Scanning probe microscopy: atomic scale engineering by forces and currents
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berin [u.a.]
Springer
2006
|
Schriftenreihe: | Nanoscience and technology
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 281 S. Ill., graph. Darst. |
ISBN: | 0387400907 9780387400907 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021690469 | ||
003 | DE-604 | ||
005 | 20131219 | ||
007 | t | ||
008 | 060809s2006 ad|| |||| 00||| eng d | ||
020 | |a 0387400907 |9 0-387-40090-7 | ||
020 | |a 9780387400907 |9 978-0-387-40090-7 | ||
035 | |a (OCoLC)488917311 | ||
035 | |a (DE-599)BVBBV021690469 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-91G | ||
084 | |a UH 6310 |0 (DE-625)159500: |2 rvk | ||
100 | 1 | |a Foster, Adam |e Verfasser |4 aut | |
245 | 1 | 0 | |a Scanning probe microscopy |b atomic scale engineering by forces and currents |c A. Foster ; W. Hofer |
264 | 1 | |a Berin [u.a.] |b Springer |c 2006 | |
300 | |a XIV, 281 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Nanoscience and technology | |
650 | 4 | |a atomic scale engineering | |
650 | 4 | |a electron transport theory | |
650 | 4 | |a nanotechnology | |
650 | 4 | |a theory of forces | |
650 | 0 | 7 | |a Rastersondenmikroskop |0 (DE-588)4345854-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rastersondenmikroskop |0 (DE-588)4345854-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hofer, Werner A. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014904545&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014904545 |
Datensatz im Suchindex
_version_ | 1804135516410478593 |
---|---|
adam_text | Contents
Preface
........................................................
v
Mathematical Symbols
........................................xiii
1
The Physics of Scanning Probe Microscopes
............... 1
1.1
Experimental methods
................................... 2
1.2
Theoretical methods
..................................... 3
1.3
Local probes
............................................ 4
1.3.1
Principles of local probes
........................... 6
1.3.2
Surface preparation
................................ 7
1.4
Summary
............................................... 8
References
.................................................. 9
2
SPM: The Instrument
..................................... 11
2.1
SPM Setups
............................................ 11
2.1.1
STM setup
....................................... 12
2.1.2
SFM setup
....................................... 12
2.1.3
Tip and surface preparation
........................ 16
2.2
Experimental development
................................ 17
2.2.1
STM Case
1: Au(llO)
and Au(lll)
.................. 19
2.2.2
STAI Case
2:
Resolution of Spin States
............... 21
2.2.3
SFM Case
1:
silicon (111)
7x7..................... 26
2.2.4
SFM case
2:
cubic crystals
.......................... 29
References
.................................................. 33
3
Theory of Forces
........................................... 37
3.1
Macroscopic forces
....................................... 37
3.1.1
Van
der Waals
force
............................... 37
3.1.2
Image forces
...................................... 40
3.1.3
Capacitance force
................................. 40
3.1.4
Forces due to tip and surface charging
............... 42
Contents
3.1.5
Magnetic
forces
................................... 43
3.1.6
Capillary
forces
................................... 43
3.2
Microscopic
forces
....................................... 44
3.2.1
Theoretical methods for calculating the microscopic
forces
............................................ 45
3.3
Forces due to electron transitions
.......................... 48
3.4
Summary
............................................... 52
References
.................................................. 53
Electron Transport Theory
................................ 55
4.1
Conductance channels
.................................... 55
4.2
Elastic transport
........................................ 58
4.2.1
The scattering matrix
.............................. 58
4.2.2
Transmission functions
............................. 60
4.2.3
A brief introduction to Green 8 functions
............. 63
4.2.4
Green s functions and scattering matrices
............. 69
4.2.5
Scattering matrices for multiple channels
............. 70
4.2.6
Self-energies
Σ
.................................... 72
4.3
Noiiequilibrium conditions
................................ 77
4.3.1
Finite-bias voltage
................................. 78
4.3.2
Spectral functions and charge density
................ 79
4.3.3
Spectral functions and contacts
..................... 81
4.3.4
Self-energy
Σ
again
................................ 82
4.3.5
Noiiequilibrium Green s functions
................... 88
4.3.6
Electron transport in noiiequilibrium systems
......... 89
4.4
Transport within standard DFT methods
................... 92
4.4.1
Green s function matrix
............................ 92
4.4.2
General self-consistency cycle
....................... 94
4.4.3
Self-energy of the leads
............................. 94
4.4.4
Hartree
potential and Hamiltonian of the interface
..... 96
4.4.5
Self-energies of the interface
........................ 96
4.4.6
Noiiequilibrium Green s functions of the interface
...... 98
4.4.7
Calculation of iionequilibrium transport properties
..... 98
4.5
Summary
