Ion implantation and synthesis of materials: with 10 tables
Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implant...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification topics, such as ion-beam mixing, stresses, and sputtering, are also described. TOC:General Features and Fundamental Concepts.- Particle Interactions and Interatomic Potentials.- Dynamics of Binary Elastic Collisions.- Ion-Solid Scattering Events: Cross-Section.- Collisions with Atoms and Electrons: Ion Stopping.- Ion Range and Range Distributions.- Displacements during Implantation: Radiation Damage.- Influence of Crystal Structure on Range: Channeling.- Doping, Diffusion and Defects in Ion Implanted Si.- Amorphous SE Thermal Regrowth, Ion Induced Epitaxy and Laser Annealing.- S1 Slicing and Layer Transfer: Ion-Cut.- Surface Erosion during Implantation: Sputtering.- Ion Induced Atomic Intermixing at the Interface: Ion Beam Mixing.- Ion Implantation Technology |
Beschreibung: | XIII, 263 S. Ill., graph. Darst. 235 mm x 155 mm |
ISBN: | 3540236740 9783540236740 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021704797 | ||
003 | DE-604 | ||
005 | 20070515 | ||
007 | t | ||
008 | 060823s2006 gw ad|| |||| 00||| eng d | ||
015 | |a 04,N43,0495 |2 dnb | ||
016 | 7 | |a 972315969 |2 DE-101 | |
020 | |a 3540236740 |c Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 152.50 (freier Pr.) |9 3-540-23674-0 | ||
020 | |a 9783540236740 |9 978-3-540-23674-0 | ||
024 | 3 | |a 9783540236740 | |
028 | 5 | 2 | |a 10864147 |
035 | |a (OCoLC)180884888 | ||
035 | |a (DE-599)BVBBV021704797 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T |a DE-703 |a DE-19 |a DE-11 | ||
082 | 0 | |a 610 | |
084 | |a UP 9350 |0 (DE-625)146462: |2 rvk | ||
084 | |a 500 |2 sdnb | ||
084 | |a 610 |2 sdnb | ||
100 | 1 | |a Nastasi, Michael |d 1950- |e Verfasser |0 (DE-588)1059463164 |4 aut | |
245 | 1 | 0 | |a Ion implantation and synthesis of materials |b with 10 tables |c M. Nastasi ; J. W. Mayer |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XIII, 263 S. |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification topics, such as ion-beam mixing, stresses, and sputtering, are also described. TOC:General Features and Fundamental Concepts.- Particle Interactions and Interatomic Potentials.- Dynamics of Binary Elastic Collisions.- Ion-Solid Scattering Events: Cross-Section.- Collisions with Atoms and Electrons: Ion Stopping.- Ion Range and Range Distributions.- Displacements during Implantation: Radiation Damage.- Influence of Crystal Structure on Range: Channeling.- Doping, Diffusion and Defects in Ion Implanted Si.- Amorphous SE Thermal Regrowth, Ion Induced Epitaxy and Laser Annealing.- S1 Slicing and Layer Transfer: Ion-Cut.- Surface Erosion during Implantation: Sputtering.- Ion Induced Atomic Intermixing at the Interface: Ion Beam Mixing.- Ion Implantation Technology | ||
