Science of synthesis: Houben-Weyl methods of molecular transformations 28 = Category 4, Compounds with two carbon-heteroatom bonds Quinones and heteroatom analogues
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Stuttgart [u.a.]
Thieme
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XL, 1006 Seiten Illustrationen 26 cm |
ISBN: | 3131187913 1588904601 9783131187918 |
Internformat
MARC
LEADER | 00000nam a22000008cc4500 | ||
---|---|---|---|
001 | BV021661431 | ||
003 | DE-604 | ||
005 | 20240614 | ||
007 | t | ||
008 | 060718s2006 a||| |||| 00||| eng d | ||
020 | |a 3131187913 |9 3-13-118791-3 | ||
020 | |a 1588904601 |9 1-58890-460-1 | ||
020 | |a 9783131187918 |c hbk. |9 978-3-13-118791-8 | ||
035 | |a (OCoLC)634482094 | ||
035 | |a (DE-599)BVBBV021661431 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-19 |a DE-355 |a DE-210 |a DE-91G |a DE-188 |a DE-11 | ||
084 | |a VK 7000 |0 (DE-625)147414:253 |2 rvk | ||
100 | 1 | |a Avendaño, C. |4 aut | |
245 | 1 | 0 | |a Science of synthesis |b Houben-Weyl methods of molecular transformations |n 28 = Category 4, Compounds with two carbon-heteroatom bonds |p Quinones and heteroatom analogues |c ed. board: D. Bellus ... |
264 | 1 | |a Stuttgart [u.a.] |b Thieme |c 2006 | |
300 | |a XL, 1006 Seiten |b Illustrationen |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Chemische Synthese |0 (DE-588)4133806-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chinone |0 (DE-588)4147707-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chinone |0 (DE-588)4147707-8 |D s |
689 | 0 | 1 | |a Chemische Synthese |0 (DE-588)4133806-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bellus, Daniel |e Sonstige |4 oth | |
700 | 1 | |a Griesbeck, Axel G. |0 (DE-588)1029929874 |4 edt | |
700 | 1 | |a Houben, Josef |d 1875-1940 |e Sonstige |0 (DE-588)117013870 |4 oth | |
773 | 0 | 8 | |w (DE-604)BV013247070 |g 28 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-13-183811-7 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014875927&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-014875927 |
Datensatz im Suchindex
_version_ | 1807863419500494848 |
---|---|
adam_text |
^^^^.^ _™™_ XIII
Table of Contents
Introduction
A. G. Griesbeck
Introduction 1
28.1 Product Class 1: Benzo 1,4 quinones
28.1.1 Product Subclass 1: Metal Substituted Benzo 1,4 quinones
B. G. Vong and E. A. Theodorakis
28.1.1 Product Subclass 1: Metal Substituted Benzo 1,4 quinones 13
28.1.1.1 Synthesis of Product Subclass 1 14
28.1.1.1.1 Method 1: Tin Substituted Benzo 1,4 quinones by Cyclobutenone
Ring Expansion 14
28.1.1.1.2 Method 2: Tin Substituted Benzo 1,4 quinones by Stannylation of
Benzo 1,4 quinones 16
28.1.1.1.3 Method 3: Silicon Substituted Benzo 1,4 quinones by Reaction of
Organolithium Species 16
28.1.1.1.4 Method 4: Silicon Substituted Benzo 1,4 quinones by Cyclobutenone
Ring Expansion 17
