Gauge field theories:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2001
|
Ausgabe: | 2. ed., transferred to digital print. |
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 609 S. graph. Darst. |
ISBN: | 9780521478168 0521472458 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021683447 | ||
003 | DE-604 | ||
005 | 20110527 | ||
007 | t | ||
008 | 060803s2001 d||| |||| 00||| eng d | ||
020 | |a 9780521478168 |9 978-0-521-47816-8 | ||
020 | |a 0521472458 |9 0-521-47245-8 | ||
035 | |a (OCoLC)612118115 | ||
035 | |a (DE-599)BVBBV021683447 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-91G |a DE-11 | ||
084 | |a UO 4060 |0 (DE-625)146244: |2 rvk | ||
084 | |a UO 5800 |0 (DE-625)146304: |2 rvk | ||
084 | |a PHY 417f |2 stub | ||
100 | 1 | |a Pokorski, Stefan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Gauge field theories |c Stefan Pokorski |
250 | |a 2. ed., transferred to digital print. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2001 | |
300 | |a XIX, 609 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
650 | 0 | 7 | |a Eichtheorie |0 (DE-588)4122125-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014897631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014897631 |
Datensatz im Suchindex
_version_ | 1804135505894309888 |
---|---|
adam_text | Contents
Preface
to the First Edition page
xvii
Preface to the Second Edition
xviii
0
Introduction I
0.1
Gauge
invariance
1
0.2
Reasons for gauge theories of strong and electroweak interactions
3
QCD
3
Electroweak theory
5
1
Classical Reids, symmetries and their breaking
11
1.1
The action, equations of motion, symmetries and conservation laws
12
Equations of motion
12
Global symmetries
13
Space-time transformations
16
Examples 1
8
1.2
Classical field equations
20
Scalar field theory and spontaneous breaking of global symmetries
20
Spinor fields
22
1.3
Gauge field theories
29
U
(I) gauge symmetry
29
Non-abelian gauge symmetry
31
1.4
From classical to quantum fields (canonical quantization)
35
Scalar fields
36
The Feynman propagator
39
Spinor fields
40
Symmetry transformations for quantum fields
45
1.5
Discrete symmetries
48
Space reflection
48
Time reversal
53
Charge conjugation
56
Summary and the CPT transformation
62
CP violation in the neutral
Ko-R°
-system
64
Problems
68
ix
x
Contents
2
Path integral formulation of quantum field theory
71
2.1
Path integrals in quantum mechanics
71
Transition matrix elements as path integrals
71
Matrix elements of position operators
75
2.2
Vacuum-to-vacuum transitions and the imaginary time formalism
76
General discussion
76
Harmonic oscillator
78
Euclidean Green s functions
82
2.3
Path integral formulation of quantum field theory
83
Green s functions as path integrals
83
Action quadratic in fields
87
Gaussian integration
88
2.4
Introduction to perturbation theory
90
Perturbation theory and the generating functional
90
Wick s theorem
92
An example: four-point Green s function in
λΦ4
93
Momentum space
97
2.5
Path integrals for
fermions;
Grassmann
algebra
100
Anticommuting c-numbers
100
Dirac propagator
102
2.6
Generating functionals for Green s functions and proper vertices; effective
potential
105
Classification of Green s functions and generating functionals
105
Effective action
107
Spontaneous symmetry breaking and effective action
109
Effective potential
111
2.7
Green s functions and the scattering operator
113
Problems
120
3
Feynman rules for Yang-Mills theories
124
3.1
The Faddeev-Popov determinant
124
Gauge
invariance
and the path integral
124
Faddeev-Popov determinant
126
Examples
129
Non-covariant gauges
132
3.2
Feynman rules for QCD
133
Calculation of the Faddeev-Popov determinant
133
Feynman rules
135
3.3
Unitarity, ghosts, Becchi-Rouet-Stora transformation
140
Unitarity and ghosts
140
BRS and anti-BRS symmetry
143
Problems
147
4
Introduction to the theory of renormalization
148
4.1
Physical sense of renormalization and its arbitrariness
148
Bare and physical quantities
148
Counterterms and the renormalization conditions
152
Contents xi