650 | 0 | 7 | |a Ionenimplantation |0 (DE-588)4027606-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ionenimplantation |0 (DE-588)4027606-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mayer, James W. |d 1930-2013 |e Verfasser |0 (DE-588)121494349 |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014918706&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014918706 |
Datensatz im Suchindex
_version_ | 1804135537795137536 |
---|---|
adam_text | M. NASTASI J.W. MAYER ION IMPLANTATION AND SYNTHESIS OF MATERIALS WITH
131 FIGURES AND 10 TABLES SPRINGER 4 CONTENTS 1 GENERAL FEATURES AND
FUNDAMENTAL CONCEPTS 1 1.1 INTRODUCTION 1 1.2 RANGE DISTRIBUTIONS 2 1.3
LATTICE DISORDER 3 1.4 ATOMIC AND PLANAR DENSITIES 5 1.5 ENERGY AND
PARTICLES 6 1.6 THE BOHR VELOCITY AND RADIUS 8 SUGGESTED READING 9
PROBLEMS 9 2 PARTICLE INTERACTIONS 11 2.1 INTRODUCTION 11 2.2
INTERATOMIC FORCES 11 2.3 SHORT- AND LONG-RANGE INTERATOMIC FORCES 12
2.4 INTERATOMIC FORCES IN SOLIDS 13 2.5 ENERGETIC COLLISIONS OF ATOMS
AND IONS AND THE SCREENED COULOMB POTENTIAL 15 2.6 SCREENING FUNCTIONS
16 2.7 SCREENING LENGTH 18 REFERENCES 20 SUGGESTED READING 20 PROBLEMS
21 3 DYNAMICS OF BINARY ELASTIC COLLISIONS 23 3.1 INTRODUCTION 23 3.2
CLASSICAL SCATTERING THEORY 24 3.3 KINEMATICS OF ELASTIC COLLISIONS 25
3.4 CENTER-OF-MASS COORDINATES 27 3.5 MOTION UNDER A CENTRAL FORCE 30
3.5.1 ENERGY CONSERVATION IN A CENTRAL FORCE 31 3.5.2 ANGULAR ORBITAL
MOMENTUM AND THE IMPACT PARAMETERS 32 3.6DISTANCE OF CLOSEST APPROACH 34
REFERENCES 35 SUGGESTED READING 35 PROBLEMS 35 X CONTENTS 4
CROSS-SECTION 37 4.1 INTRODUCTION 37 4.2 SCATTERING CROSS-SECTION 37 4.3
ENERGY-TRANSFER CROSS-SECTION 42 4.4 APPROXIMATION TO THE
ENERGY-TRANSFER CROSS-SECTION 45 REFERENCES 47 SUGGESTED READING 47
PROBLEMS 47 5 ION STOPPING 49 5.1 INTRODUCTION 49 5.2 THE ENERGY-LOSS
PROCESS 50 5.3 NUCLEAR STOPPING 51 5.4 ZBL NUCLEAR STOPPING
CROSS-SECTION 54 5.5 ELECTRONIC STOPPING 56 5.5.1 HIGH-ENERGY ELECTRONIC
ENERGY LOSS 57 5.5.2 LOW-ENERGY ELECTRONIC ENERGY LOSS 58 5.6 STOPPING
CALCULATIONS USING SRIM 60 REFERENCES 60 SUGGESTED READING 60 PROBLEMS
61 6 ION RANGE AND RANGE DISTRIBUTION 63 6.1 RANGE CONCEPTS 63 6.2 RANGE
DISTRIBUTIONS 65 6.3 CALCULATIONS 67 6.3.1 RANGE APPROXIMATIONS 67 6.3.2
PROJECTED RANGE 68 6.3.3 RANGE STRAGGLING 70 6.3.4 POLYATOMIC TARGETS 71
6.4 RANGE DISTRIBUTIONS FROM SRIM 72 REFERENCES 74 SUGGESTED READING 75
PROBLEMS 75 7 DISPLACEMENTS AND RADIATION DAMAGE 77 7.1 INTRODUCTION 77
7.2 RADIATION DAMAGE AND DISPLACEMENT ENERGY 77 7.3 DISPLACEMENTS
PRODUCED BY A PRIMARY KNOCK-ON 79 7.4 PRIMARY KNOCK-ON ATOM DAMAGE
ENERGY 82 7.5 ION DAMAGE ENERGY 83 7.6 DAMAGE PRODUCTION RATE AND DPA 85
7.7 REPLACEMENT COLLISION SEQUENCES 86 7.8 SPIKES 86 7.8.1 MEAN FREE
PATH AND THE DISPLACEMENT SPIKE 86 7.8.2 THERMAL SPIKE 87 CONTENTS XI
7.9 DAMAGE DISTRIBUTION FROM SRIM ....;...... 89 REFERENCES 91 SUGGESTED
