Geological sequestration of carbon dioxide: thermodynamics, kinetics, and reaction path modeling
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo
Elsevier
2007
|
Ausgabe: | 1. edition |
Schriftenreihe: | Developments in geochemistry
11 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 453 S. Illustrationen, Diagramme |
ISBN: | 0444529500 9780444529503 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021679490 | ||
003 | DE-604 | ||
005 | 20220916 | ||
007 | t | ||
008 | 060801s2007 a||| |||| 00||| eng d | ||
020 | |a 0444529500 |9 0-444-52950-0 | ||
020 | |a 9780444529503 |9 978-0-444-52950-3 | ||
035 | |a (OCoLC)69484109 | ||
035 | |a (DE-599)BVBBV021679490 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-83 |a DE-634 |a DE-188 | ||
050 | 0 | |a QE516.C37 | |
082 | 0 | |a 628.5/32 |2 22 | |
084 | |a TZ 9980 |0 (DE-625)145212: |2 rvk | ||
084 | |a TH 4000 |0 (DE-625)162618: |2 rvk | ||
084 | |a RB 10118 |0 (DE-625)142220:12622 |2 rvk | ||
100 | 1 | |a Marini, Luigi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geological sequestration of carbon dioxide |b thermodynamics, kinetics, and reaction path modeling |c Luigi Marini |
250 | |a 1. edition | ||
264 | 1 | |a Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo |b Elsevier |c 2007 | |
300 | |a XV, 453 S. |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Developments in geochemistry |v 11 | |
650 | 4 | |a Geological carbon sequestration | |
650 | 0 | 7 | |a Sequestrierung |0 (DE-588)7610107-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohlendioxid |0 (DE-588)4031648-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kohlendioxid |0 (DE-588)4031648-8 |D s |
689 | 0 | 1 | |a Sequestrierung |0 (DE-588)7610107-1 |D s |
689 | 0 | |5 DE-188 | |
830 | 0 | |a Developments in geochemistry |v 11 |w (DE-604)BV000011334 |9 11 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014893732&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014893732 |
Datensatz im Suchindex
_version_ | 1804135499699322880 |
---|---|
adam_text | DEVELOPMENTS IN GEOCHEMISTRY 11 GEOLOGICAL SEQUESTRATION OF CARBON
DIOXIDE THERMODYNAMICS, KINETICS, AND REACTION PATH MODELING LUIGI
MARINI LABORATORY OF GEOCHEMISTRY, UNIVERSITY OF GENOVA, GENOVA, ITALY
ELSEVIER AMSTERDAM - BOSTON - HEIDELBERG - LONDON - NEW YORK - OXFORD -
PARIS SAN DIEGO - SAN FRANCISCO - SINGAPORE - SYDNEY - TOKYO TABLE OF
CONTENTS PREFACE XIII CHAPTER 1. WHY WE SHOULD CARE: THE IMPACT OF
ANTHROPOGENIC CARBON DIOXIDE ON THE CARBON CYCLE 1 1.1. CARBON DIOXIDE:
FROM ITS DISCOVERY TO THE UNDERSTANDING OF ITS ROLE ... 1 1.2. THE
SHORT-TERM CARBON CYCLE 2 1.2.1. THE TERRESTRIAL BIOSPHERE 2 1.2.2. THE
PROCESSES IN THE OCEANS 4 1.3. ATMOSPHERIC CO 2 CONCENTRATION 6 1.3.1.
DIRECT DETERMINATIONS 6 1.3.2. CO 2 CONCENTRATION IN THE AIR BUBBLES OF
ANTARCTIC ICE 10 1.3.3. ATMOSPHERIC CO 2 DURING THE EARTH S HISTORY 11
1.4. CARBON CYCLE MODELLING AND PREDICTION OF FUTURE ATMOSPHERIC CO 2
CONCENTRATIONS 12 1.5. CONCLUSIVE REMARKS 13 CHAPTER 2. THE
THERMODYNAMIC BACKGROUND 15 2.1. THE CHEMICAL POTENTIAL 15 2.2. THE
STANDARD STATE 17 2.3. FUGACITY AND ACTIVITY 19 2.4. THE STUDY OF
CHEMICAL EQUILIBRIUM 21 2.5. CHANGES IN GIBBS FREE ENERGY WITH
TEMPERATURE AND PRESSURE 23 2.5.1. PRESSURE EFFECT . . 23 2.5.2.
TEMPERATURE EFFECT 24 2.5.3. CALCULATION OF THE THERMODYNAMIC PROPERTIES
OF REACTIONS AT HIGH TEMPERATURES AND PRESSURES 25 CHAPTER 3. CARBON
DIOXIDE AND CO 2 -H 2 O MIXTURES 27 3.1. THE GEOLOGICAL SEQUESTRATION OF
CO 2 : WHAT HAPPENS? 27 3.2. THE P-T PHASE DIAGRAM OF CO 2 27 3.3. THE
EQUATION OF STATE FOR A PURE GAS 29 3.4. THE MOLAR VOLUME OF PURE CO 2
AND RELATED THERMODYNAMIC PROPERTIES 33 3.5. THE CO 2 -H 2 O SYSTEM 36
VI TABLE OF CONTENTS 3.6. THE EQUATIONS OF STATE FOR CO 2 -H 2 O GAS
MIXTURES 39 3.7. MUTUAL SOLUBILITIES OF CO 2 AND H 2 O IN CO 2 -H 2 O
MIXTURES 41 3.8. IMPACT OF DISSOLVED SALTS ON THE MUTUAL SOLUBILITIES OF
CO 2 AND H 2 O 47 3.9. THE PLOT OF PRESSURE VERSUS ENTHALPY FOR CARBON
DIOXIDE 49 CHAPTER 4. THE AQUEOUS ELECTROLYTE SOLUTION 53 4.1. THE
IMPORTANT ROLE OF AQUEOUS ELECTROLYTE SOLUTIONS 53 4.2. THE
DEBYE-HIICKEL THEORY 54 4.2.1 THE MEAN STOICHIOMETRIC ACTIVITY
COEFFICIENT OF A BINARY ELECTROLYTE 54 4.2.2 THE ACTIVITY COEFFICIENT OF
INDIVIDUAL IONS 56 4.2.3 THE ACTIVITY COEFFICIENT OF NEUTRAL DISSOLVED
SPECIES 60 4.2.4 THE ACTIVITY OF WATER 61 4.3. THE HKF MODEL FOR AQUEOUS
ELECTROLYTES 62 4.4. THE PITZER MODEL FOR AQUEOUS ELECTROLYTES 67 4.4.1.