Arbitrariness of renormalization
153
Final remarks
156
4.2
Classification of the divergent diagrams
157
Structure of the UV divergences by momentum power counting
157
Classification of divergent diagrams
159
Necessary counterterms
161
4.3
λΦ4:
low order renormalization
164
Feynman rules including counterterms
164
Calculation of Fig. 4.8(fc)
166
Comments on analytic continuation to
η φ
4
dimensions
168
Lowest order renormalization
170
4.4
Effective field theories
173
Problems
175
5
Quantum electrodynamics
177
5.1
Ward-Takahashi identities
179
General derivation by the functional technique
179
Examples
181
5.2
Lowest order QED radiative corrections by the dimensional regularization
technique
184
General introduction
184
Vacuum polarization
185
Electron self-energy correction
187
Electron self-energy:
IR
singularities regularized by photon mass
190
On-shell vertex correction
191
5.3
Massless QED
194
5.4
Dispersion calculation of
О
(a) virtual corrections in massless QED, in
(4
=f
ε)
dimensions
196
Self-energy calculation
197
Vertex calculation
198
5.5
Coulomb scattering and the
IR
problem
200
Corrections of order a
200
IR
problem to all orders in a
205
Problems
208
6
Renormalization group
209
6.1
Renormalization group equation (RGE)
209
Derivation of the RGE
209
Solving the RGE
212
Green s functions for rescaled momenta
214
RGE in QED
215
6.2
Calculation of the renormalization group functions
β, γ,
ym
216
6.3
Fixed points; effective coupling constant
219
Fixed points
219
Effective coupling constant
222
6.4
Renormalization scheme and gauge dependence of the RGE
parameters
224
xii Contents
Renormalization
scheme
dependence
224
Effective
α
in QED
226
Gauge dependence of the ^-function
227
Problems
228
7
Scale
invariance
and operator product expansion
230
7.1
Scale
invariance
230
Scale transformations
230
Dilatation current
233
Conformai
transformations
235
7.2
Broken scale
invariance
237
General discussion
237
Anomalous breaking of scale
invariance
238
7.3
Dimensional transmutation
242
7.4
Operator product expansion (OPE)
243
Short distance expansion
243
Light-cone expansion
247
7.5
The relevance of the light-cone
249
Electron-positron annihilation
249
Deep inelastic hadron leptoproduction
250
Wilson coefficients and moments of the structure function
254
7.6
Renormalization group and OPE
256
Renormalization of local composite operators
256
RGE for Wilson coefficients
259
OPE beyond perturbation theory
261
7.7
OPE and effective field theories
262
Problems
269
8
Quantum chromodynamics
272
8.1
General introduction
272
Renormalization and BRS
invariance;
counterterms
272
Asymptotic freedom of QCD
274
The Slavnov-Taylor identities
277
8.2
The background field method
279
8.3
The structure of the vacuum in non-abelian gauge theories
282
Homotopy classes and topological vacua
282
Physical vacuum
284
Θ
-vacuum
and the functional integral formalism
287
8.4
Perturbative QCD and hard collisions
290
Parton
picture
290
Factorization theorem
291
8.5
Deep inelastic electron-nucleon scattering in first order QCD (Feynman
gauge)
293
Structure functions and Born approximation
293
Deep inelastic quark structure functions in the first order in the strong
coupling constant
298
Final result for the quark structure functions
302
Contents xiii
Hadron
structure
functions; probabilistic interpretation
304
8.6
Light-cone variables, light-like gauge
306
8.7
Beyond the one-loop approximation
312
Comments on the
IR
problem in QCD
314
Problems
315
9
Chiral symmetry; spontaneous symmetry breaking
317
9.1
Chiral symmetry of the QCD lagrangian
317
9.2
Hypothesis of spontaneous chiral symmetry breaking in strong interactions
320
9.3
Phenomenological chirally symmetric model of the strong interactions
(σ
-model)
324
9.4 Goldstone
bosons as eigenvectors of the mass matrix and poles of Green s
functions in theories with elementary scalars
327
Goldstone
bosons as eigenvectors of the mass matrix
327
General proof of
Goldstone s
theorem
330
9.5
Patterns of spontaneous symmetry breaking
333
9.6 Goldstone
bosons in QCD