READING 91 PROBLEMS 91 8 CHANNELING 93 8.1 INTRODUCTION 93 8.2 GENERAL
PRINCIPLES 96 8.3 THE MAXIMUM RANGE, AE MAX 99 8.4 DECHANNELING BY
DEFECTS 100 REFERENCES 105 PROBLEMS 106 9 DOPING, DIFFUSION AND DEFECTS
IN ION-IMPLANTED SI 107 9.1 JUNCTIONS AND TRANSISTORS 107 9.1.1 BIPOLAR
TRANSISTORS 109 9.1.2 METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS
110 9.1.3 COMPLEMENTARY METAL OXIDE SEMICONDUCTOR DEVICES 112 9.2
DEFECTS 114 9.2.1 POINT DEFECTS 114 9.2.2 NATIVE DEFECTS AND SHALLOW
DOPANTS 114 9.2.3 DEEP LEVEL CENTERS 115 9.2.4 LINE DEFECTS 116 9.2.5
PLANAR DEFECTS 117 9.2.6 VOLUME DEFECTS 117 9.3 FICK S FIRST AND SECOND
LAW OF DIFFUSION 118 9.3.1 DIFFUSION COEFFICIENT 119 9.3.2 DIFFUSION OF
DOPING ATOMS INTO SI 119 9.4 DIFFUSION MECHANISMS 119 9.4.1 INTERSTITIAL
MECHANISM 121 9.4.2 SUBSTITUTIONAL OR VACANCY MECHANISM 121 9.4.3
INTERSTITIAL-SUBSTITUTIONAL MECHANISM 121 9.4.4 INTERSTITIALCY AND THE
KICK-OUT MECHANISM 122 9.5 TRANSIENT ENHANCED DIFFUSION OF BORON 122 9.6
IRRADIATION-ENHANCED DIFFUSION 124 REFERENCES 125 PROBLEMS 126 10
CRYSTALLIZATION AND REGROWTH OF AMORPHOUS SI 127 10.1 INTRODUCTION 127
10.2 EPITAXIAL GROWTH OF IMPLANTED AMORPHOUS SI 129 10.3 ION
BEAM-INDUCED ENHANCED CRYSTALLIZATION 137 10.4 LASER ANNEALING OF SI 140
REFERENCES 141 PROBLEMS 142 XLL 11 SI SLICING AND LAYER TRANSFER:
ION-CUT 143 11.1 INTRODUCTION 143 11.2 FORMATION OF SOI BY THE ION-CUT
PROCESS 144 11.3 THE SILICON-HYDROGEN SYSTEM 145 11.4 THE MECHANISMS
BEHIND THE ION-CUT PROCESS 149 11.4.1 THE ION-CUT DEPTH 149 11.4.2
MICROSTRUCTURE OF THE IMPLANTATION ZONE 153 REFERENCES 157 12 SURFACE
EROSION DURING IMPLANTATION: SPUTTERING 159 12.1 INTRODUCTION 159 12.2
SPUTTERING OF SINGLE-ELEMENT TARGETS 159 12.3 ION IMPLANTATION AND THE
STEADY STATE CONCENTRATION 162 12.4 SPUTTERING OF ALLOYS AND COMPOUNDS
164 12.4.1 PREFERENTIAL SPUTTERING 165 12.4.2 COMPOSITIONAL CHANGES 166
12.4.3 COMPOSITION DEPTH PROFILES 168 12.5 HIGH-DOSE ION IMPLANTATION
169 12.6 CONCENTRATIONS OF IMPLANTED SPECIES 171 12.6.1 SI IMPLANTED
WITH 45 KEVPTLONS 171 12.6.2 PT IMPLANTED WITH 45 KEVSI IONS 172 12.6.3
PTSI IMPLANTED WITH SI 172 12.7 CONCENTRATIONS IN HIGH-DOSE ION
IMPLANTATION 173 12.8 COMPUTER SIMULATION 175 REFERENCES 176 SUGGESTED
READING 176 PROBLEMS 177 13 LON-INDUCED ATOMIC INTERMIXING AT THE
INTERFACE: ION BEAM MIXING 179 13.1 INTRODUCTION 179 13.2 BALLISTIC
MIXING 182 13.2.1 RECOIL MIXING 183 13.2.2 CASCADE MIXING 185 13.3
THERMODYNAMIC EFFECTS IN ION MIXING 187 REFERENCES 191 SUGGESTED READING
191 PROBLEMS 192 14 APPLICATION OF ION IMPLANTATION TECHNIQUES IN CMOS
FABRICATION 193 14.1 INTRODUCTION 193 14.2 ISSUES DURING DEVICE SCALING
193 14.2.1 SHORT-CHANNEL EFFECTS 195 14.2.2 HOT-ELECTRON EFFECT 197
14.2.3 LATCHUP 198 14.3 ION IMPLANTATION IN ADVANCED CMOS DEVICE
FABRICATION 199 14.3.1 RETROGRADE WELL IMPLANT 202 XIII 14.3.2
PUNCH-THROUGH STOP IMPLANT 203 14.3.3 THRESHOLD ADJUST IMPLANT 203
