Concepts in thermal physics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2006
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 464 S. Ill., graph. Darst. |
ISBN: | 9780198567691 9780198567707 0198567693 0198567707 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021672362 | ||
003 | DE-604 | ||
005 | 20180827 | ||
007 | t | ||
008 | 060726s2006 ad|| |||| 00||| eng d | ||
020 | |a 9780198567691 |9 978-0-19-856769-1 | ||
020 | |a 9780198567707 |9 978-0-19-856770-7 | ||
020 | |a 0198567693 |9 0-19-856769-3 | ||
020 | |a 0198567707 |9 0-19-856770-7 | ||
035 | |a (OCoLC)67869269 | ||
035 | |a (DE-599)BVBBV021672362 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-20 |a DE-19 |a DE-91G |a DE-634 |a DE-11 | ||
050 | 0 | |a QC254.2 | |
082 | 0 | |a 536 |2 22 | |
084 | |a UG 1000 |0 (DE-625)145607: |2 rvk | ||
084 | |a UG 3500 |0 (DE-625)145626: |2 rvk | ||
084 | |a PHY 050f |2 sdnb | ||
100 | 1 | |a Blundell, Stephen |d 1967- |e Verfasser |0 (DE-588)132321440 |4 aut | |
245 | 1 | 0 | |a Concepts in thermal physics |c Stephen J. Blundell and Katherine M. Blundell |
250 | |a 1. publ. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2006 | |
300 | |a XVIII, 464 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Heat | |
650 | 4 | |a Statistical mechanics | |
650 | 4 | |a Thermodynamics | |
650 | 0 | 7 | |a Statistische Mechanik |0 (DE-588)4056999-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Thermodynamik |0 (DE-588)4059827-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Thermodynamik |0 (DE-588)4059827-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Statistische Mechanik |0 (DE-588)4056999-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Blundell, Katherine M. |e Verfasser |0 (DE-588)1065695233 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014886705&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014886705 |
Datensatz im Suchindex
_version_ | 1804135489130725376 |
---|---|
adam_text | Contents
I Preliminaries
Introduction
2
1.1
What is a mole?
3
1.2
The thermodynamic limit
4
1.3
The ideal gas
6
1.4
Combinatorial problems
7
1.5
Plan of the book
9
Exercises
12
Heat
13
2.1
A definition of heat
13
2.2
Heat capacity
14
Exercises
17
Probability
18
3.1
Discrete probability distributions
19
3.2
Continuous probability distributions
20
3.3
Linear transformation
21
3.4
Variance
22
3.5
Linear transformation and the variance
23
3.6
Independent variables
24
Further reading
27
Exercises
27
Temperature and the Boltzmann factor
30
4.1
Thermal equilibrium
30
4.2
Thermometers
31
4.3
The microstates and macrostates
33
4.4
A statistical definition of temperature
34
4.5
Ensembles
36
4.6
Canonical ensemble
36
4.7
Applications of the Boltzmann distribution
40
Further reading
44
Exercises
44
II Kinetic theory of gases
45
5
The Maxwell—Boltzmann distribution
46
xii Contents
5.1
The velocity distribution
46
5.2
The speed distribution
47
5.2.1
(v) and (v2)
48
5.2.2
The mean kinetic energy of a gas molecule
48
5.2.3
The maximum of
ƒ
(v)
49
5.3
Experimental justification
49
Exercises
52
Pressure
54
6.1
Molecular distributions
55
6.1.1
Solid angles
55
6.1.2
The number of molecules travelling in a certain
direction at a certain speed
55
6.1.3
The number of molecules hitting a wall
56
6.2
The ideal gas law
56
6.3
Dalton s law
58
Exercises
59
Molecular effusion
62
7.1
Flux
62
7.2
Effusion
64
Exercises
67
The mean free path and collisions
68
8.1
The mean collision time
68
8.2
The collision cross-section
69
8.3
The mean free path
71
Exercises
72
III Transport and thermal diffusion
73
9
Transport properties in gases
74
9.1
Viscosity
74
9.2
Thermal conductivity
79
9.3
Diffusion
81
9.4
More-detailed theory
84
Further reading
86
Exercises
87
10
The thermal diffusion equation
88
10.1