337
10
Spontaneous and explicit global symmetry breaking
342
10.1
Internal symmetries and Ward identities
342
Preliminaries
342
Ward identities from the path integral
344
Comparison with the operator language
347
Ward identities and short-distance singularities of the operator
products
348
Renormalization of currents
351
10.2
Quark masses and chiral perturbation theory
353
Simple approach
353
Approach based on use of the Ward identity
354
10.3
Dashen s theorems
356
Formulation of Dashen s theorems
356
Dashen s conditions and global symmetry broken by weak gauge interactions
358
10.4
Electromagnetic
π+-π°
mass difference and spectral function sum
rules
362
Electromagnetic
π+-π°
mass difference from Dashen s formula
362
Spectral function sum rules
363
Results
366
11
Higgs mechanism in gauge theories
369
11.1
Higgs mechanism
369
11.2
Spontaneous gauge symmetry breaking by radiative corrections
373
11.3
Dynamical breaking of gauge symmetries and vacuum alignment
379
Dynamical breaking of gauge symmetry
379
Examples
382
Problems
388
12
Standard electroweak theory
389
12.1
The lagrangian
391
xiv Contents
12.2 Electroweak
currents and physical gauge boson fields
394
12.3
Fermion masses and mixing
398
12.4
Phenomenology of the tree level lagrangian
402
Effective four-fermion interactions
403
Z° couplings
406
12.5
Beyond tree level
407
Renormalization and counterterms
407
Corrections to gauge boson propagators
411
Fermion self-energies
418
Running
α (μ)
in the electroweak theory
419
Muon decay in the one-loop approximation
422
Corrections to the Z° partial decay widths
430
12.6
Effective low energy theory for electroweak processes
435
QED as the effective low energy theory
438
12.7
Flavour changing neutral-current processes
441
QCD corrections to CP violation in the neutral kaon system
445
Problems
456
13
Chiral anomalies
457
13.1
Triangle diagram and different renormalization conditions
457
Introduction
457
Calculation of the triangle amplitude
459
Different renormalization constraints for the triangle amplitude
464
Important comments
465
13.2
Some physical consequences of the chiral anomalies
469
Chiral
invariance
in spinor electrodynamics
469
л°
-►
2γ
471
Chiral anomaly for the axial
(7(1)
current in QCD; U (i) problem
473
Anomaly cancellation in the SU(2)
χ
U( ) electroweak theory
475
Anomaly-free models
478
13.3
Anomalies and the path integral
478
Introduction
478
Abelian anomaly
480
Non-abelian anomaly and gauge
invariance
481
Consistent and covariant anomaly
484
13.4
Anomalies from the path integral in Euclidean space
486
Introduction
486
Abelian anomaly with Dirac
fermions
488
Non-abelian anomaly and chiral
fermions
491
Problems
492
14
Effective lagrangians
495
14.1
Non-linear realization of the symmetry group
495
Non-linear
σ
-model
495
Effective lagrangian in the
ђа(х)
basis
500
Matrix representation for
Goldstone
boson fields
502
14.2
Effective lagrangians and anomalies
504
Contents xv
Abelian
anomaly
505
The Wess-Zumino
term
506
Problems 508
15
Introduction to supersynimetry
509
15.1
Introduction
509
15.2
The supersymmetry algebra
511
15.3
Simple consequences of the supersymmetry algebra
513
15.4
Superspace and superfields for
N = 1
supersymmetry
515
Superspace
515
Superfields
519
15.5
Supersymmetric lagrangian; Wess-Zumino model
521
15.6
Supersymmetry breaking
524
15.7
Supergraphs and the non-renormalization theorem
531
Appendix A: Spinors and their properties
539
Lorentz
transformations and two-dimensional representations of the
group SL(2, C)
539
Solutions of the free Weyl and Dirac equations and their properties
546
Parity
550
Time reversal
551
Charge conjugation
552
Appendix B: Feynman rules for QED and QCD and Feynman integrals
555
Feynman rules for the
λΦ4
theory
555
Feynman rules for QED
556
Feynman rules for QCD
557
Dirac algebra in
η
dimensions
558
Feynman parameters
559
Feynman integrals in
η
dimensions
559
Gaussian integrals
560
λ
-parameter
integrals
560
Feynman integrals in light-like gauge
η
■
A
= 0,
n2
= 0 561
Convention for the logarithm
561