14.3.4 SOURCE AND DRAIN IMPLANT 205 14.3.5 HALO IMPLANT 206 14.3.6 GATE
IMPLANT 207 14.4 ISSUES OF ION IMPLANTATION DURING DEVICE SCALING 207
14.4.1 SPACE CHARGE EFFECTS 207 14.4.2 ENERGY CONTAMINATION 208 14.4.3
BEAM SHADOWING EFFECT 208 14.5 THE ROLE OF ION IMPLANTATIONS IN DEVICE
FABRICATIONS 208 REFERENCES 209 SUGGESTED READING 210 PROBLEMS 210 ION
IMPLANTATION IN CMOS TECHNOLOGY: MACHINE CHALLENGES 213 15.1
INTRODUCTION 213 15.2 IMPLANTERS USED IN CMOS PROCESSING 214 15.2.1
BEAMLINE ARCHITECTURES 215 15.2.2 OTHER SUBSYSTEMS 221 15.3 LOW ENERGY
PRODUCTIVITY: BEAM TRANSPORT 223 15.3.1 SPACE CHARGE NEUTRALIZATION 224
15.3.2 DECEL IMPLANTATION 224 15.3.3 MOLECULAR IMPLANTATION 226 15.4 LOW
ENERGY PRODUCTIVITY: BEAM UTILIZATION 226 15.4.1 BEAM UTILIZATION 227
15.4.2 IMPLANTERS COMMERCIALIZED IN THE PAST 35 YEARS 230 15.5 ANGLE
CONTROL 232 15.5.1 IMPACT OF BEAM STEERING ERRORS ON DEVICE PERFORMANCE
232 15.5.2 IMPACT OF ENDSTATION DESIGN AND BEAM SCAN MECHANISM 234 15.6
CONCLUSIONS AND THE FUTURE OF ION IMPLANTATION IN SEMICONDUCTORS 236
REFERENCES 237 APPENDIX A: TABLE OF THE ELEMENTS 239 APPENDIX B:
PHYSICAL CONSTANTS, CONVERSIONS, AND USEFUL COMBINATIONS 255 INDEX 257
|
adam_txt |
M. NASTASI J.W. MAYER ION IMPLANTATION AND SYNTHESIS OF MATERIALS WITH
131 FIGURES AND 10 TABLES SPRINGER 4 CONTENTS 1 GENERAL FEATURES AND
FUNDAMENTAL CONCEPTS 1 1.1 INTRODUCTION 1 1.2 RANGE DISTRIBUTIONS 2 1.3
LATTICE DISORDER 3 1.4 ATOMIC AND PLANAR DENSITIES 5 1.5 ENERGY AND
PARTICLES 6 1.6 THE BOHR VELOCITY AND RADIUS 8 SUGGESTED READING 9
PROBLEMS 9 2 PARTICLE INTERACTIONS 11 2.1 INTRODUCTION 11 2.2
INTERATOMIC FORCES 11 2.3 SHORT- AND LONG-RANGE INTERATOMIC FORCES 12
2.4 INTERATOMIC FORCES IN SOLIDS 13 2.5 ENERGETIC COLLISIONS OF ATOMS
AND IONS AND THE SCREENED COULOMB POTENTIAL 15 2.6 SCREENING FUNCTIONS
16 2.7 SCREENING LENGTH 18 REFERENCES 20 SUGGESTED READING 20 PROBLEMS
21 3 DYNAMICS OF BINARY ELASTIC COLLISIONS 23 3.1 INTRODUCTION 23 3.2
CLASSICAL SCATTERING THEORY 24 3.3 KINEMATICS OF ELASTIC COLLISIONS 25
3.4 CENTER-OF-MASS COORDINATES 27 3.5 MOTION UNDER A CENTRAL FORCE 30
3.5.1 ENERGY CONSERVATION IN A CENTRAL FORCE 31 3.5.2 ANGULAR ORBITAL
MOMENTUM AND THE IMPACT PARAMETERS 32 3.6DISTANCE OF CLOSEST APPROACH 34
REFERENCES 35 SUGGESTED READING 35 PROBLEMS 35 X CONTENTS 4
CROSS-SECTION 37 4.1 INTRODUCTION 37 4.2 SCATTERING CROSS-SECTION 37 4.3
ENERGY-TRANSFER CROSS-SECTION 42 4.4 APPROXIMATION TO THE
ENERGY-TRANSFER CROSS-SECTION 45 REFERENCES 47 SUGGESTED READING 47
PROBLEMS 47 5 ION STOPPING 49 5.1 INTRODUCTION 49 5.2 THE ENERGY-LOSS
PROCESS 50 5.3 NUCLEAR STOPPING 51 5.4 ZBL NUCLEAR STOPPING
CROSS-SECTION 54 5.5 ELECTRONIC STOPPING 56 5.5.1 HIGH-ENERGY ELECTRONIC
ENERGY LOSS 57 5.5.2 LOW-ENERGY ELECTRONIC ENERGY LOSS 58 5.6 STOPPING
CALCULATIONS USING SRIM 60 REFERENCES 60 SUGGESTED READING 60 PROBLEMS
61 6 ION RANGE AND RANGE DISTRIBUTION 63 6.1 RANGE CONCEPTS 63 6.2 RANGE