THE SEMI-EMPIRICAL PITZER S EQUATIONS 69 4.4.2. APPLICATIONS OF THE
PITZER S MODEL 74 4.5. IMPLICATIONS FOR CO 2 SOLUBILITY IN CONCENTRATED
AQUEOUS SOLUTIONS .... 75 CHAPTER 5. THE PRODUCT SOLID PHASES 79 5.1.
MAJOR CARBONATE MINERALS 79 5.1.1. THE STRUCTURE OF CALCITE AND THE
#3C_CARBONATES 80 5.1.2. THE STRUCTURE OF DOLOMITE AND THE /?3
CARBONATES 82 5.1.3. THE THERMAL EXPANSION OF CARBONATES 85 5.1.4. THE
STABILITY OF THE CARBONATE MINERALS OF CA AND MG 88 5.1.4.1. THE SYSTEM
CAO-CO 2 ^L 2 O . . 88 5.1.4.2. THE SYSTEM MGO-CO 2 ^ 2 O 91 5.1.4.3.
THE SYSTEM CAOHVIGO-CO 2 ^I 2 O 93 5.1.5 DAWSONITE: NEW PERSPECTIVES FOR
THE GEOLOGICAL SEQUESTRATION OF CO 2 100 5.2. THE STABILITY OF SILICA
MINERALS 104 5.2.1. THE CRYSTALLOGRAPHIC PROPERTIES OF SILICA MINERALS
104 5.2.2. THE PHASE DIAGRAM FOR THE UNARY SYSTEM SIO 2 AND THE
THERMODYNAMIC PROPERTIES OF SILICA MINERALS 106 5.2.3. THE SOLUBILITIES
OF SILICA MINERALS 112 5.2.4. THE MOLAR VOLUMES OF SILICA MINERALS 115
5.3. CLAY MINERALS AND RELATED SOLID PHASES 117 5.3.1. CLAY MINERALS AS
BY-PRODUCTS OF CARBONATION REACTIONS 117 5.3.2. THE CRYSTAL STRUCTURE OF
CLAY MINERALS 118 TABLE OF CONTENTS VII 5.3.2.1. KAOLINITE AND OTHER T-O
PHYLLOSILICATES 119 5.3.2.2. T-O-T PHYLLOSILICATES 122 5.3.2.3.
CHLORITES 127 5.3.2.4. MIXED-LAYER MINERALS 127 5.3.3. THE THERMODYNAMIC
DATA OF CLAY MINERALS AND RELATED SOLID PHASES 127 5.3.3.1. THE SYSTEM
MGO-SIO 2 -H 2 O 130 5.3.3.2. THE SYSTEM AL 2 O 3 -SIO 2 ^I 2 O 134
5.3.3.3. THE SYSTEM MGO-AL 2 O 3 -SIO 2 ^I 2 O 137 5.3.3.4. THE SYSTEM
CAO-AL 2 O 3 -SIO 2 ^I 2 O 142 5.3.3.5. THE SYSTEM NA 2 O-AL 2 O 3 -SIO
2 -H 2 O 146 5.3.3.6. THE SYSTEM K 2 O^VIGO-AL 2 O 3 -SIO 2 ^L 2 O AT
MAGNESITE SATURATION 147 5.4. THE THERMODYNAMICS OF GAS-SOLID
CARBONATION REACTIONS 153 5.5. THE VOLUME CHANGES OF CARBONATION
REACTIONS 164 CHAPTER 6. THE KINETICS OF MINERAL CARBONATION 169 6.1.
FUNDAMENTAL CONCEPTS AND RELATIONS 169 6.1.1. THE RATE EXPRESSIONS OF
ZERO-ORDER REACTIONS 173 6.1.2. THE RATE EXPRESSIONS OF FIRST-ORDER
REACTIONS 173 6.1.3. THE TEMPERATURE DEPENDENCE OF RATE CONSTANTS 174
6.1.4. THE TRANSITION STATE THEORY 175 6.1.4.1. THE DEPENDENCE OF THE
RATE ON THE IONIC STRENGTH: TRANSITION STATE THEORY PREDICTIONS 178 6.2.
THE KINETICS OF PRECIPITATION AND DISSOLUTION OF SOLID PHASES 181 6.2.1.
NUCLEATION AND CRYSTAL GROWTH 181 6.2.2. DISSOLUTION 184 6.2.3. THE
EFFECT OF THE CHEMICAL BOND TYPE 185 6.3. THE KINETICS OF CHEMICAL
WEATHERING 186 6.3.1. AN HISTORICAL PERSPECTIVE 186 6.3.2. THE PRESENT
UNDERSTANDING 187 6.4. THE RATE LAWS OF MINERAL
DISSOLUTION/PRECIPITATION 189 6.4.1. INTRODUCTORY REMARKS 189 6.4.2. THE
TRANSITION STATE THEORY-BASED RATE LAWS: THE DISTANCE FROM EQUILIBRIUM
191 6.4.3. THE TRANSITION STATE THEORY-BASED, PH-DEPENDENT RATE LAW . .