Spence functions
562
Appendix C: Feynman rules for the Standard Model
563
Propagators of
fermions
563
Propagators of the gauge bosons
564
Propagators of the Higgs and
Goldstone
bosons
565
Propagators of the ghost fields
566
Mixed propagators (only counterterms exist)
567
Gauge interactions of
fermions
567
Yukawa interactions of
fermions
570
Gauge interactions of the gauge bosons
571
Self-interactions of the Higgs and
Goldstone
bosons
573
Gauge interactions of the Higgs and
Goldstone
bosons
574
Gauge interactions of the ghost fields
578
Interactions of ghosts with Higgs and
Goldstone
bosons
579
xvi Contents
Appendix
D:
One-loop Feynman integrals
583
Two-point functions
583
Three- and four-point functions
585
General expressions for the one-loop vector boson self-energies
586
Appendix E: Elements of group theory
591
Definitions
591
Transformation of operators
593
Complex and real representations
593
Traces
594
σ
-model
596
References
599
Index
605
|
adam_txt |
Contents
Preface
to the First Edition page
xvii
Preface to the Second Edition
xviii
0
Introduction I
0.1
Gauge
invariance
1
0.2
Reasons for gauge theories of strong and electroweak interactions
3
QCD
3
Electroweak theory
5
1
Classical Reids, symmetries and their breaking
11
1.1
The action, equations of motion, symmetries and conservation laws
12
Equations of motion
12
Global symmetries
13
Space-time transformations
16
Examples 1
8
1.2
Classical field equations
20
Scalar field theory and spontaneous breaking of global symmetries
20
Spinor fields
22
1.3
Gauge field theories
29
U
(I) gauge symmetry
29
Non-abelian gauge symmetry
31
1.4
From classical to quantum fields (canonical quantization)
35
Scalar fields
36
The Feynman propagator
39
Spinor fields
40
Symmetry transformations for quantum fields
45
1.5
Discrete symmetries
48
Space reflection
48
Time reversal
53
Charge conjugation
56
Summary and the CPT transformation
62
CP violation in the neutral
Ko-R°
-system
64
Problems
68
ix
x
Contents
2
Path integral formulation of quantum field theory
71
2.1
Path integrals in quantum mechanics
71
Transition matrix elements as path integrals
71
Matrix elements of position operators
75
2.2
Vacuum-to-vacuum transitions and the imaginary time formalism
76
General discussion
76
Harmonic oscillator
78
Euclidean Green's functions
82
2.3
Path integral formulation of quantum field theory
83
Green's functions as path integrals
83
Action quadratic in fields
87
Gaussian integration
88
2.4
Introduction to perturbation theory
90
Perturbation theory and the generating functional
90
Wick's theorem
92
An example: four-point Green's function in
λΦ4
93
Momentum space
97
2.5
Path integrals for
fermions;
Grassmann
algebra
100
Anticommuting c-numbers
100
Dirac propagator
102
2.6
Generating functionals for Green's functions and proper vertices; effective
potential
105
Classification of Green's functions and generating functionals
105
Effective action
107
Spontaneous symmetry breaking and effective action
109
Effective potential
111
2.7
Green's functions and the scattering operator
113
Problems
120
3
Feynman rules for Yang-Mills theories
124
3.1
The Faddeev-Popov determinant
124
Gauge
invariance
and the path integral
124
Faddeev-Popov determinant
126
Examples
129
Non-covariant gauges
132
3.2
Feynman rules for QCD
133
Calculation of the Faddeev-Popov determinant
133
Feynman rules
135
3.3
Unitarity, ghosts, Becchi-Rouet-Stora transformation
140
Unitarity and ghosts
140
BRS and anti-BRS symmetry
143
Problems
147
4
Introduction to the theory of renormalization
148
4.1
Physical sense of renormalization and its arbitrariness
148
Bare and 'physical' quantities
148
Counterterms and the renormalization conditions
152
Contents xi
Arbitrariness of renormalization
153
Final remarks
156
4.2
Classification of the divergent diagrams
157
Structure of the UV divergences by momentum power counting
157
Classification of divergent diagrams
159
Necessary counterterms
161
4.3
λΦ4:
low order renormalization
164
Feynman rules including counterterms
164
Calculation of Fig. 4.8(fc)