Derivation of the thermal diffusion equation
88
10.2
The one-dimensional thermal diffusion equation
89
10.3
The steady state
92
10.4
The thermal diffusion equation for a sphere
92
10.5
Newton s law of cooling
95
10.6
The Prandtl number
97
10.7
Sources of heat
98
Exercises
99
Contents xiii
IV The first law
103
11
Energy
104
11.1
Some definitions
104
11.1.1
A system in thermal equilibrium
104
11.1.2
Functions of state
104
11.2
The first law of thermodynamics
106
11.3
Heat capacity
108
Exercises 111
12
Isothermal and adiabatic processes
114
12.1
Reversibility
114
12.2
Isothermal expansion of an ideal gas
116
12.3
Adiabatic expansion of an ideal gas
117
12.4
Adiabatic atmosphere
117
Exercises
119
V The second law
121
13
Heat engines and the second law
122
13.1
The second law of thermodynamics
122
13.2
The Carnot engine
123
13.3
Carnot s theorem
126
13.4
Equivalence of Clausius and Kelvin statements
127
13.5
Examples of heat engines
127
13.6
Heat engines running backwards
129
13.7
Clausius theorem
130
Further reading
133
Exercises
133
14
Entropy
136
14.1
Definition of entropy
136
14.2
Irreversible change
136
14.3
The first law revisited
138
14.4
The Joule expansion
140
14.5
The statistical basis for entropy
142
14.6
The entropy of mixing
143
14.7
Maxwell s demon
145
14.8
Entropy and probability
146
Exercises
149
15
Information theory
153
15.1
Information and Shannon entropy
153
15.2
Information and thermodynamics
155
15.3
Data compression
156
15.4
Quantum information
158
Further reading
161
Exercises
161
xiv Contents
VI Thermodynamics in action
163
16
Thermodynamic potentials
164
16.1
Internal energy,
U
164
16.2
Enthalpy,
Я
165
16.3
Helmholtz function,
F
166
16.4
Gibbs function, G.
167
16.5
Availability 168
16.6
Maxwell s relations
170
Exercises
178
17
Rods, bubbles and magnets
182
17.1
Elastic rod
182
17.2
Surface tension
185
17.3
Paramagnetism
186
Exercises
192
18
The third law
193
18.1
Different statements of the third law
193
18.2
Consequences of the third law
195
Exercises
198
VII
Statistical mechanics
199
19
Equipartition of energy
200
19.1
Equipartition theorem
200
19.2
Applications
203
19.2.1
Translational motion in a monatomic gas
203
19.2.2
Rotational motion in a diatomic gas
203
19.2.3
Vibrational motion in a diatomic gas
204
19.2.4
The heat capacity of a solid
205
19.3
Assumptions made
205
19.4
Brownian motion
207
Exercises
208
20
The partition function
209
20.1
Writing down the partition function
210
20.2
Obtaining the functions of state
211
20.3
The big idea
218
20.4
Combining partition functions
218
Exercises
219
21
Statistical mechanics of an ideal gas
221
21.1
Density of states
221
21.2
Quantum concentration
223
21.3
Distinguishability
224
21.4
Functions of state of the ideal gas
225
21.5
Gibbs paradox
228
Contents xv
21.6
Heat capacity of a diatomic gas
229
Exercises
230
22
The chemical potential
232
22.1
A definition of the chemical potential
232
22.2
The meaning of the chemical potential
233
22.3
Grand partition function
235
22.4
Grand potential
236
22.5
Chemical potential as Gibbs function per particle
238
22.6
Many types of particle
238
22.7
Particle number conservation laws
239
22.8
Chemical potential and chemical reactions
240
Further reading
245
Exercises
246
23
Photons
247
23.1
The classical thermodynamics of electromagnetic radiation
248
23.2
Spectral energy density
249
23.3
Kirchhoff s law
250
23.4
Radiation pressure
252
23.5
The statistical mechanics of the photon gas
253
23.6
Black body distribution
254
23.7
Cosmic Microwave Background radiation
257
23.8
The Einstein A and
В
coefficients
258
Further reading
261
Exercises
262
24
Phonons
263
24.1
The Einstein model
263
24.2
The Debye model
265
24.3
Phonon dispersion
268
Further reading
271
Exercises
271
VIII
Beyond the ideal gas
273