. 192 6.4.4. THE TRANSITION STATE THEORY-BASED RATE LAW INVOLVING
ACTIVITY RATIOS 199 6.5. DISSOLUTION LABORATORY EXPERIMENTS 203 6.5.1.
EXPERIMENTAL APPARATUSES 205 VIII TABLE OF CONTENTS 6.5.2. THE SURFACE
AREA OF SOLID REACTANTS 207 6.5.2.1. THE BET METHOD 207 6.5.2.2. THE
GEOMETRIC APPROACH 208 6.5.2.3. THE SURFACE ROUGHNESS 210 6.5.2.4. THE
REACTIVE (EFFECTIVE) SURFACE AREA 210 6.6. DISSOLUTION AND PRECIPITATION
RATES OF SILICATES AND SILICA MINERALS .. 211 6.6.1. DISSOLUTION RATES
OF NESOSILICATES AND SOROSILICATES 211 6.6.1.1. FORSTERITE 211 6.6.1.2.
KYANITE 215 6.6.1.3. EPIDOTE 216 6.6.2. DISSOLUTION RATES OF CHAIN
SILICATES 218 6.6.2.1. ENSTATITE 224 6.6.3. DISSOLUTION RATES OF SHEET
SILICATES 224 6.6.3.1. KAOLINITE 224 6.6.3.2. SERPENTINE MINERALS 228
6.6.3.3. SMECTITES 230 6.6.3.4. ILLITE 233 6.6.3.5. CHLORITES 233
6.6.3.6. MUSCOVITE 235 6.6.3.7. BIOTITE 237 6.6.3.8. PHLOGOPITE 239
6.6.4. DISSOLUTION RATES OF FELDSPARS 242 6.6.4.1. STUDIES ON THE
DISSOLUTION KINETICS OF FELDSPARS ... 242 6.6.4.2. PH DEPENDENCE OF THE
DISSOLUTION KINETICS OF FELDSPARS 251 6.6.4.3. ACTIVATION ENERGIES FOR
THE DISSOLUTION KINETICS OF FELDSPARS 253 6.6.5. DISSOLUTION
PRECIPITATION RATES OF SILICA MINERALS 253 6.6.6. DISSOLUTION RATES OF
SILICATE GLASSES 259 6.6.6.1. ALBITE, JADEITE AND NEPHELINE GLASSES 259
6.6.6.2. BASALTIC GLASS 261 6.6.6.3. APPLICATION OF THE MULTI-OXIDE
DISSOLUTION MODEL TO GLASSES OF VARIABLE COMPOSITION 265 6.6.7. THE
INFLUENCE OF CO 2 ON THE KINETICS OF SILICATE DISSOLUTION 266 6.7.
DISSOLUTION RATES OF OXIDES AND HYDROXIDES 267 6.7.1. AL-HYDROXIDE AND
AL-OXIDE MINERALS 267 6.7.1.1. GIBBSITE 267 6.7.1.2. BAYERITE AND
DIASPORE 271 6.7.1.3. AL-OXIDES 272 TABLE OF CONTENTS IX 6.7.2. BRUCITE
AND PERICLASE 273 6.7.3. FE(III) (HYDR)OXIDES 278 6.8. DISSOLUTION AND
PRECIPITATION RATES OF CARBONATES 282 6.8.1. LABORATORY EXPERIMENTAL
TECHNIQUES 282 6.8.2. CALCITE 283 6.8.2.1. CALCITE:
DISSOLUTION-PRECIPITATION MECHANISMS .... 283 6.8.2.2. CALCITE:
DISSOLUTION AND PRECIPITATION RATES 286 6.8.2.3. CALCITE: THE INFLUENCE
OF CO 2 PARTIAL PRESSURE ON DISSOLUTION AND PRECIPITATION RATES 294
6.8.2.4. CALCITE: THE INFLUENCE OF FOREIGN SOLUTES ON DISSOLUTION AND
PRECIPITATION RATES 296 6.8.2.5. CALCITE: THE INFLUENCE OF IONIC
STRENGTH ON DISSOLUTION AND PRECIPITATION RATES 297 6.8.2.6. CALCITE:
THE INFLUENCE OF TEMPERATURE ON DISSOLUTION AND PRECIPITATION RATES 298
6.8.2.7. CALCITE: SURFACE COMPLEXATION MODELS 298 6.8.3. DOLOMITE 303
6.8.3.1. DOLOMITE: DISSOLUTION RATES 303 6.8.3.2. DOLOMITE: SURFACE
COMPLEXATION MODELS 307 6.8.3.3. DOLOMITE: THE INFLUENCE OF FOREIGN
SOLUTES ON DISSOLUTION RATES 309 6.8.3.4. DOLOMITE: TRANSITION STATE
THEORY-BASED EQUATIONS 310 6.8.3.5. DOLOMITE: THE INFLUENCE OF CO 2
PARTIAL PRESSURE ON THE DISSOLUTION RATE 310 6.8.4. MAGNESITE 311 6.8.5.
OTHER CARBONATE MINERALS 316 6.9. DISSOLUTION RATES OF SULPHATES,
SULPHIDES, PHOSPHATES AND HALIDES ... 317 CHAPTER 7. REACTION PATH
MODELLING OF GEOLOGICAL CO 2 SEQUESTRATION 319 7.1. THE RECONSTRUCTION
OF THE INITIAL (BEFORE CO 2 INJECTION) AQUEOUS SOLUTION:
SPECIATION-SATURATION CALCULATIONS 319 7.1.1. THE AQUEOUS
SOLUTION/CALCITE EXAMPLE 320 7.1.2. THE AQUEOUS SOLUTION/MULTIMINERAL
PARAGENESIS GENERAL CASE 322 7.2. REACTION PATH MODELLING 330 7.2.1.