............................................... 100
References
.................................................. 101
Transport in the Low Conductance Regime
................103
5.1
Tersoff-Hamaiin(TH)
approach
............................104
5.1.1
Easy modeling: applying the Tersoff
Hamann
model
.. . 104
5.2
Perturbation approach
...................................106
5.2.1
Explicit derivation of the
tuimeling
current
...........107
5.2.2
Tip states of spherical symmetry
....................109
5.2.3
Magnetic
tuimeling
junctions
.......................110
5.3 Landauer--Büttikcr
approach
..............................113
5.3.1
Scattering and perturbation method
.................115
Contents ix
5.4 Keldysh-Green s
function approach
........................116
5.5
Unified model for scattering and perturbation
...............117
5.5.1
Scattering and perturbation
........................117
5.5.2
Green s function of the vacuum barrier
...............118
5.5.3
Zero-order current
.................................120
5.5.4
First-order Green s function
........................123
5.5.5
Interaction energy
.................................125
5.6
Electron -phonon interactions
.............................127
5.7
Summary
...............................................130
References
..................................................130
6
Bringing Theory to Experiment in SFM
...................133
6.1
Tip-surface interactions in SFM
...........................133
6.2
Modeling the tip
........................................136
6.2.1
Silicon-based models
...............................137
6.2.2
Ionic models
......................................138
6.3
Cantilever dynamics
.....................................140
6.3.1
SFM at small amplitudes
...........................144
6.3.2
Atomic-scale dissipation
............................145
6.4
Simulating images
.......................................146
6.4.1
Test system
.......................................146
6.4.2
Microscopic interactions
............................148
6.4.3
Tip convolution
...................................152
6.5
Summary
...............................................155
References
..................................................156
7
Topographic images
.......................................159
7.1
Setting up the systems
...................................159
7.1.1
Ru(0001)-O(2x2)
.................................160
7.1.2
AlClll)
..........................................162
7.2
Calculating tunneling currents
............................165
7.2.1
Ru(0001)-O(2x2)
.................................166
7.2.2 Al(lll)..........................................170
7.2.3
Cr(OOl)
..........................................176
7.2.4
Fe(OOl)
..........................................177
7.2.5
Metal alloys: PtRh(OOl)
............................178
7.2.6
Magnetic surfaces: AIn/W(110)
......................179
7.3
Silicon
(001)............................................182
7.3.1
Saturation of SiCOOl) by hydrogen
...................183
7.4
Adsorbates on Si{№ )
....................................184
7.4.1
Acetylene C2H2 on
Si(001)
.........................185
7.4.2
Benzene CeH6 on SifOOl)
...........................187
7.4.3
Maleic anhydride C4O3H2 on Si(001)
................189
7.5
Titanium dioxide
(110)..............■....................190
7.5.1
Simulations of ideal and defective surfaces
............191
χ
Contents
7.5.2
Acid adsorption on the TiO2
(110)
surface
............192
7.6
Calcium difluoride (111)
..................................194
7.7
Summary
...............................................203
References
..................................................203
8
Single-Molecule Chemistry
................................207
8.1
Introduction
............................................207
8.2
Manipulation of atoms
...................................208
8.2.1
Modeling atomic manipulation
......................210
8.3
Phonon excitation
.......................................213
8.3.1
Theoretical procedure
..............................215
8.3.2
Applications
......................................215
8.4
Summary
...............................................218
References
..................................................220
9
Current and Force Spectroscopy
...........................221
9.1
Current spectroscopy
....................................221
9.1.1
Differential tunneling spectroscopy simulations
........223
9.1.2
Differential spectra on noble metal surfaces
...........229
9.1.3
Spectra on magnetic surfaces
.......................235
9.1.4
Present limitations in current spectroscopy
...........242
9.2
Force spectroscopy
.......................................246
9.2.1
Silicon
7x7
(111) surface
..........................247
9.2.2
Calcium Difluoride (111) surface
....................249
9.2.3
Potassium bromide
(100)
surface
....................252
9.3
Summary
...............................................254
References
..................................................255
10
Outlook
...................................................259
10.1
Challenges
..............................................259
10.2
The future
..............................................263
References
..................................................263
Appendix
......................................................265
A.I Green s functions in the interface
..........................265
A.