25
Relativistic gases
274
25.1
Relativistic dispersion relation for massive particles
274
25.2
The ultrarelativistic gas
274
25.3
Adiabatic expansion of an ultrarelativistic gas
277
Exercises
279
26
Real gases
280
26.1
The van
der Waals
gas 280
26.2
The
Dieterici
equation
288
26.3
Virial expansion
290
26.4
The law of corresponding states
294
Exercises
296
xvi Contents
27
Cooling real gases
297
27.1
The Joule expansion
297
27.2
Isothermal expansion
299
27.3
Joule-Kelvin expansion
300
27.4
Liquefaction of gases
302
Exercises
304
28
Phase transitions
305
28.1
Latent heat
305
28.2
Chemical potential and phase changes
308
28.3
The Clausius-Clapeyron equation
308
28.4
Stability
&
metastability
313
28.5
The Gibbs phase rule
316
28.6
Colligative properties
318
28.7
Classification of phase transitions
320
Further reading
323
Exercises
323
29
Base-Einstein and Fermi-Dirac distributions
325
29.1
Exchange and symmetry
325
29.2
Wave functions of identical particles
326
29.3
The statistics of identical particles
329
Further reading
332
Exercises
332
30
Quantum gases and condensates
337
30.1
The non-interacting quantum fluid
337
30.2
The Fermi gas
340
30.3
The
Bose gas
345
30.4
Bose-Einstein condensation
(ВЕС)
346
Further reading
351
Exercises
352
IX Special topics
353
31
Sound waves
354
31.1
Sound waves under isothermal conditions
355
31.2
Sound waves under adiabatic conditions
355
31.3
Are sound waves in general adiabatic or isothermal?
356
31.4
Derivation of the speed of sound within fluids
357
Further reading
360
Exercises
360
32
Shock waves
361
32.1
The
Mach
number
361
32.2
Structure of shock waves
361
32.3
Shock conservation laws
363
32.4
The Rankine-Hugoniot conditions
364
Contents xvii
Further reading
367
Exercises
367
33
Brownian motion and fluctuations
368
33.1
Brownian motion
368
33.2
Johnson noise
371
33.3
Fluctuations
372
33.4
Fluctuations and the availability
373
33.5
Linear response
375
33.6
Correlation functions
378
Further reading
385
Exercises
385
34
Non-
equilibrium thermodynamics
386
34.1
Entropy production
386
34.2
The kinetic coefficients
387
34.3
Proof of the Onsager reciprocal relations
388
34.4
Thermoelectricity
391
34.5
Time reversal and the arrow of time
395
Further reading
397
Exercises
397
35
Stars
398
35.1
Gravitational interaction
399
35.1.1
Gravitational collapse and the Jeans criterion
399
35.1.2
Hydrostatic equilibrium
401
35.1.3
The virial theorem
402
35.2
Nuclear reactions
404
35.3
Heat transfer
405
35.3.1
Heat transfer by photon diffusion
405
35.3.2
Heat transfer by convection
407
35.3.3
Scaling relations
408
Further reading
412
Exercises
412
36
Compact objects
413
36.1
Electron degeneracy pressure
413
36.2
White dwarfs
415
36.3
Neutron stars
416
36.4
Black holes
418
36.5
Accretion
419
36.6
Black holes and entropy
420
36.7
Life, the Universe and Entropy
421
Further reading
423
Exercises
423
37
Earth s atmosphere
424
37.1
Solar energy
424
37.2
The temperature profile in the atmosphere
425
xviii Contents
37.3
The greenhouse
effect
427
Further reading
432
Exercises
432
A Fundamental constants
433
В
Useful formulae
434
С
Useful mathematics
436
C.I The factorial integral
436
C.2 The Gaussian integral
436
C.3 Stirling s formula
439
C.4 Riemann
zeta
function
441
C.5 The polylogarithm
442
C.6 Partial derivatives
443
С
7
Exact differentials
444
C.8 Volume of a hypersphere
445
C.9 Jacobians
445
CIO The Dirac delta function
447
C.ll Fourier transforms
447
C.I
2
Solution of the diffusion equation
448
C.13
Lagrange
multipliers
449
D
The electromagnetic spectrum
451
E Some
thermodynamical definitions
452
F
Thermodynamic expansion formulae
453
G
Reduced mass
454
H
Glossary of main symbols
455
I Bibliography
457
Index
460
|
adam_txt |
Contents
I Preliminaries
Introduction
2
1.1
What is a mole?