166
Comments on analytic continuation to
η φ
4
dimensions
168
Lowest order renormalization
170
4.4
Effective field theories
173
Problems
175
5
Quantum electrodynamics
177
5.1
Ward-Takahashi identities
179
General derivation by the functional technique
179
Examples
181
5.2
Lowest order QED radiative corrections by the dimensional regularization
technique
184
General introduction
184
Vacuum polarization
185
Electron self-energy correction
187
Electron self-energy:
IR
singularities regularized by photon mass
190
On-shell vertex correction
191
5.3
Massless QED
194
5.4
Dispersion calculation of
О
(a) virtual corrections in massless QED, in
(4
=f
ε)
dimensions
196
Self-energy calculation
197
Vertex calculation
198
5.5
Coulomb scattering and the
IR
problem
200
Corrections of order a
200
IR
problem to all orders in a
205
Problems
208
6
Renormalization group
209
6.1
Renormalization group equation (RGE)
209
Derivation of the RGE
209
Solving the RGE
212
Green's functions for rescaled momenta
214
RGE in QED
215
6.2
Calculation of the renormalization group functions
β, γ,
ym
216
6.3
Fixed points; effective coupling constant
219
Fixed points
219
Effective coupling constant
222
6.4
Renormalization scheme and gauge dependence of the RGE
parameters
224
xii Contents
Renormalization
scheme
dependence
224
Effective
α
in QED
226
Gauge dependence of the ^-function
227
Problems
228
7
Scale
invariance
and operator product expansion
230
7.1
Scale
invariance
230
Scale transformations
230
Dilatation current
233
Conformai
transformations
235
7.2
Broken scale
invariance
237
General discussion
237
Anomalous breaking of scale
invariance
238
7.3
Dimensional transmutation
242
7.4
Operator product expansion (OPE)
243
Short distance expansion
243
Light-cone expansion
247
7.5
The relevance of the light-cone
249
Electron-positron annihilation
249
Deep inelastic hadron leptoproduction
250
Wilson coefficients and moments of the structure function
254
7.6
Renormalization group and OPE
256
Renormalization of local composite operators
256
RGE for Wilson coefficients
259
OPE beyond perturbation theory
261
7.7
OPE and effective field theories
262
Problems
269
8
Quantum chromodynamics
272
8.1
General introduction
272
Renormalization and BRS
invariance;
counterterms
272
Asymptotic freedom of QCD
274
The Slavnov-Taylor identities
277
8.2
The background field method
279
8.3
The structure of the vacuum in non-abelian gauge theories
282
Homotopy classes and topological vacua
282
Physical vacuum
284
Θ
-vacuum
and the functional integral formalism
287
8.4
Perturbative QCD and hard collisions
290
Parton
picture
290
Factorization theorem
291
8.5
Deep inelastic electron-nucleon scattering in first order QCD (Feynman
gauge)
293
Structure functions and Born approximation
293
Deep inelastic quark structure functions in the first order in the strong
coupling constant
298
Final result for the quark structure functions
302
Contents xiii
Hadron
structure
functions; probabilistic interpretation
304
8.6
Light-cone variables, light-like gauge
306
8.7
Beyond the one-loop approximation
312
Comments on the
IR
problem in QCD
314
Problems
315
9
Chiral symmetry; spontaneous symmetry breaking
317
9.1
Chiral symmetry of the QCD lagrangian
317
9.2
Hypothesis of spontaneous chiral symmetry breaking in strong interactions
320
9.3
Phenomenological chirally symmetric model of the strong interactions
(σ
-model)
324
9.4 Goldstone
bosons as eigenvectors of the mass matrix and poles of Green's
functions in theories with elementary scalars
327
Goldstone
bosons as eigenvectors of the mass matrix
327
General proof of
Goldstone 's
theorem
330
9.5
Patterns of spontaneous symmetry breaking
333
9.6 Goldstone
bosons in QCD
337
10
Spontaneous and explicit global symmetry breaking
342
10.1
Internal symmetries and Ward identities
342
Preliminaries
342
Ward identities from the path integral
344
Comparison with the operator language
347
Ward identities and short-distance singularities of the operator
products
348
Renormalization of currents
351
10.2