1.1
Green s function and spectral function
...............265
A.
1.2
Contacts
.........................................266
A.1.3 Electron
denâty
...................................266
A.
1.4
Zero-order Green s function
.........................267
A.
1.5
Consistency check:
Schrödinger
equation
.............267
A.
1.6
Consistency check: definition of Green s functions
......268
A.
2
Transmission probability
.................................268
A.2.1 Contacts
.........................................268
A.2.2 Tunneling current of zero order
.....................269
A.3 First-order Green s function
..............................270
Contents xi
Α.
4
Recovering the Bardeen matrix elements
...................271
A.
5
Interaction energy
.......................................272
A.
6
Trace to first order
......................................274
A.6.1 Term A
..........................................274
A.6.2 Term
В
..........................................276
A.6.3 Term
С
..........................................277
A.
6.4
Taking the decay into account
......................278
Index
..........................................................279
|
adam_txt |
Contents
Preface
.
v
Mathematical Symbols
.xiii
1
The Physics of Scanning Probe Microscopes
. 1
1.1
Experimental methods
. 2
1.2
Theoretical methods
. 3
1.3
Local probes
. 4
1.3.1
Principles of local probes
. 6
1.3.2
Surface preparation
. 7
1.4
Summary
. 8
References
. 9
2
SPM: The Instrument
. 11
2.1
SPM Setups
. 11
2.1.1
STM setup
. 12
2.1.2
SFM setup
. 12
2.1.3
Tip and surface preparation
. 16
2.2
Experimental development
. 17
2.2.1
STM Case
1: Au(llO)
and Au(lll)
. 19
2.2.2
STAI Case
2:
Resolution of Spin States
. 21
2.2.3
SFM Case
1:
silicon (111)
7x7. 26
2.2.4
SFM case
2:
cubic crystals
. 29
References
. 33
3
Theory of Forces
. 37
3.1
Macroscopic forces
. 37
3.1.1
Van
der Waals
force
. 37
3.1.2
Image forces
. 40
3.1.3
Capacitance force
. 40
3.1.4
Forces due to tip and surface charging
. 42
Contents
3.1.5
Magnetic
forces
. 43
3.1.6
Capillary
forces
. 43
3.2
Microscopic
forces
. 44
3.2.1
Theoretical methods for calculating the microscopic
forces
. 45
3.3
Forces due to electron transitions
. 48
3.4
Summary
. 52
References
. 53
Electron Transport Theory
. 55
4.1
Conductance channels
. 55
4.2
Elastic transport
. 58
4.2.1
The scattering matrix
. 58
4.2.2
Transmission functions
. 60
4.2.3
A brief introduction to Green'8 functions
. 63
4.2.4
Green's functions and scattering matrices
. 69
4.2.5
Scattering matrices for multiple channels
. 70
4.2.6
Self-energies
Σ
. 72
4.3
Noiiequilibrium conditions
. 77
4.3.1
Finite-bias voltage
. 78
4.3.2
Spectral functions and charge density
. 79
4.3.3
Spectral functions and contacts
. 81
4.3.4
Self-energy
Σ
again
. 82
4.3.5
Noiiequilibrium Green's functions
. 88
4.3.6
Electron transport in noiiequilibrium systems
. 89
4.4
Transport within standard DFT methods
. 92
4.4.1
Green's function matrix
. 92
4.4.2
General self-consistency cycle
. 94
4.4.3
Self-energy of the leads
. 94
4.4.4
Hartree
potential and Hamiltonian of the interface
. 96
4.4.5
Self-energies of the interface
. 96