3
1.2
The thermodynamic limit
4
1.3
The ideal gas
6
1.4
Combinatorial problems
7
1.5
Plan of the book
9
Exercises
12
Heat
13
2.1
A definition of heat
13
2.2
Heat capacity
14
Exercises
17
Probability
18
3.1
Discrete probability distributions
19
3.2
Continuous probability distributions
20
3.3
Linear transformation
21
3.4
Variance
22
3.5
Linear transformation and the variance
23
3.6
Independent variables
24
Further reading
27
Exercises
27
Temperature and the Boltzmann factor
30
4.1
Thermal equilibrium
30
4.2
Thermometers
31
4.3
The microstates and macrostates
33
4.4
A statistical definition of temperature
34
4.5
Ensembles
36
4.6
Canonical ensemble
36
4.7
Applications of the Boltzmann distribution
40
Further reading
44
Exercises
44
II Kinetic theory of gases
45
5
The Maxwell—Boltzmann distribution
46
xii Contents
5.1
The velocity distribution
46
5.2
The speed distribution
47
5.2.1
(v) and (v2)
48
5.2.2
The mean kinetic energy of a gas molecule
48
5.2.3
The maximum of
ƒ
(v)
49
5.3
Experimental justification
49
Exercises
52
Pressure
54
6.1
Molecular distributions
55
6.1.1
Solid angles
55
6.1.2
The number of molecules travelling in a certain
direction at a certain speed
55
6.1.3
The number of molecules hitting a wall
56
6.2
The ideal gas law
56
6.3
Dalton's law
58
Exercises
59
Molecular effusion
62
7.1
Flux
62
7.2
Effusion
64
Exercises
67
The mean free path and collisions
68
8.1
The mean collision time
68
8.2
The collision cross-section
69
8.3
The mean free path
71
Exercises
72
III Transport and thermal diffusion
73
9
Transport properties in gases
74
9.1
Viscosity
74
9.2
Thermal conductivity
79
9.3
Diffusion
81
9.4
More-detailed theory
84
Further reading
86
Exercises
87
10
The thermal diffusion equation
88
10.1
Derivation of the thermal diffusion equation
88
10.2
The one-dimensional thermal diffusion equation
89
10.3
The steady state
92
10.4
The thermal diffusion equation for a sphere
92
10.5
Newton's law of cooling
95
10.6
The Prandtl number
97
10.7
Sources of heat
98
Exercises
99
Contents xiii
IV The first law
103
11
Energy
104
11.1
Some definitions
104
11.1.1
A system in thermal equilibrium
104
11.1.2
Functions of state
104
11.2
The first law of thermodynamics
106
11.3
Heat capacity
108
Exercises 111
12
Isothermal and adiabatic processes
114
12.1
Reversibility
114
12.2
Isothermal expansion of an ideal gas
116
12.3
Adiabatic expansion of an ideal gas
117
12.4
Adiabatic atmosphere
117
Exercises
119
V The second law
121
13
Heat engines and the second law
122
13.1
The second law of thermodynamics
122
13.2
The Carnot engine
123
13.3
Carnot's theorem
126
13.4
Equivalence of Clausius and Kelvin statements
127
13.5
Examples of heat engines
127
13.6
Heat engines running backwards
129
13.7
Clausius' theorem
130
Further reading
133
Exercises
133
14
Entropy
136
14.1
Definition of entropy
136
14.2
Irreversible change
136
14.3
The first law revisited
138
14.4
The Joule expansion
140
14.5
The statistical basis for entropy
142
14.6
The entropy of mixing
143
14.7
Maxwell's demon
145
14.8
Entropy and probability
146
Exercises
149
15
Information theory
153
15.1
Information and Shannon entropy
153
15.2
Information and thermodynamics
155
15.3
Data compression
156
15.4
Quantum information
158
Further reading
161
Exercises
161
xiv Contents
VI Thermodynamics in action
163
16
Thermodynamic potentials
164
16.1
Internal energy,
U
164
16.2
Enthalpy,
Я
165
16.3
Helmholtz function,
F
166
16.4
Gibbs function, G.
167
16.5
Availability 168
16.6
Maxwell's relations
170
Exercises
178
17
Rods, bubbles and magnets
182
17.1
Elastic rod