FUNDAMENTAL RELATIONSHIPS 330 7.2.2. AN EXAMPLE OF REACTION PATH
MODELLING: THE DISSOLUTION OF ALBITE IN PURE WATER 331 X TABLE OF
CONTENTS 7.2.3. THE DISSOLUTION OF ALBITE IN PURE WATER: THE NUMERIC
MODEL . . . 334 7.2.4. THE DISSOLUTION OF ALBITE IN PURE WATER:
SIMULATIONS IN TIME FRAME 337 7.3. REACTION PATH MODELLING OF GEOLOGICAL
CO 2 SEQUESTRATION IN ULTRAMAFIC ROCKS 348 7.3.1. PREVIOUS WORKS 349
7.3.2. REACTION PATH MODELLING OF THE GEOLOGICAL CO 2 SEQUESTRATION IN A
SERPENTINITIC ROCK 351 7.3.2.1. SETTING UP THE WATER-ROCK INTERACTION
MODEL 351 7.3.2.2. SOLID REACTANTS 358 7.3.2.3. SOLID PRODUCT PHASES 360
7.3.2.4. THE AQUEOUS SOLUTION 361 7.3.2.5. THE CO 2 SEQUESTRATION 363
7.3.2.6. CHANGES IN THE POROSITY OF AQUIFER ROCKS 364 7.3.3. REACTION
PATH MODELLING OF THE GEOLOGICAL CO 2 SEQUESTRATION IN A SERPENTINITIC
AQUIFER: SALINITY EFFECTS 366 7.3.3.1. SETTING UP A WATER-ROCK
INTERACTION MODEL INVOLVING A BRINE 366 7.3.3.2. SOLID-PRODUCT PHASES
367 7.3.3.3. THE AQUEOUS SOLUTION 367 7.3.3.4. THE CO 2 SEQUESTRATION
370 7.4. REACTION PATH MODELLING OF GEOLOGICAL CO 2 SEQUESTRATION IN
CONTINENTAL THOLEIITIC FLOOD BASALTS 371 7.4.1. SETTING UP THE
WATER-ROCK INTERACTION MODEL 371 7.4.2. SOLID REACTANTS 377 7.4.3. SOLID
PRODUCT PHASES 378 7.4.4. THE AQUEOUS SOLUTION 381 7.4.5. THE CO 2
SEQUESTRATION . 382 7.4.6. CHANGES IN THE POROSITY OF AQUIFER ROCKS 383
7.5. REACTION PATH MODELLING OF GEOLOGICAL CO 2 SEQUESTRATION IN
BASALTIC GLASS 383 7.5.1. SETTING UP THE WATER-ROCK INTERACTION MODEL
384 7.5.1.1. THE NEED FOR TWO SOLID REACTANTS 384 7.5.1.2. THE MOLAR
VOLUME OF BASALTIC GLASS 387 7.5.1.3. COMPLETION OF THE EQ6 INPUT FILE
388 7.5.2. THE TIME SCALES 388 7.5.3. SOLID PRODUCT PHASES 389 7.5.4.
THE AQUEOUS SOLUTION 392 7.5.5. THE CO 2 SEQUESTRATION 394 7.5.6.
CHANGES IN THE POROSITY OF AQUIFER ROCKS 394 TABLE OF CONTENTS X I 7.6.
REACTION PATH MODELLING OF GEOLOGICAL CO 2 SEQUESTRATION IN SEDIMENTARY
BASINS 394 7.6.1. THE GLAUCONITIC SANDSTONE AQUIFER OF THE ALBERTA
SEDIMENTARY BASIN 396 7.6.2. THE SEDIMENTS OF THE GULF COAST 397 7.6.3.
THE WHITE RIM SANDSTONE 399 7.6.4. THE SHALES OF THE NORTH SEA 400
7.6.5. THE CARBONATE ROCKS OF THE ALBERTA SEDIMENTARY BASIN 401 7.7.
WATER-ROCK REACTIONS DURING GEOLOGICAL CO 2 SEQUESTRATION: THE
EXPERIMENTAL EVIDENCE 402 7.7.1. LABORATORY EXPERIMENTS ON ROCKS FROM
SEDIMENTARY BASINS . 402 7.7.2. LABORATORY EXPERIMENTS ON FORSTERITE AND
SERPENTINE 404 7.8. WATER-ROCK REACTIONS DURING GEOLOGICAL CO 2
SEQUESTRATION: THE FIELD EVIDENCE 406 7.9. THE NEED FOR A SYNERGISTIC
APPROACH 406 7.9.1. CURRENT LIMITATIONS AND FUTURE DEVELOPMENTS OF
REACTION PATH MODELLING 407 7.10. A FINAL NOTE 409 REFERENCES 411
SUBJECT INDEX 441
|
adam_txt |
DEVELOPMENTS IN GEOCHEMISTRY 11 GEOLOGICAL SEQUESTRATION OF CARBON
DIOXIDE THERMODYNAMICS, KINETICS, AND REACTION PATH MODELING LUIGI
MARINI LABORATORY OF GEOCHEMISTRY, UNIVERSITY OF GENOVA, GENOVA, ITALY
ELSEVIER AMSTERDAM - BOSTON - HEIDELBERG - LONDON - NEW YORK - OXFORD -
PARIS SAN DIEGO - SAN FRANCISCO - SINGAPORE - SYDNEY - TOKYO TABLE OF
CONTENTS PREFACE XIII CHAPTER 1. WHY WE SHOULD CARE: THE IMPACT OF
ANTHROPOGENIC CARBON DIOXIDE ON THE CARBON CYCLE 1 1.1. CARBON DIOXIDE:
FROM ITS DISCOVERY TO THE UNDERSTANDING OF ITS ROLE . 1 1.2. THE
SHORT-TERM CARBON CYCLE 2 1.2.1. THE TERRESTRIAL BIOSPHERE 2 1.2.2. THE
PROCESSES IN THE OCEANS 4 1.3. ATMOSPHERIC CO 2 CONCENTRATION 6 1.3.1.