28.1.1.1.5 Method 5: Silicon Substituted Benzo 1,4 quinones by Carbene Annulation 20
28.1.1.1.6 Method 6: Silicon Substituted Benzo 1,4 quinones by
Nucleophilic Substitution 21
28.1.1.1.7 Method 7: Boron Substituted Benzo 1,4 quinones by
Carbene Benzannulation 22
28.1.1.2 Applications of Product Subclass 1 in Organic Synthesis 22
28.1.1.2.1 Method 1: Palladium Catalyzed Cross Coupling Reactions of
Tin Substituted Benzo 1,4 quinones 22
28.1.1.2.1.1 Variation 1: Allylation 23
28.1.1.2.1.2 Variation 2: Coupling with Aromatic and Heteroaromatic Iodides 23
28.1.1.2.1.3 Variation 3: Oxidative Dimerization 25
28.1.1.2.1.4 Variation 4: Benzannulation 26
28.1.1.2.2 Method 2: Silicon/Halide Exchange Reactions of Silicon Substituted
Benzo 1,4 quinones 27
28.1.1.2.3 Method 3: Oxidation of the Boron Substituent in Boron Substituted
Benzo 1,4 quinones 28
XIV Table of Contents
28.1.2 Product Subclass 2: Halogen Substituted Benzo 1,4 quinones
M. Balci, M. Celik, and M. S. Gultekin
28.1.2 Product Subclass 2: Halogen Substituted Benzo 1,4 quinones 31
28.1.2.1 Monohalobenzo 1,4 quinones 31
28.1.2.1.1 Synthesis of Monohalobenzo 1,4 quinones 31
28.1.2.1.1.1 Method 1: Oxidation of 4 Amino 3 iodophenol Using
Potassium Dichromate 31
28.1.2.1.1.2 Method 2: Oxidation of 1,4 Hydroquinones with Persulfate or
Ammonium Cerium(IV) Nitrate 32
28.1.2.1.1.3 Method 3: Oxidation of 1,4 Hydroquinones Catalyzed by
an Oxovanadium Complex 34
28.1.2.1.1.4 Method 4: Oxidation of 1,4 Hydroquinones Catalyzed by
Caseous Nitrogen Oxides 34
28.1.2.1.1.5 Methods 5: Miscellaneous Oxidations of Anilines and 1,4 Hydroquinones 35
28.1.2.1.2 Applications of Monohalobenzo 1,4 quinones in Organic Synthesis 35
28.1.2.2 2,3 Dihalobenzo 1,4 quinones 39
28.1.2.2.1 Synthesis of 2,3 Dihalobenzo 1,4 quinones 39
28.1.2.2.1.1 Methodi: Halogenation of Benzo 1,4 quinone 39
28.1.2.2.1.2 Method 2: Oxidation of a 1,4 Hydroquinone Using
Ammonium Cerium(IV) Nitrate 41
28.1.2.2.2 Applications of 2,3 Dihalobenzo 1,4 quinones in Organic Synthesis 41
28.1.2.3 2,5 Dihalobenzo 1,4 quinones 42
28.1.2.3.1 Synthesis of 2,5 Dihalobenzo 1,4 quinones 42
28.1.2.3.1.1 Methodi: Oxidation of 1,2,4,5 Tetrafluorobenzene 42
28.1.2.3.1.2 Method 2: Oxidation of 1,4 Hydroquinones 43
28.1.2.3.1.3 Method 3: Oxidative Demethylation of 1,4 Dimethoxybenzenes 43
28.1.2.4 2,6 Dihalobenzo 1,4 quinones 43
28.1.2.4.1 Synthesis of 2,6 Dihalobenzo 1,4 quinones 43
28.1.2.4.1.1 Method 1: Oxidation of Phenols and 1,4 Hydroquinones Catalyzed by
Metalated Phthalocyanines 43
28.1.2.4.1.2 Method 2: Oxidation of a 1,4 Hydroquinone Using
Ammonium Cerium(IV) Nitrate 44
28.1.2.4.1.3 Method 3: Oxidation of Phenols Using Metal Oxides 44
28.1.2.4.2 Applications of 2,6 Dihalobenzo 1,4 quinones in Organic Synthesis 45
28.1.2.5 2,3,5 Trihalobenzo 1,4 quinones 46
28.1.2.5.1 Synthesis of 2,3,5 Trihalobenzo 1,4 quinones 46