182
17.2
Surface tension
185
17.3
Paramagnetism
186
Exercises
192
18
The third law
193
18.1
Different statements of the third law
193
18.2
Consequences of the third law
195
Exercises
198
VII
Statistical mechanics
199
19
Equipartition of energy
200
19.1
Equipartition theorem
200
19.2
Applications
203
19.2.1
Translational motion in a monatomic gas
203
19.2.2
Rotational motion in a diatomic gas
203
19.2.3
Vibrational motion in a diatomic gas
204
19.2.4
The heat capacity of a solid
205
19.3
Assumptions made
205
19.4
Brownian motion
207
Exercises
208
20
The partition function
209
20.1
Writing down the partition function
210
20.2
Obtaining the functions of state
211
20.3
The big idea
218
20.4
Combining partition functions
218
Exercises
219
21
Statistical mechanics of an ideal gas
221
21.1
Density of states
221
21.2
Quantum concentration
223
21.3
Distinguishability
224
21.4
Functions of state of the ideal gas
225
21.5
Gibbs paradox
228
Contents xv
21.6
Heat capacity of a diatomic gas
229
Exercises
230
22
The chemical potential
232
22.1
A definition of the chemical potential
232
22.2
The meaning of the chemical potential
233
22.3
Grand partition function
235
22.4
Grand potential
236
22.5
Chemical potential as Gibbs function per particle
238
22.6
Many types of particle
238
22.7
Particle number conservation laws
239
22.8
Chemical potential and chemical reactions
240
Further reading
245
Exercises
246
23
Photons
247
23.1
The classical thermodynamics of electromagnetic radiation
248
23.2
Spectral energy density
249
23.3
Kirchhoff's law
250
23.4
Radiation pressure
252
23.5
The statistical mechanics of the photon gas
253
23.6
Black body distribution
254
23.7
Cosmic Microwave Background radiation
257
23.8
The Einstein A and
В
coefficients
258
Further reading
261
Exercises
262
24
Phonons
263
24.1
The Einstein model
263
24.2
The Debye model
265
24.3
Phonon dispersion
268
Further reading
271
Exercises
271
VIII
Beyond the ideal gas
273
25
Relativistic gases
274
25.1
Relativistic dispersion relation for massive particles
274
25.2
The ultrarelativistic gas
274
25.3
Adiabatic expansion of an ultrarelativistic gas
277
Exercises
279
26
Real gases
280
26.1
The van
der Waals
gas 280
26.2
The
Dieterici
equation
288
26.3
Virial expansion
290
26.4
The law of corresponding states
294
Exercises
296
xvi Contents
27
Cooling real gases
297
27.1
The Joule expansion
297
27.2
Isothermal expansion
299
27.3
Joule-Kelvin expansion
300
27.4
Liquefaction of gases
302
Exercises
304
28
Phase transitions
305
28.1
Latent heat
305
28.2
Chemical potential and phase changes
308
28.3
The Clausius-Clapeyron equation
308
28.4
Stability
&
metastability
313
28.5
The Gibbs phase rule
316
28.6
Colligative properties
318
28.7
Classification of phase transitions
320
Further reading
323
Exercises
323
29
Base-Einstein and Fermi-Dirac distributions
325
29.1
Exchange and symmetry
325
29.2
Wave functions of identical particles
326
29.3
The statistics of identical particles
329
Further reading
332
Exercises
332
30
Quantum gases and condensates
337
30.1
The non-interacting quantum fluid
337
30.2
The Fermi gas
340
30.3
The
Bose gas
345
30.4
Bose-Einstein condensation
(ВЕС)
346
Further reading
351
Exercises
352
IX Special topics
353
31
Sound waves
354
31.1
Sound waves under isothermal conditions
355
31.2
Sound waves under adiabatic conditions
355
31.3
Are sound waves in general adiabatic or isothermal?
356
31.4
Derivation of the speed of sound within fluids
357
Further reading
360
Exercises
360
32
Shock waves
361
32.1
The
Mach
number
361
32.2
Structure of shock waves