DIRECT DETERMINATIONS 6 1.3.2. CO 2 CONCENTRATION IN THE AIR BUBBLES OF
ANTARCTIC ICE 10 1.3.3. ATMOSPHERIC CO 2 DURING THE EARTH'S HISTORY 11
1.4. CARBON CYCLE MODELLING AND PREDICTION OF FUTURE ATMOSPHERIC CO 2
CONCENTRATIONS 12 1.5. CONCLUSIVE REMARKS 13 CHAPTER 2. THE
THERMODYNAMIC BACKGROUND 15 2.1. THE CHEMICAL POTENTIAL 15 2.2. THE
STANDARD STATE 17 2.3. FUGACITY AND ACTIVITY 19 2.4. THE STUDY OF
CHEMICAL EQUILIBRIUM 21 2.5. CHANGES IN GIBBS FREE ENERGY WITH
TEMPERATURE AND PRESSURE 23 2.5.1. PRESSURE EFFECT . . 23 2.5.2.
TEMPERATURE EFFECT 24 2.5.3. CALCULATION OF THE THERMODYNAMIC PROPERTIES
OF REACTIONS AT HIGH TEMPERATURES AND PRESSURES 25 CHAPTER 3. CARBON
DIOXIDE AND CO 2 -H 2 O MIXTURES 27 3.1. THE GEOLOGICAL SEQUESTRATION OF
CO 2 : WHAT HAPPENS? 27 3.2. THE P-T PHASE DIAGRAM OF CO 2 27 3.3. THE
EQUATION OF STATE FOR A PURE GAS 29 3.4. THE MOLAR VOLUME OF PURE CO 2
AND RELATED THERMODYNAMIC PROPERTIES 33 3.5. THE CO 2 -H 2 O SYSTEM 36
VI TABLE OF CONTENTS 3.6. THE EQUATIONS OF STATE FOR CO 2 -H 2 O GAS
MIXTURES 39 3.7. MUTUAL SOLUBILITIES OF CO 2 AND H 2 O IN CO 2 -H 2 O
MIXTURES 41 3.8. IMPACT OF DISSOLVED SALTS ON THE MUTUAL SOLUBILITIES OF
CO 2 AND H 2 O 47 3.9. THE PLOT OF PRESSURE VERSUS ENTHALPY FOR CARBON
DIOXIDE 49 CHAPTER 4. THE AQUEOUS ELECTROLYTE SOLUTION 53 4.1. THE
IMPORTANT ROLE OF AQUEOUS ELECTROLYTE SOLUTIONS 53 4.2. THE
DEBYE-HIICKEL THEORY 54 4.2.1 THE MEAN STOICHIOMETRIC ACTIVITY
COEFFICIENT OF A BINARY ELECTROLYTE 54 4.2.2 THE ACTIVITY COEFFICIENT OF
INDIVIDUAL IONS 56 4.2.3 THE ACTIVITY COEFFICIENT OF NEUTRAL DISSOLVED
SPECIES 60 4.2.4 THE ACTIVITY OF WATER 61 4.3. THE HKF MODEL FOR AQUEOUS
ELECTROLYTES 62 4.4. THE PITZER MODEL FOR AQUEOUS ELECTROLYTES 67 4.4.1.
THE SEMI-EMPIRICAL PITZER'S EQUATIONS 69 4.4.2. APPLICATIONS OF THE
PITZER'S MODEL 74 4.5. IMPLICATIONS FOR CO 2 SOLUBILITY IN CONCENTRATED
AQUEOUS SOLUTIONS . 75 CHAPTER 5. THE PRODUCT SOLID PHASES 79 5.1.
MAJOR CARBONATE MINERALS 79 5.1.1. THE STRUCTURE OF CALCITE AND THE
#3C_CARBONATES 80 5.1.2. THE STRUCTURE OF DOLOMITE AND THE /?3
CARBONATES 82 5.1.3. THE THERMAL EXPANSION OF CARBONATES 85 5.1.4. THE
STABILITY OF THE CARBONATE MINERALS OF CA AND MG 88 5.1.4.1. THE SYSTEM
CAO-CO 2 ^L 2 O . . 88 5.1.4.2. THE SYSTEM MGO-CO 2 ^ 2 O 91 5.1.4.3.
THE SYSTEM CAOHVIGO-CO 2 ^I 2 O 93 5.1.5 DAWSONITE: NEW PERSPECTIVES FOR
THE GEOLOGICAL SEQUESTRATION OF CO 2 100 5.2. THE STABILITY OF SILICA
MINERALS 104 5.2.1. THE CRYSTALLOGRAPHIC PROPERTIES OF SILICA MINERALS
104 5.2.2. THE PHASE DIAGRAM FOR THE UNARY SYSTEM SIO 2 AND THE
THERMODYNAMIC PROPERTIES OF SILICA MINERALS 106 5.2.3. THE SOLUBILITIES
OF SILICA MINERALS 112 5.2.4. THE MOLAR VOLUMES OF SILICA MINERALS 115
5.3. CLAY MINERALS AND RELATED SOLID PHASES 117 5.3.1. CLAY MINERALS AS
BY-PRODUCTS OF CARBONATION REACTIONS 117 5.3.2. THE CRYSTAL STRUCTURE OF
CLAY MINERALS 118 TABLE OF CONTENTS VII 5.3.2.1. KAOLINITE AND OTHER T-O
PHYLLOSILICATES 119 5.3.2.2. T-O-T PHYLLOSILICATES 122 5.3.2.3.