DISTRIBUTIONS 65 6.3 CALCULATIONS 67 6.3.1 RANGE APPROXIMATIONS 67 6.3.2
PROJECTED RANGE 68 6.3.3 RANGE STRAGGLING 70 6.3.4 POLYATOMIC TARGETS 71
6.4 RANGE DISTRIBUTIONS FROM SRIM 72 REFERENCES 74 SUGGESTED READING 75
PROBLEMS 75 7 DISPLACEMENTS AND RADIATION DAMAGE 77 7.1 INTRODUCTION 77
7.2 RADIATION DAMAGE AND DISPLACEMENT ENERGY 77 7.3 DISPLACEMENTS
PRODUCED BY A PRIMARY KNOCK-ON 79 7.4 PRIMARY KNOCK-ON ATOM DAMAGE
ENERGY 82 7.5 ION DAMAGE ENERGY 83 7.6 DAMAGE PRODUCTION RATE AND DPA 85
7.7 REPLACEMENT COLLISION SEQUENCES 86 7.8 SPIKES 86 7.8.1 MEAN FREE
PATH AND THE DISPLACEMENT SPIKE 86 7.8.2 THERMAL SPIKE 87 CONTENTS XI
7.9 DAMAGE DISTRIBUTION FROM SRIM .;. 89 REFERENCES 91 SUGGESTED
READING 91 PROBLEMS 91 8 CHANNELING 93 8.1 INTRODUCTION 93 8.2 GENERAL
PRINCIPLES 96 8.3 THE MAXIMUM RANGE, AE MAX 99 8.4 DECHANNELING BY
DEFECTS 100 REFERENCES 105 PROBLEMS 106 9 DOPING, DIFFUSION AND DEFECTS
IN ION-IMPLANTED SI 107 9.1 JUNCTIONS AND TRANSISTORS 107 9.1.1 BIPOLAR
TRANSISTORS 109 9.1.2 METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS
110 9.1.3 COMPLEMENTARY METAL OXIDE SEMICONDUCTOR DEVICES 112 9.2
DEFECTS 114 9.2.1 POINT DEFECTS 114 9.2.2 NATIVE DEFECTS AND SHALLOW
DOPANTS 114 9.2.3 DEEP LEVEL CENTERS 115 9.2.4 LINE DEFECTS 116 9.2.5
PLANAR DEFECTS 117 9.2.6 VOLUME DEFECTS 117 9.3 FICK'S FIRST AND SECOND
LAW OF DIFFUSION 118 9.3.1 DIFFUSION COEFFICIENT 119 9.3.2 DIFFUSION OF
DOPING ATOMS INTO SI 119 9.4 DIFFUSION MECHANISMS 119 9.4.1 INTERSTITIAL
MECHANISM 121 9.4.2 SUBSTITUTIONAL OR VACANCY MECHANISM 121 9.4.3
INTERSTITIAL-SUBSTITUTIONAL MECHANISM 121 9.4.4 INTERSTITIALCY AND THE
KICK-OUT MECHANISM 122 9.5 TRANSIENT ENHANCED DIFFUSION OF BORON 122 9.6
IRRADIATION-ENHANCED DIFFUSION 124 REFERENCES 125 PROBLEMS 126 10
CRYSTALLIZATION AND REGROWTH OF AMORPHOUS SI 127 10.1 INTRODUCTION 127
10.2 EPITAXIAL GROWTH OF IMPLANTED AMORPHOUS SI 129 10.3 ION
BEAM-INDUCED ENHANCED CRYSTALLIZATION 137 10.4 LASER ANNEALING OF SI 140
REFERENCES 141 PROBLEMS 142 XLL 11 SI SLICING AND LAYER TRANSFER:
ION-CUT 143 11.1 INTRODUCTION 143 11.2 FORMATION OF SOI BY THE ION-CUT
PROCESS 144 11.3 THE SILICON-HYDROGEN SYSTEM 145 11.4 THE MECHANISMS
BEHIND THE ION-CUT PROCESS 149 11.4.1 THE ION-CUT DEPTH 149 11.4.2
MICROSTRUCTURE OF THE IMPLANTATION ZONE 153 REFERENCES 157 12 SURFACE
EROSION DURING IMPLANTATION: SPUTTERING 159 12.1 INTRODUCTION 159 12.2
SPUTTERING OF SINGLE-ELEMENT TARGETS 159 12.3 ION IMPLANTATION AND THE
STEADY STATE CONCENTRATION 162 12.4 SPUTTERING OF ALLOYS AND COMPOUNDS
164 12.4.1 PREFERENTIAL SPUTTERING 165 12.4.2 COMPOSITIONAL CHANGES 166
12.4.3 COMPOSITION DEPTH PROFILES 168 12.5 HIGH-DOSE ION IMPLANTATION
169 12.6 CONCENTRATIONS OF IMPLANTED SPECIES 171 12.6.1 SI IMPLANTED
WITH 45 KEVPTLONS 171 12.6.2 PT IMPLANTED WITH 45 KEVSI IONS 172 12.6.3
PTSI IMPLANTED WITH SI 172 12.7 CONCENTRATIONS IN HIGH-DOSE ION
