique mathématique | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | |u http://www.gbv.de/dms/goettingen/512384010.pdf |z lizenzfrei |3 Inhaltsverzeichnis | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0618/2006299989-d.html |z Publisher description |z lizenzfrei | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0618/2006299989-t.html |z lizenzfrei |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014924965&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014924965 |
Datensatz im Suchindex
_version_ | 1804135547632877568 |
---|---|
adam_text | Contents
Preface page
Introduction
The concept of a manifold
1.1
1.2
1.3
1.4
1.5
Summary of Chapter
Vector and tensor fields
2.1
2.2
2.3
2.4
2.5
2.6
Summary of Chapter
Mappings of tensors induced by mappings of manifolds
3.1
3.2
Summary of Chapter
Lie derivative
4.1
4.2
4.3
4.4
4.5
non-holonomic frames
4.6
equations
Summary of Chapter
vi
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
Summary of Chapter
6
6.1
6.2
6.3
6.4
Summary of Chapter
7
7.1
differential forms
7.2
7.3
7.4
7.5
7.6
7.7
7.8
Summary of Chapter
8
8.1
8.2
8.3
8.4
8.5
8.6
Summary of Chapter
9
9.1
9.2
9.3*
Summary of Chapter
10
10.1
Contents
10.2
Summary of Chapter
11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
Summary of Chapter
12
12.1
12.2
12.3
12.4
12.5
12.6*
Summary of Chapter
13
13.1
13.2
13.3
SL(2, C)
13.4
fundamental fields
13.5
Summary of Chapter
14
14.1
14.2
14.3
14.4
14.5*
14.6*
14.7*
Summary of Chapter
15
15.1
15.2
15.3
15.4
viii Contents
15.5
15.6
15.7
15.8*
Summary of Chapter
16
16.1
16.2
16.3
16.4
laws due to them
16.5*
16.6*
Summary of Chapter
17
17.1
17.2
17.3
17.4
17.5
17.6
17.7
S
18
18.1
18.2
18.3
Legendre map
18.4
18.5
Summary of Chapter
19
19.1
19.2
19.3
19.4
distribution on LAI
19.5
19.6
Summary of Chapter
20
20.1
Contents ix
20.2
20.3 Parallel
20.4
20.5*
Summary of Chapter
21
21.1
21.2
21.3
21.4
21.5
21.6
21.7*
Summary of Chapter
22*
22.1
22.2
22.3
22.4
22.5
Summary of Chapter
Appendix A Some relevant algebraic structures
A.
A.
A.3 Lie algebras
A.4 Modules
A.5 Grading
A.
Appendix
Bibliography
Index of
Index
|
adam_txt |
Contents
Preface page
Introduction
The concept of a manifold
1.1
1.2
1.3
1.4
1.5
Summary of Chapter
Vector and tensor fields
2.1
2.2
2.3
2.4
2.5
2.6
Summary of Chapter
Mappings of tensors induced by mappings of manifolds
3.1
3.2
Summary of Chapter
Lie derivative
4.1
4.2
4.3
4.4
4.5
non-holonomic frames
4.6
equations
Summary of Chapter
vi
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
Summary of Chapter
6
6.1
6.2
6.3
6.4
Summary of Chapter
7
7.1
differential forms
7.2
7.3
7.4
7.5
7.6
7.7
7.8
Summary of Chapter
8
8.1
8.2
8.3
8.4
8.5
8.6
Summary of Chapter
9
9.1
9.2
9.3*
Summary of Chapter
10
10.1
Contents
10.2
Summary of Chapter
11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
Summary of Chapter
12
12.1
12.2
12.3
12.4
12.5
12.6*
Summary of Chapter
13
13.1
13.2
13.3
SL(2, C)
13.4
fundamental fields
13.5
Summary of Chapter
14
14.1
14.2
14.3
14.4
14.5*
14.6*
14.7*
Summary of Chapter
15
15.1
15.2
15.3
15.4
viii Contents
15.5
15.6
15.7
15.8*
Summary of Chapter
16
16.1
16.2
16.3
16.4
laws due to them
16.5*
16.6*
Summary of Chapter
17
17.1
17.2
17.3
17.4
17.5
17.6
17.7
S
18
18.1
18.2
18.3
Legendre map
18.4
18.5
Summary of Chapter
19
19.1
19.2
19.3
19.4
distribution on LAI
19.5
19.6
Summary of Chapter
20
20.1
Contents ix
20.2
20.3 Parallel
20.4
20.5*
Summary of Chapter
21
21.1
21.2
21.3
21.4
21.5
21.6
21.7*
Summary of Chapter
22*
22.1
22.2
22.3
22.4
22.5
Summary of Chapter
Appendix A Some relevant algebraic structures
A.