CHLORITES 127 5.3.2.4. MIXED-LAYER MINERALS 127 5.3.3. THE THERMODYNAMIC
DATA OF CLAY MINERALS AND RELATED SOLID PHASES 127 5.3.3.1. THE SYSTEM
MGO-SIO 2 -H 2 O 130 5.3.3.2. THE SYSTEM AL 2 O 3 -SIO 2 ^I 2 O 134
5.3.3.3. THE SYSTEM MGO-AL 2 O 3 -SIO 2 ^I 2 O 137 5.3.3.4. THE SYSTEM
CAO-AL 2 O 3 -SIO 2 ^I 2 O 142 5.3.3.5. THE SYSTEM NA 2 O-AL 2 O 3 -SIO
2 -H 2 O 146 5.3.3.6. THE SYSTEM K 2 O^VIGO-AL 2 O 3 -SIO 2 ^L 2 O AT
MAGNESITE SATURATION 147 5.4. THE THERMODYNAMICS OF GAS-SOLID
CARBONATION REACTIONS 153 5.5. THE VOLUME CHANGES OF CARBONATION
REACTIONS 164 CHAPTER 6. THE KINETICS OF MINERAL CARBONATION 169 6.1.
FUNDAMENTAL CONCEPTS AND RELATIONS 169 6.1.1. THE RATE EXPRESSIONS OF
ZERO-ORDER REACTIONS 173 6.1.2. THE RATE EXPRESSIONS OF FIRST-ORDER
REACTIONS 173 6.1.3. THE TEMPERATURE DEPENDENCE OF RATE CONSTANTS 174
6.1.4. THE TRANSITION STATE THEORY 175 6.1.4.1. THE DEPENDENCE OF THE
RATE ON THE IONIC STRENGTH: TRANSITION STATE THEORY PREDICTIONS 178 6.2.
THE KINETICS OF PRECIPITATION AND DISSOLUTION OF SOLID PHASES 181 6.2.1.
NUCLEATION AND CRYSTAL GROWTH 181 6.2.2. DISSOLUTION 184 6.2.3. THE
EFFECT OF THE CHEMICAL BOND TYPE 185 6.3. THE KINETICS OF CHEMICAL
WEATHERING 186 6.3.1. AN HISTORICAL PERSPECTIVE 186 6.3.2. THE PRESENT
UNDERSTANDING 187 6.4. THE RATE LAWS OF MINERAL
DISSOLUTION/PRECIPITATION 189 6.4.1. INTRODUCTORY REMARKS 189 6.4.2. THE
TRANSITION STATE THEORY-BASED RATE LAWS: THE DISTANCE FROM EQUILIBRIUM
191 6.4.3. THE TRANSITION STATE THEORY-BASED, PH-DEPENDENT RATE LAW . .
. 192 6.4.4. THE TRANSITION STATE THEORY-BASED RATE LAW INVOLVING
ACTIVITY RATIOS 199 6.5. DISSOLUTION LABORATORY EXPERIMENTS 203 6.5.1.
EXPERIMENTAL APPARATUSES 205 VIII TABLE OF CONTENTS 6.5.2. THE SURFACE
AREA OF SOLID REACTANTS 207 6.5.2.1. THE BET METHOD 207 6.5.2.2. THE
GEOMETRIC APPROACH 208 6.5.2.3. THE SURFACE ROUGHNESS 210 6.5.2.4. THE
REACTIVE (EFFECTIVE) SURFACE AREA 210 6.6. DISSOLUTION AND PRECIPITATION
RATES OF SILICATES AND SILICA MINERALS . 211 6.6.1. DISSOLUTION RATES
OF NESOSILICATES AND SOROSILICATES 211 6.6.1.1. FORSTERITE 211 6.6.1.2.
KYANITE 215 6.6.1.3. EPIDOTE 216 6.6.2. DISSOLUTION RATES OF CHAIN
SILICATES 218 6.6.2.1. ENSTATITE 224 6.6.3. DISSOLUTION RATES OF SHEET
SILICATES 224 6.6.3.1. KAOLINITE 224 6.6.3.2. SERPENTINE MINERALS 228
6.6.3.3. SMECTITES 230 6.6.3.4. ILLITE 233 6.6.3.5. CHLORITES 233
6.6.3.6. MUSCOVITE 235 6.6.3.7. BIOTITE 237 6.6.3.8. PHLOGOPITE 239
6.6.4. DISSOLUTION RATES OF FELDSPARS 242 6.6.4.1. STUDIES ON THE
DISSOLUTION KINETICS OF FELDSPARS . 242 6.6.4.2. PH DEPENDENCE OF THE
DISSOLUTION KINETICS OF FELDSPARS 251 6.6.4.3. ACTIVATION ENERGIES FOR
THE DISSOLUTION KINETICS OF FELDSPARS 253 6.6.5. DISSOLUTION
PRECIPITATION RATES OF SILICA MINERALS 253 6.6.6. DISSOLUTION RATES OF
SILICATE GLASSES 259 6.6.6.1. ALBITE, JADEITE AND NEPHELINE GLASSES 259
6.6.6.2. BASALTIC GLASS 261 6.6.6.3. APPLICATION OF THE MULTI-OXIDE
DISSOLUTION MODEL TO GLASSES OF VARIABLE COMPOSITION 265 6.6.7. THE
INFLUENCE OF CO 2 ON THE KINETICS OF SILICATE DISSOLUTION 266 6.7.