4.4.6
Noiiequilibrium Green's functions of the interface
. 98
4.4.7
Calculation of iionequilibrium transport properties
. 98
4.5
Summary
. 100
References
. 101
Transport in the Low Conductance Regime
.103
5.1
Tersoff-Hamaiin(TH)
approach
.104
5.1.1
Easy modeling: applying the Tersoff
Hamann
model
. . 104
5.2
Perturbation approach
.106
5.2.1
Explicit derivation of the
tuimeling
current
.107
5.2.2
Tip states of spherical symmetry
.109
5.2.3
Magnetic
tuimeling
junctions
.110
5.3 Landauer--Büttikcr
approach
.113
5.3.1
Scattering and perturbation method
.115
Contents ix
5.4 Keldysh-Green's
function approach
.116
5.5
Unified model for scattering and perturbation
.117
5.5.1
Scattering and perturbation
.117
5.5.2
Green's function of the vacuum barrier
.118
5.5.3
Zero-order current
.120
5.5.4
First-order Green's function
.123
5.5.5
Interaction energy
.125
5.6
Electron -phonon interactions
.127
5.7
Summary
.130
References
.130
6
Bringing Theory to Experiment in SFM
.133
6.1
Tip-surface interactions in SFM
.133
6.2
Modeling the tip
.136
6.2.1
Silicon-based models
.137
6.2.2
Ionic models
.138
6.3
Cantilever dynamics
.140
6.3.1
SFM at small amplitudes
.144
6.3.2
Atomic-scale dissipation
.145
6.4
Simulating images
.146
6.4.1
Test system
.146
6.4.2
Microscopic interactions
.148
6.4.3
Tip convolution
.152
6.5
Summary
.155
References
.156
7
Topographic images
.159
7.1
Setting up the systems
.159
7.1.1
Ru(0001)-O(2x2)
.160
7.1.2
AlClll)
.162
7.2
Calculating tunneling currents
.165
7.2.1
Ru(0001)-O(2x2)
.166
7.2.2 Al(lll).170
7.2.3
Cr(OOl)
.176
7.2.4
Fe(OOl)
.177
7.2.5
Metal alloys: PtRh(OOl)
.178
7.2.6
Magnetic surfaces: AIn/W(110)
.179
7.3
Silicon
(001).182
7.3.1
Saturation of SiCOOl) by hydrogen
.183
7.4
Adsorbates on Si{№\)
.184
7.4.1
Acetylene C2H2 on
Si(001)
.185
7.4.2
Benzene CeH6 on SifOOl)
.187
7.4.3
Maleic anhydride C4O3H2 on Si(001)
.189
7.5
Titanium dioxide
(110).■.190
7.5.1
Simulations of ideal and defective surfaces
.191
χ
Contents
7.5.2
Acid adsorption on the TiO2
(110)
surface
.192
7.6
Calcium difluoride (111)
.194
7.7
Summary
.203
References
.203
8
Single-Molecule Chemistry
.207
8.1
Introduction
.207
8.2
Manipulation of atoms
.208
8.2.1
Modeling atomic manipulation
.210
8.3
Phonon excitation
.213
8.3.1
Theoretical procedure
.215
8.3.2
Applications
.215
8.4
Summary
.218
References
.220
9
Current and Force Spectroscopy
.221
9.1
Current spectroscopy
.221
9.1.1
Differential tunneling spectroscopy simulations
.223
9.1.2
Differential spectra on noble metal surfaces
.229
9.1.3
Spectra on magnetic surfaces
.235
9.1.4
Present limitations in current spectroscopy
.242
9.2
Force spectroscopy
.246
9.2.1
Silicon
7x7
(111) surface
.247
9.2.2
Calcium Difluoride (111) surface
.249
9.2.3
Potassium bromide
(100)
surface
.252
9.3
Summary
.254
References
.255
10
Outlook
.259
10.1
Challenges
.259
10.2
The future
.263
References
.263
Appendix
.265
A.I Green's functions in the interface
.265
A.
1.1
Green's function and spectral function
.265
A.
1.2
Contacts
.266
A.1.3 Electron
denâty
.266
A.
1.4
Zero-order Green's function
.267
A.
1.5
Consistency check:
Schrödinger
equation
.267
A.