Quark masses and chiral perturbation theory
353
Simple approach
353
Approach based on use of the Ward identity
354
10.3
Dashen's theorems
356
Formulation of Dashen's theorems
356
Dashen's conditions and global symmetry broken by weak gauge interactions
358
10.4
Electromagnetic
π+-π°
mass difference and spectral function sum
rules
362
Electromagnetic
π+-π°
mass difference from Dashen's formula
362
Spectral function sum rules
363
Results
366
11
Higgs mechanism in gauge theories
369
11.1
Higgs mechanism
369
11.2
Spontaneous gauge symmetry breaking by radiative corrections
373
11.3
Dynamical breaking of gauge symmetries and vacuum alignment
379
Dynamical breaking of gauge symmetry
379
Examples
382
Problems
388
12
Standard electroweak theory
389
12.1
The lagrangian
391
xiv Contents
12.2 Electroweak
currents and physical gauge boson fields
394
12.3
Fermion masses and mixing
398
12.4
Phenomenology of the tree level lagrangian
402
Effective four-fermion interactions
403
Z° couplings
406
12.5
Beyond tree level
407
Renormalization and counterterms
407
Corrections to gauge boson propagators
411
Fermion self-energies
418
Running
α (μ)
in the electroweak theory
419
Muon decay in the one-loop approximation
422
Corrections to the Z° partial decay widths
430
12.6
Effective low energy theory for electroweak processes
435
QED as the effective low energy theory
438
12.7
Flavour changing neutral-current processes
441
QCD corrections to CP violation in the neutral kaon system
445
Problems
456
13
Chiral anomalies
457
13.1
Triangle diagram and different renormalization conditions
457
Introduction
457
Calculation of the triangle amplitude
459
Different renormalization constraints for the triangle amplitude
464
Important comments
465
13.2
Some physical consequences of the chiral anomalies
469
Chiral
invariance
in spinor electrodynamics
469
л°
-►
2γ
471
Chiral anomaly for the axial
(7(1)
current in QCD; U\(i) problem
473
Anomaly cancellation in the SU(2)
χ
U(\) electroweak theory
475
Anomaly-free models
478
13.3
Anomalies and the path integral
478
Introduction
478
Abelian anomaly
480
Non-abelian anomaly and gauge
invariance
481
Consistent and covariant anomaly
484
13.4
Anomalies from the path integral in Euclidean space
486
Introduction
486
Abelian anomaly with Dirac
fermions
488
Non-abelian anomaly and chiral
fermions
491
Problems
492
14
Effective lagrangians
495
14.1
Non-linear realization of the symmetry group
495
Non-linear
σ
-model
495
Effective lagrangian in the
ђа(х)
basis
500
Matrix representation for
Goldstone
boson fields
502
14.2
Effective lagrangians and anomalies
504
Contents xv
Abelian
anomaly
505
The Wess-Zumino
term
506
Problems 508
15
Introduction to supersynimetry
509
15.1
Introduction
509
15.2
The supersymmetry algebra
511
15.3
Simple consequences of the supersymmetry algebra
513
15.4
Superspace and superfields for
N = 1
supersymmetry
515
Superspace
515
Superfields
519
15.5
Supersymmetric lagrangian; Wess-Zumino model
521
15.6
Supersymmetry breaking
524
15.7
Supergraphs and the non-renormalization theorem
531
Appendix A: Spinors and their properties
539
Lorentz
transformations and two-dimensional representations of the
group SL(2, C)
539
Solutions of the free Weyl and Dirac equations and their properties
546
Parity
550
Time reversal
551
Charge conjugation
552
Appendix B: Feynman rules for QED and QCD and Feynman integrals
555
Feynman rules for the
λΦ4
theory
555
Feynman rules for QED
556
Feynman rules for QCD
557
Dirac algebra in
η
dimensions
558
Feynman parameters
559
Feynman integrals in
η
dimensions
559
Gaussian integrals
560
λ
-parameter
integrals
560
Feynman integrals in light-like gauge
η
■
A
= 0,
n2
= 0 561
Convention for the logarithm
561
Spence functions
562
Appendix C: Feynman rules for the Standard Model
563
Propagators of
fermions
563
Propagators of the gauge bosons
564
Propagators of the Higgs and
Goldstone
bosons
565
Propagators of the ghost fields
566
Mixed propagators (only counterterms exist)
567
Gauge interactions of
fermions
567
Yukawa interactions of
fermions
570