IMPLANTATION 173 12.8 COMPUTER SIMULATION 175 REFERENCES 176 SUGGESTED
READING 176 PROBLEMS 177 13 LON-INDUCED ATOMIC INTERMIXING AT THE
INTERFACE: ION BEAM MIXING 179 13.1 INTRODUCTION 179 13.2 BALLISTIC
MIXING 182 13.2.1 RECOIL MIXING 183 13.2.2 CASCADE MIXING 185 13.3
THERMODYNAMIC EFFECTS IN ION MIXING 187 REFERENCES 191 SUGGESTED READING
191 PROBLEMS 192 14 APPLICATION OF ION IMPLANTATION TECHNIQUES IN CMOS
FABRICATION 193 14.1 INTRODUCTION 193 14.2 ISSUES DURING DEVICE SCALING
193 14.2.1 SHORT-CHANNEL EFFECTS 195 14.2.2 HOT-ELECTRON EFFECT 197
14.2.3 LATCHUP 198 14.3 ION IMPLANTATION IN ADVANCED CMOS DEVICE
FABRICATION 199 14.3.1 RETROGRADE WELL IMPLANT 202 XIII 14.3.2
PUNCH-THROUGH STOP IMPLANT 203 14.3.3 THRESHOLD ADJUST IMPLANT 203
14.3.4 SOURCE AND DRAIN IMPLANT 205 14.3.5 HALO IMPLANT 206 14.3.6 GATE
IMPLANT 207 14.4 ISSUES OF ION IMPLANTATION DURING DEVICE SCALING 207
14.4.1 SPACE CHARGE EFFECTS 207 14.4.2 ENERGY CONTAMINATION 208 14.4.3
BEAM SHADOWING EFFECT 208 14.5 THE ROLE OF ION IMPLANTATIONS IN DEVICE
FABRICATIONS 208 REFERENCES 209 SUGGESTED READING 210 PROBLEMS 210 ION
IMPLANTATION IN CMOS TECHNOLOGY: MACHINE CHALLENGES 213 15.1
INTRODUCTION 213 15.2 IMPLANTERS USED IN CMOS PROCESSING 214 15.2.1
BEAMLINE ARCHITECTURES 215 15.2.2 OTHER SUBSYSTEMS 221 15.3 LOW ENERGY
PRODUCTIVITY: BEAM TRANSPORT 223 15.3.1 SPACE CHARGE NEUTRALIZATION 224
15.3.2 DECEL IMPLANTATION 224 15.3.3 MOLECULAR IMPLANTATION 226 15.4 LOW
ENERGY PRODUCTIVITY: BEAM UTILIZATION 226 15.4.1 BEAM UTILIZATION 227
15.4.2 IMPLANTERS COMMERCIALIZED IN THE PAST 35 YEARS 230 15.5 ANGLE
CONTROL 232 15.5.1 IMPACT OF BEAM STEERING ERRORS ON DEVICE PERFORMANCE
232 15.5.2 IMPACT OF ENDSTATION DESIGN AND BEAM SCAN MECHANISM 234 15.6
CONCLUSIONS AND THE FUTURE OF ION IMPLANTATION IN SEMICONDUCTORS 236
REFERENCES 237 APPENDIX A: TABLE OF THE ELEMENTS 239 APPENDIX B:
PHYSICAL CONSTANTS, CONVERSIONS, AND USEFUL COMBINATIONS 255 INDEX 257 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Nastasi, Michael 1950- Mayer, James W. 1930-2013 |
author_GND | (DE-588)1059463164 (DE-588)121494349 |
author_facet | Nastasi, Michael 1950- Mayer, James W. 1930-2013 |
author_role | aut aut |
author_sort | Nastasi, Michael 1950- |
author_variant | m n mn j w m jw jwm |
building | Verbundindex |
bvnumber | BV021704797 |
classification_rvk | UP 9350 |
ctrlnum | (OCoLC)180884888 (DE-599)BVBBV021704797 |
dewey-full | 610 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610 |
dewey-search | 610 |
dewey-sort | 3610 |
dewey-tens | 610 - Medicine and health |
discipline | Physik Allgemeine Naturwissenschaft Medizin |