1.6
Consistency check: definition of Green's functions
.268
A.
2
Transmission probability
.268
A.2.1 Contacts
.268
A.2.2 Tunneling current of zero order
.269
A.3 First-order Green's function
.270
Contents xi
Α.
4
Recovering the Bardeen matrix elements
.271
A.
5
Interaction energy
.272
A.
6
Trace to first order
.274
A.6.1 Term A
.274
A.6.2 Term
В
.276
A.6.3 Term
С
.277
A.
6.4
Taking the decay into account
.278
Index
.279 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Foster, Adam Hofer, Werner A. |
author_facet | Foster, Adam Hofer, Werner A. |
author_role | aut aut |
author_sort | Foster, Adam |
author_variant | a f af w a h wa wah |
building | Verbundindex |
bvnumber | BV021690469 |
classification_rvk | UH 6310 |
ctrlnum | (OCoLC)488917311 (DE-599)BVBBV021690469 |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01513nam a2200397 c 4500</leader><controlfield tag="001">BV021690469</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131219 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060809s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387400907</subfield><subfield code="9">0-387-40090-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387400907</subfield><subfield code="9">978-0-387-40090-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)488917311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021690469</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6310</subfield><subfield code="0">(DE-625)159500:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Foster, Adam</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanning probe microscopy</subfield><subfield code="b">atomic scale engineering by forces and currents</subfield><subfield code="c">A. Foster ; W. Hofer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 281 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nanoscience and technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atomic scale engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electron transport theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">theory of forces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rastersondenmikroskop</subfield><subfield code="0">(DE-588)4345854-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rastersondenmikroskop</subfield><subfield code="0">(DE-588)4345854-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofer, Werner A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014904545&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014904545</subfield></datafield></record></collection> |
id | DE-604.BV021690469 |
illustrated | Illustrated |
index_date | 2024-07-02T15:14:13Z |
indexdate | 2024-07-09T20:41:45Z |
institution | BVB |
isbn | 0387400907 9780387400907 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014904545 |
oclc_num | 488917311 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-91G DE-BY-TUM |
physical | XIV, 281 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series2 | Nanoscience and technology |
spelling | Foster, Adam Verfasser aut Scanning probe microscopy atomic scale engineering by forces and currents A. Foster ; W. Hofer Berin [u.a.] Springer 2006 XIV, 281 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanoscience and technology atomic scale engineering electron transport theory nanotechnology theory of forces Rastersondenmikroskop (DE-588)4345854-3 gnd rswk-swf Rastersondenmikroskop (DE-588)4345854-3 s DE-604 Hofer, Werner A. Verfasser aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014904545&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Foster, Adam Hofer, Werner A. Scanning probe microscopy atomic scale engineering by forces and currents atomic scale engineering electron transport theory nanotechnology theory of forces Rastersondenmikroskop (DE-588)4345854-3 gnd |
subject_GND | (DE-588)4345854-3 |
title | Scanning probe microscopy atomic scale engineering by forces and currents |
title_auth | Scanning probe microscopy atomic scale engineering by forces and currents |
title_exact_search | Scanning probe microscopy atomic scale engineering by forces and currents |
title_exact_search_txtP | Scanning probe microscopy atomic scale engineering by forces and currents |
title_full | Scanning probe microscopy atomic scale engineering by forces and currents A. Foster ; W. Hofer |
title_fullStr | Scanning probe microscopy atomic scale engineering by forces and currents A. Foster ; W. Hofer |
title_full_unstemmed | Scanning probe microscopy atomic scale engineering by forces and currents A. Foster ; W. Hofer |
title_short | Scanning probe microscopy |
title_sort | scanning probe microscopy atomic scale engineering by forces and currents |
title_sub | atomic scale engineering by forces and currents |
topic | atomic scale engineering electron transport theory nanotechnology theory of forces Rastersondenmikroskop (DE-588)4345854-3 gnd |
topic_facet | atomic scale engineering electron transport theory nanotechnology theory of forces Rastersondenmikroskop |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014904545&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fosteradam scanningprobemicroscopyatomicscaleengineeringbyforcesandcurrents AT hoferwernera scanningprobemicroscopyatomicscaleengineeringbyforcesandcurrents |