DISSOLUTION RATES OF OXIDES AND HYDROXIDES 267 6.7.1. AL-HYDROXIDE AND
AL-OXIDE MINERALS 267 6.7.1.1. GIBBSITE 267 6.7.1.2. BAYERITE AND
DIASPORE 271 6.7.1.3. AL-OXIDES 272 TABLE OF CONTENTS IX 6.7.2. BRUCITE
AND PERICLASE 273 6.7.3. FE(III) (HYDR)OXIDES 278 6.8. DISSOLUTION AND
PRECIPITATION RATES OF CARBONATES 282 6.8.1. LABORATORY EXPERIMENTAL
TECHNIQUES 282 6.8.2. CALCITE 283 6.8.2.1. CALCITE:
DISSOLUTION-PRECIPITATION MECHANISMS . 283 6.8.2.2. CALCITE:
DISSOLUTION AND PRECIPITATION RATES 286 6.8.2.3. CALCITE: THE INFLUENCE
OF CO 2 PARTIAL PRESSURE ON DISSOLUTION AND PRECIPITATION RATES 294
6.8.2.4. CALCITE: THE INFLUENCE OF FOREIGN SOLUTES ON DISSOLUTION AND
PRECIPITATION RATES 296 6.8.2.5. CALCITE: THE INFLUENCE OF IONIC
STRENGTH ON DISSOLUTION AND PRECIPITATION RATES 297 6.8.2.6. CALCITE:
THE INFLUENCE OF TEMPERATURE ON DISSOLUTION AND PRECIPITATION RATES 298
6.8.2.7. CALCITE: SURFACE COMPLEXATION MODELS 298 6.8.3. DOLOMITE 303
6.8.3.1. DOLOMITE: DISSOLUTION RATES 303 6.8.3.2. DOLOMITE: SURFACE
COMPLEXATION MODELS 307 6.8.3.3. DOLOMITE: THE INFLUENCE OF FOREIGN
SOLUTES ON DISSOLUTION RATES 309 6.8.3.4. DOLOMITE: TRANSITION STATE
THEORY-BASED EQUATIONS 310 6.8.3.5. DOLOMITE: THE INFLUENCE OF CO 2
PARTIAL PRESSURE ON THE DISSOLUTION RATE 310 6.8.4. MAGNESITE 311 6.8.5.
OTHER CARBONATE MINERALS 316 6.9. DISSOLUTION RATES OF SULPHATES,
SULPHIDES, PHOSPHATES AND HALIDES . 317 CHAPTER 7. REACTION PATH
MODELLING OF GEOLOGICAL CO 2 SEQUESTRATION 319 7.1. THE RECONSTRUCTION
OF THE INITIAL (BEFORE CO 2 INJECTION) AQUEOUS SOLUTION:
SPECIATION-SATURATION CALCULATIONS 319 7.1.1. THE AQUEOUS
SOLUTION/CALCITE EXAMPLE 320 7.1.2. THE AQUEOUS SOLUTION/MULTIMINERAL
PARAGENESIS GENERAL CASE 322 7.2. REACTION PATH MODELLING 330 7.2.1.
FUNDAMENTAL RELATIONSHIPS 330 7.2.2. AN EXAMPLE OF REACTION PATH
MODELLING: THE DISSOLUTION OF ALBITE IN PURE WATER 331 X TABLE OF
CONTENTS 7.2.3. THE DISSOLUTION OF ALBITE IN PURE WATER: THE NUMERIC
MODEL . . . 334 7.2.4. THE DISSOLUTION OF ALBITE IN PURE WATER:
SIMULATIONS IN TIME FRAME 337 7.3. REACTION PATH MODELLING OF GEOLOGICAL
CO 2 SEQUESTRATION IN ULTRAMAFIC ROCKS 348 7.3.1. PREVIOUS WORKS 349
7.3.2. REACTION PATH MODELLING OF THE GEOLOGICAL CO 2 SEQUESTRATION IN A
SERPENTINITIC ROCK 351 7.3.2.1. SETTING UP THE WATER-ROCK INTERACTION
MODEL 351 7.3.2.2. SOLID REACTANTS 358 7.3.2.3. SOLID PRODUCT PHASES 360
7.3.2.4. THE AQUEOUS SOLUTION 361 7.3.2.5. THE CO 2 SEQUESTRATION 363
7.3.2.6. CHANGES IN THE POROSITY OF AQUIFER ROCKS 364 7.3.3. REACTION
PATH MODELLING OF THE GEOLOGICAL CO 2 SEQUESTRATION IN A SERPENTINITIC
AQUIFER: SALINITY EFFECTS 366 7.3.3.1. SETTING UP A WATER-ROCK
INTERACTION MODEL INVOLVING A BRINE 366 7.3.3.2. SOLID-PRODUCT PHASES
367 7.3.3.3. THE AQUEOUS SOLUTION 367 7.3.3.4. THE CO 2 SEQUESTRATION
370 7.4. REACTION PATH MODELLING OF GEOLOGICAL CO 2 SEQUESTRATION IN
CONTINENTAL THOLEIITIC FLOOD BASALTS 371 7.4.1. SETTING UP THE
WATER-ROCK INTERACTION MODEL 371 7.4.2. SOLID REACTANTS 377 7.4.3. SOLID
PRODUCT PHASES 378 7.4.4. THE AQUEOUS SOLUTION 381 7.4.5. THE CO 2
SEQUESTRATION . 382 7.4.6. CHANGES IN THE POROSITY OF AQUIFER ROCKS 383
7.5. REACTION PATH MODELLING OF GEOLOGICAL CO 2 SEQUESTRATION IN
BASALTIC GLASS 383 7.5.1. SETTING UP THE WATER-ROCK INTERACTION MODEL
384 7.5.1.1. THE NEED FOR TWO SOLID REACTANTS 384 7.5.1.2. THE MOLAR
VOLUME OF BASALTIC GLASS 387 7.5.1.3. COMPLETION OF THE EQ6 INPUT FILE
388 7.5.2. THE TIME SCALES 388 7.5.3. SOLID PRODUCT PHASES 389 7.5.4.
THE AQUEOUS SOLUTION 392 7.5.5. THE CO 2 SEQUESTRATION 394 7.5.6.
CHANGES IN THE POROSITY OF AQUIFER ROCKS 394 TABLE OF CONTENTS X I 7.6.