361
32.3
Shock conservation laws
363
32.4
The Rankine-Hugoniot conditions
364
Contents xvii
Further reading
367
Exercises
367
33
Brownian motion and fluctuations
368
33.1
Brownian motion
368
33.2
Johnson noise
371
33.3
Fluctuations
372
33.4
Fluctuations and the availability
373
33.5
Linear response
375
33.6
Correlation functions
378
Further reading
385
Exercises
385
34
Non-
equilibrium thermodynamics
386
34.1
Entropy production
386
34.2
The kinetic coefficients
387
34.3
Proof of the Onsager reciprocal relations
388
34.4
Thermoelectricity
391
34.5
Time reversal and the arrow of time
395
Further reading
397
Exercises
397
35
Stars
398
35.1
Gravitational interaction
399
35.1.1
Gravitational collapse and the Jeans criterion
399
35.1.2
Hydrostatic equilibrium
401
35.1.3
The virial theorem
402
35.2
Nuclear reactions
404
35.3
Heat transfer
405
35.3.1
Heat transfer by photon diffusion
405
35.3.2
Heat transfer by convection
407
35.3.3
Scaling relations
408
Further reading
412
Exercises
412
36
Compact objects
413
36.1
Electron degeneracy pressure
413
36.2
White dwarfs
415
36.3
Neutron stars
416
36.4
Black holes
418
36.5
Accretion
419
36.6
Black holes and entropy
420
36.7
Life, the Universe and Entropy
421
Further reading
423
Exercises
423
37
Earth's atmosphere
424
37.1
Solar energy
424
37.2
The temperature profile in the atmosphere
425
xviii Contents
37.3
The greenhouse
effect
427
Further reading
432
Exercises
432
A Fundamental constants
433
В
Useful formulae
434
С
Useful mathematics
436
C.I The factorial integral
436
C.2 The Gaussian integral
436
C.3 Stirling's formula
439
C.4 Riemann
zeta
function
441
C.5 The polylogarithm
442
C.6 Partial derivatives
443
С
7
Exact differentials
444
C.8 Volume of a hypersphere
445
C.9 Jacobians
445
CIO The Dirac delta function
447
C.ll Fourier transforms
447
C.I
2
Solution of the diffusion equation
448
C.13
Lagrange
multipliers
449
D
The electromagnetic spectrum
451
E Some
thermodynamical definitions
452
F
Thermodynamic expansion formulae
453
G
Reduced mass
454
H
Glossary of main symbols
455
I Bibliography
457
Index
460 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Blundell, Stephen 1967- Blundell, Katherine M. |
author_GND | (DE-588)132321440 (DE-588)1065695233 |
author_facet | Blundell, Stephen 1967- Blundell, Katherine M. |
author_role | aut aut |
author_sort | Blundell, Stephen 1967- |
author_variant | s b sb k m b km kmb |
building | Verbundindex |
bvnumber | BV021672362 |
callnumber-first | Q - Science |
callnumber-label | QC254 |
callnumber-raw | QC254.2 |
callnumber-search | QC254.2 |
callnumber-sort | QC 3254.2 |
callnumber-subject | QC - Physics |
classification_rvk | UG 1000 UG 3500 |
ctrlnum | (OCoLC)67869269 (DE-599)BVBBV021672362 |
dewey-full | 536 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536 |
dewey-search | 536 |
dewey-sort | 3536 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01919nam a2200505 c 4500</leader><controlfield tag="001">BV021672362</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180827 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060726s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198567691</subfield><subfield code="9">978-0-19-856769-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198567707</subfield><subfield code="9">978-0-19-856770-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198567693</subfield><subfield code="9">0-19-856769-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198567707</subfield><subfield code="9">0-19-856770-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)67869269</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021672362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC254.