discipline_str_mv | Physik Allgemeine Naturwissenschaft Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03258nam a2200445 c 4500</leader><controlfield tag="001">BV021704797</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070515 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060823s2006 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">04,N43,0495</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">972315969</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540236740</subfield><subfield code="c">Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 152.50 (freier Pr.)</subfield><subfield code="9">3-540-23674-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540236740</subfield><subfield code="9">978-3-540-23674-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540236740</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10864147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180884888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021704797</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 9350</subfield><subfield code="0">(DE-625)146462:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">500</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">610</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nastasi, Michael</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1059463164</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ion implantation and synthesis of materials</subfield><subfield code="b">with 10 tables</subfield><subfield code="c">M. Nastasi ; J. W. Mayer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 263 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification topics, such as ion-beam mixing, stresses, and sputtering, are also described. TOC:General Features and Fundamental Concepts.- Particle Interactions and Interatomic Potentials.- Dynamics of Binary Elastic Collisions.- Ion-Solid Scattering Events: Cross-Section.- Collisions with Atoms and Electrons: Ion Stopping.- Ion Range and Range Distributions.- Displacements during Implantation: Radiation Damage.- Influence of Crystal Structure on Range: Channeling.- Doping, Diffusion and Defects in Ion Implanted Si.- Amorphous SE Thermal Regrowth, Ion Induced Epitaxy and Laser Annealing.- S1 Slicing and Layer Transfer: Ion-Cut.- Surface Erosion during Implantation: Sputtering.- Ion Induced Atomic Intermixing at the Interface: Ion Beam Mixing.- Ion Implantation Technology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ionenimplantation</subfield><subfield code="0">(DE-588)4027606-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ionenimplantation</subfield><subfield code="0">(DE-588)4027606-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mayer, James W.</subfield><subfield code="d">1930-2013</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121494349</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014918706&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014918706</subfield></datafield></record></collection> |
id | DE-604.BV021704797 |
illustrated | Illustrated |
index_date | 2024-07-02T15:18:29Z |
indexdate | 2024-07-09T20:42:05Z |
institution | BVB |