Gauge interactions of the gauge bosons
571
Self-interactions of the Higgs and
Goldstone
bosons
573
Gauge interactions of the Higgs and
Goldstone
bosons
574
Gauge interactions of the ghost fields
578
Interactions of ghosts with Higgs and
Goldstone
bosons
579
xvi Contents
Appendix
D:
One-loop Feynman integrals
583
Two-point functions
583
Three- and four-point functions
585
General expressions for the one-loop vector boson self-energies
586
Appendix E: Elements of group theory
591
Definitions
591
Transformation of operators
593
Complex and real representations
593
Traces
594
σ
-model
596
References
599
Index
605 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Pokorski, Stefan |
author_facet | Pokorski, Stefan |
author_role | aut |
author_sort | Pokorski, Stefan |
author_variant | s p sp |
building | Verbundindex |
bvnumber | BV021683447 |
classification_rvk | UO 4060 UO 5800 |
classification_tum | PHY 417f |
ctrlnum | (OCoLC)612118115 (DE-599)BVBBV021683447 |
discipline | Physik |
discipline_str_mv | Physik |
edition | 2. ed., transferred to digital print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01395nam a2200373 c 4500</leader><controlfield tag="001">BV021683447</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110527 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060803s2001 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521478168</subfield><subfield code="9">978-0-521-47816-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521472458</subfield><subfield code="9">0-521-47245-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)612118115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021683447</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4060</subfield><subfield code="0">(DE-625)146244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 5800</subfield><subfield code="0">(DE-625)146304:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 417f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pokorski, Stefan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gauge field theories</subfield><subfield code="c">Stefan Pokorski</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., transferred to digital print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 609 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014897631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014897631</subfield></datafield></record></collection> |
id | DE-604.BV021683447 |
illustrated | Illustrated |
index_date | 2024-07-02T15:12:05Z |
indexdate | 2024-07-09T20:41:35Z |
institution | BVB |
isbn | 9780521478168 0521472458 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014897631 |
oclc_num | 612118115 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-11 |
physical | XIX, 609 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge Univ. Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Pokorski, Stefan Verfasser aut Gauge field theories Stefan Pokorski 2. ed., transferred to digital print. Cambridge Cambridge Univ. Press 2001 XIX, 609 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cambridge monographs on mathematical physics Eichtheorie (DE-588)4122125-4 gnd rswk-swf Eichtheorie (DE-588)4122125-4 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014897631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pokorski, Stefan Gauge field theories Eichtheorie (DE-588)4122125-4 gnd |
subject_GND | (DE-588)4122125-4 |
title | Gauge field theories |
title_auth | Gauge field theories |
title_exact_search | Gauge field theories |
title_exact_search_txtP | Gauge field theories |
title_full | Gauge field theories Stefan Pokorski |
title_fullStr | Gauge field theories Stefan Pokorski |
title_full_unstemmed | Gauge field theories Stefan Pokorski |
title_short | Gauge field theories |
title_sort | gauge field theories |
topic | Eichtheorie (DE-588)4122125-4 gnd |
topic_facet | Eichtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014897631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pokorskistefan gaugefieldtheories |