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 1000</subfield><subfield code="0">(DE-625)145607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3500</subfield><subfield code="0">(DE-625)145626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 050f</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blundell, Stephen</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132321440</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Concepts in thermal physics</subfield><subfield code="c">Stephen J. Blundell and Katherine M. Blundell</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 464 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blundell, Katherine M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1065695233</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014886705&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014886705</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV021672362 |
illustrated | Illustrated |
index_date | 2024-07-02T15:09:09Z |
indexdate | 2024-07-09T20:41:19Z |
institution | BVB |
isbn | 9780198567691 9780198567707 0198567693 0198567707 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014886705 |
oclc_num | 67869269 |
open_access_boolean | |
owner | DE-703 DE-20 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-634 DE-11 |
owner_facet | DE-703 DE-20 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-634 DE-11 |
physical | XVIII, 464 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Blundell, Stephen 1967- Verfasser (DE-588)132321440 aut Concepts in thermal physics Stephen J. Blundell and Katherine M. Blundell 1. publ. Oxford [u.a.] Oxford Univ. Press 2006 XVIII, 464 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Heat Statistical mechanics Thermodynamics Statistische Mechanik (DE-588)4056999-8 gnd rswk-swf Thermodynamik (DE-588)4059827-5 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Thermodynamik (DE-588)4059827-5 s DE-604 Statistische Mechanik (DE-588)4056999-8 s Blundell, Katherine M. Verfasser (DE-588)1065695233 aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014886705&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Blundell, Stephen 1967- Blundell, Katherine M. Concepts in thermal physics Heat Statistical mechanics Thermodynamics Statistische Mechanik (DE-588)4056999-8 gnd Thermodynamik (DE-588)4059827-5 gnd |
subject_GND | (DE-588)4056999-8 (DE-588)4059827-5 (DE-588)4123623-3 |
title | Concepts in thermal physics |
title_auth | Concepts in thermal physics |
title_exact_search | Concepts in thermal physics |
title_exact_search_txtP | Concepts in thermal physics |
title_full | Concepts in thermal physics Stephen J. Blundell and Katherine M. Blundell |
title_fullStr | Concepts in thermal physics Stephen J. Blundell and Katherine M. Blundell |
title_full_unstemmed | Concepts in thermal physics Stephen J. Blundell and Katherine M. Blundell |
title_short | Concepts in thermal physics |
title_sort | concepts in thermal physics |
topic | Heat Statistical mechanics Thermodynamics Statistische Mechanik (DE-588)4056999-8 gnd Thermodynamik (DE-588)4059827-5 gnd |
topic_facet | Heat Statistical mechanics Thermodynamics Statistische Mechanik Thermodynamik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014886705&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT blundellstephen conceptsinthermalphysics AT blundellkatherinem conceptsinthermalphysics |