isbn | 3540236740 9783540236740 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014918706 |
oclc_num | 180884888 |
open_access_boolean | |
owner | DE-29T DE-703 DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-29T DE-703 DE-19 DE-BY-UBM DE-11 |
physical | XIII, 263 S. Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
spelling | Nastasi, Michael 1950- Verfasser (DE-588)1059463164 aut Ion implantation and synthesis of materials with 10 tables M. Nastasi ; J. W. Mayer Berlin [u.a.] Springer 2006 XIII, 263 S. Ill., graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification topics, such as ion-beam mixing, stresses, and sputtering, are also described. TOC:General Features and Fundamental Concepts.- Particle Interactions and Interatomic Potentials.- Dynamics of Binary Elastic Collisions.- Ion-Solid Scattering Events: Cross-Section.- Collisions with Atoms and Electrons: Ion Stopping.- Ion Range and Range Distributions.- Displacements during Implantation: Radiation Damage.- Influence of Crystal Structure on Range: Channeling.- Doping, Diffusion and Defects in Ion Implanted Si.- Amorphous SE Thermal Regrowth, Ion Induced Epitaxy and Laser Annealing.- S1 Slicing and Layer Transfer: Ion-Cut.- Surface Erosion during Implantation: Sputtering.- Ion Induced Atomic Intermixing at the Interface: Ion Beam Mixing.- Ion Implantation Technology Ionenimplantation (DE-588)4027606-5 gnd rswk-swf Ionenimplantation (DE-588)4027606-5 s DE-604 Mayer, James W. 1930-2013 Verfasser (DE-588)121494349 aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014918706&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nastasi, Michael 1950- Mayer, James W. 1930-2013 Ion implantation and synthesis of materials with 10 tables Ionenimplantation (DE-588)4027606-5 gnd |
subject_GND | (DE-588)4027606-5 |
title | Ion implantation and synthesis of materials with 10 tables |
title_auth | Ion implantation and synthesis of materials with 10 tables |
title_exact_search | Ion implantation and synthesis of materials with 10 tables |
title_exact_search_txtP | Ion implantation and synthesis of materials with 10 tables |
title_full | Ion implantation and synthesis of materials with 10 tables M. Nastasi ; J. W. Mayer |
title_fullStr | Ion implantation and synthesis of materials with 10 tables M. Nastasi ; J. W. Mayer |
title_full_unstemmed | Ion implantation and synthesis of materials with 10 tables M. Nastasi ; J. W. Mayer |
title_short | Ion implantation and synthesis of materials |
title_sort | ion implantation and synthesis of materials with 10 tables |
title_sub | with 10 tables |
topic | Ionenimplantation (DE-588)4027606-5 gnd |
topic_facet | Ionenimplantation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014918706&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nastasimichael ionimplantationandsynthesisofmaterialswith10tables AT mayerjamesw ionimplantationandsynthesisofmaterialswith10tables |