A.
A.3 Lie algebras
A.4 Modules
A.5 Grading
A.
Appendix
Bibliography
Index of
Index |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Fecko, Marián |
author_facet | Fecko, Marián |
author_role | aut |
author_sort | Fecko, Marián |
author_variant | m f mf |
building | Verbundindex |
bvnumber | BV021711148 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.D52 |
callnumber-search | QC20.7.D52 |
callnumber-sort | QC 220.7 D52 |
callnumber-subject | QC - Physics |
classification_rvk | SK 370 |
classification_tum | PHY 012f PHY 014f |
ctrlnum | (OCoLC)69022184 (DE-599)BVBBV021711148 |
dewey-full | 530.15636 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15636 |
dewey-search | 530.15636 |
dewey-sort | 3530.15636 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02340nam a2200577 c 4500</leader><controlfield tag="001">BV021711148</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20061109 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060829s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521845076</subfield><subfield code="9">0-521-84507-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521845076</subfield><subfield code="9">978-0-521-84507-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)69022184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021711148</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.D52</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15636</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 012f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 014f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fecko, Marián</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential geometry and Lie groups for physicists</subfield><subfield code="c">Marián Fecko</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 697 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie différentielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.gbv.de/dms/goettingen/512384010.pdf</subfield><subfield code="z">lizenzfrei</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0618/2006299989-d.html</subfield><subfield code="z">Publisher description</subfield><subfield code="z">lizenzfrei</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0618/2006299989-t.html</subfield><subfield code="z">lizenzfrei</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014924965&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014924965</subfield></datafield></record></collection> |
id | DE-604.BV021711148 |
illustrated | Illustrated |
index_date | 2024-07-02T15:20:30Z |
indexdate | 2024-07-09T20:42:15Z |
institution | BVB |
isbn | 0521845076 9780521845076 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014924965 |
oclc_num | 69022184 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-824 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-29T DE-83 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-824 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-29T DE-83 DE-11 |
physical | XV, 697 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Fecko, Marián Verfasser aut Differential geometry and Lie groups for physicists Marián Fecko 1. publ. Cambridge [u.a.] Cambridge University Press 2006 XV, 697 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Géométrie différentielle Lie, Groupes de Physique mathématique Mathematische Physik Geometry, Differential Lie groups Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Mathematische Physik (DE-588)4037952-8 s DE-604 Lie-Gruppe (DE-588)4035695-4 s http://www.gbv.de/dms/goettingen/512384010.pdf lizenzfrei Inhaltsverzeichnis http://www.loc.gov/catdir/enhancements/fy0618/2006299989-d.html Publisher description lizenzfrei http://www.loc.gov/catdir/enhancements/fy0618/2006299989-t.html lizenzfrei Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014924965&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fecko, Marián Differential geometry and Lie groups for physicists Géométrie différentielle Lie, Groupes de Physique mathématique Mathematische Physik Geometry, Differential Lie groups Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Lie-Gruppe (DE-588)4035695-4 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4035695-4 (DE-588)4012248-7 |
title | Differential geometry and Lie groups for physicists |
title_auth | Differential geometry and Lie groups for physicists |
title_exact_search | Differential geometry and Lie groups for physicists |
title_exact_search_txtP | Differential geometry and Lie groups for physicists |
title_full | Differential geometry and Lie groups for physicists Marián Fecko |
title_fullStr | Differential geometry and Lie groups for physicists Marián Fecko |
title_full_unstemmed | Differential geometry and Lie groups for physicists Marián Fecko |
title_short | Differential geometry and Lie groups for physicists |
title_sort | differential geometry and lie groups for physicists |
topic | Géométrie différentielle Lie, Groupes de Physique mathématique Mathematische Physik Geometry, Differential Lie groups Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Lie-Gruppe (DE-588)4035695-4 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Géométrie différentielle Lie, Groupes de Physique mathématique Mathematische Physik Geometry, Differential Lie groups Mathematical physics Lie-Gruppe Differentialgeometrie |
url | http://www.gbv.de/dms/goettingen/512384010.pdf http://www.loc.gov/catdir/enhancements/fy0618/2006299989-d.html http://www.loc.gov/catdir/enhancements/fy0618/2006299989-t.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014924965&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT feckomarian differentialgeometryandliegroupsforphysicists |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis
Inhaltsverzeichnis