REACTION PATH MODELLING OF GEOLOGICAL CO 2 SEQUESTRATION IN SEDIMENTARY
BASINS 394 7.6.1. THE GLAUCONITIC SANDSTONE AQUIFER OF THE ALBERTA
SEDIMENTARY BASIN 396 7.6.2. THE SEDIMENTS OF THE GULF COAST 397 7.6.3.
THE WHITE RIM SANDSTONE 399 7.6.4. THE SHALES OF THE NORTH SEA 400
7.6.5. THE CARBONATE ROCKS OF THE ALBERTA SEDIMENTARY BASIN 401 7.7.
WATER-ROCK REACTIONS DURING GEOLOGICAL CO 2 SEQUESTRATION: THE
EXPERIMENTAL EVIDENCE 402 7.7.1. LABORATORY EXPERIMENTS ON ROCKS FROM
SEDIMENTARY BASINS . 402 7.7.2. LABORATORY EXPERIMENTS ON FORSTERITE AND
SERPENTINE 404 7.8. WATER-ROCK REACTIONS DURING GEOLOGICAL CO 2
SEQUESTRATION: THE FIELD EVIDENCE 406 7.9. THE NEED FOR A SYNERGISTIC
APPROACH 406 7.9.1. CURRENT LIMITATIONS AND FUTURE DEVELOPMENTS OF
REACTION PATH MODELLING 407 7.10. A FINAL NOTE 409 REFERENCES 411
SUBJECT INDEX 441 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Marini, Luigi |
author_facet | Marini, Luigi |
author_role | aut |
author_sort | Marini, Luigi |
author_variant | l m lm |
building | Verbundindex |
bvnumber | BV021679490 |
callnumber-first | Q - Science |
callnumber-label | QE516 |
callnumber-raw | QE516.C37 |
callnumber-search | QE516.C37 |
callnumber-sort | QE 3516 C37 |
callnumber-subject | QE - Geology |
classification_rvk | TZ 9980 TH 4000 RB 10118 |
ctrlnum | (OCoLC)69484109 (DE-599)BVBBV021679490 |
dewey-full | 628.5/32 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 628 - Sanitary engineering |
dewey-raw | 628.5/32 |
dewey-search | 628.5/32 |
dewey-sort | 3628.5 232 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Geologie / Paläontologie Bauingenieurwesen Geographie |
discipline_str_mv | Geologie / Paläontologie Bauingenieurwesen Geographie |
edition | 1. edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01843nam a2200445 cb4500</leader><controlfield tag="001">BV021679490</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220916 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060801s2007 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444529500</subfield><subfield code="9">0-444-52950-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444529503</subfield><subfield code="9">978-0-444-52950-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)69484109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021679490</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE516.C37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">628.5/32</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TZ 9980</subfield><subfield code="0">(DE-625)145212:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TH 4000</subfield><subfield code="0">(DE-625)162618:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10118</subfield><subfield code="0">(DE-625)142220:12622</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marini, Luigi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geological sequestration of carbon dioxide</subfield><subfield code="b">thermodynamics, kinetics, and reaction path modeling</subfield><subfield code="c">Luigi Marini</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 453 S.</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Developments in geochemistry</subfield><subfield code="v">11</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geological carbon sequestration</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sequestrierung</subfield><subfield code="0">(DE-588)7610107-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohlendioxid</subfield><subfield code="0">(DE-588)4031648-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kohlendioxid</subfield><subfield code="0">(DE-588)4031648-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sequestrierung</subfield><subfield code="0">(DE-588)7610107-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Developments in geochemistry</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV000011334</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014893732&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014893732</subfield></datafield></record></collection> |
id | DE-604.BV021679490 |
illustrated | Illustrated |
index_date | 2024-07-02T15:10:52Z |
indexdate | 2024-07-09T20:41:29Z |
institution | BVB |
isbn | 0444529500 9780444529503 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014893732 |
oclc_num | 69484109 |
open_access_boolean | |
owner | DE-703 DE-83 DE-634 DE-188 |
owner_facet | DE-703 DE-83 DE-634 DE-188 |
physical | XV, 453 S. Illustrationen, Diagramme |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Elsevier |
record_format | marc |
series | Developments in geochemistry |
series2 | Developments in geochemistry |
spelling | Marini, Luigi Verfasser aut Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling Luigi Marini 1. edition Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo Elsevier 2007 XV, 453 S. Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Developments in geochemistry 11 Geological carbon sequestration Sequestrierung (DE-588)7610107-1 gnd rswk-swf Kohlendioxid (DE-588)4031648-8 gnd rswk-swf Kohlendioxid (DE-588)4031648-8 s Sequestrierung (DE-588)7610107-1 s DE-188 Developments in geochemistry 11 (DE-604)BV000011334 11 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014893732&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Marini, Luigi Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling Developments in geochemistry Geological carbon sequestration Sequestrierung (DE-588)7610107-1 gnd Kohlendioxid (DE-588)4031648-8 gnd |
subject_GND | (DE-588)7610107-1 (DE-588)4031648-8 |
title | Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling |
title_auth | Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling |
title_exact_search | Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling |
title_exact_search_txtP | Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling |
title_full | Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling Luigi Marini |
title_fullStr | Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling Luigi Marini |
title_full_unstemmed | Geological sequestration of carbon dioxide thermodynamics, kinetics, and reaction path modeling Luigi Marini |
title_short | Geological sequestration of carbon dioxide |
title_sort | geological sequestration of carbon dioxide thermodynamics kinetics and reaction path modeling |
title_sub | thermodynamics, kinetics, and reaction path modeling |
topic | Geological carbon sequestration Sequestrierung (DE-588)7610107-1 gnd Kohlendioxid (DE-588)4031648-8 gnd |
topic_facet | Geological carbon sequestration Sequestrierung Kohlendioxid |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014893732&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000011334 |
work_keys_str_mv | AT mariniluigi geologicalsequestrationofcarbondioxidethermodynamicskineticsandreactionpathmodeling |