28.1.2.5.1.1 Methodi: Halogenation of Benzo 1,4 quinones 46
28.1.2.5.1.2 Method 2: Bromination of 2,5 Dichlorobenzo 1,4 quinone 46
28.1.2.5.1.3 Method 3: Oxidation of a 1,4 Hydroquinone Using
Ammonium Cerium(IV) Nitrate 47
28.1.2.5.2 Applications of 2,3,5 Trihalobenzo 1,4 quinones in Organic Synthesis 47
Table of Contents XV
28.1.2.6 2,3.5,6 Tetrahalobenzo 1,4 quinones 48
28.1.2.6.1 Synthesis of 2,3,5,6 Tetrahalobenzo 1,4 quinones 48
28.1.2.6.1.1 Method 1: Halogenation of Benzo 1,4 quinone 48
28.1.2.6.1.2 Method 2: Oxidation of 1,4 Hydroquinones Using
Hydrogen Peroxide or Chlorine 49
28.1.2.6.1.3 Method 3: Oxidation of a 1,4 Hydroquinone Using Ammonium Cerium(IV)
Nitrate, and Other Reactions 49
28.1.2.6.2 Applications of 2,3,5,6 Tetrahalobenzo 1,4 quinones in Organic Synthesis — 49
28.1.3 Product Subclass 3: Chalcogen Substituted Benzo 1,4 quinones
S. H. Kim and E. A. Theodorakis
28.1.3 Product Subclass 3: Chalcogen Substituted Benzo 1,4 quinones 53
28.1.3.1 Synthesis of Product Subclass 3 54
28.1.3.1.1 Method 1: Oxidative Dearomatization 54
28.1.3.1.1.1 Variation 1: Oxidation of Chalcogen Substituted Phenols 54
28.1.3.1.1.2 Variation 2: Oxidation of Chalcogen Substituted Hydroquinones 56
28.1.3.1.1.3 Variation 3: Oxidative Demethylation of Chalcogen Substituted
Hydroquinone Mono and Diethers 57
28.1.3.1.1.4 Variation 4: Miscellaneous Oxidations 58
28.1.3.1.2 Method 2: Nucleophilic Additions on the Benzoquinone Motif 59
28.1.3.1.2.1 Variation 1: Conjugate Addition/Oxidation 59
28.1.3.1.2.2 Variation 2: Conjugate Addition Elimination 61
28.1.3.1.3 Method 3: Ring Expansion of Cyclobutenediones 61
28.1.3.2 Applications of Product Subclass 3 in Organic Synthesis 64
28.1.3.2.1 Method 1: Cycloaddition Reactions of Chalcogen Substituted
Benzo 1,4 quinones 64
28.1.3.2.2 Method 2: Conjugate Additions of Chalcogen Substituted
Benzo 1,4 quinones 66
28.1.4 Product Subclass 4: Nitrogen and Phosphorus Substituted
Benzo 1,4 quinones
H. Lee and E. A. Theodorakis
28.1.4 Product Subclass 4: Nitrogen and Phosphorus Substituted
Benzo 1,4 quinones 71
28.1.4.1 Synthesis of Product Subclass 4 71
28.1.4.1.1 Method 1: Nitrogen Substituted Benzo 1,4 quinones by
Nucleophilic Addition/Oxidation 71
28.1.4.1.2 Method 2: Nitrogen Substituted Benzo 1,4 quinones by
Nucleophilic Substitution 74
28.1.4.1.3 Method 3: Nitrogen Substituted Benzo 1,4 quinones by
Oxidation of a Benzene Ring 75
XVI Table of Contents
28.1.4.1.4 Method 4: Phosphorus Substituted Benzo 1,4 quinones by
Addition/Elimination and Addition/Oxidation Sequences — 76
28.1.4.2 Applications of Product Subclass 4 in Organic Synthesis 77
28.1.4.2.1 Method 1: Ring Contraction of Benzoquinones 77
28.1.4.2.1.1 Variation 1: Synthesis of Cyclopentenediones from Azidoquinones 77
28.1.4.2.1.2 Variation 2: Synthesis of Butenolides from Azidoquinones 78
28.1.4.2.1.3 Variation 3: Cyanoketenes from Aminoquinones and
Their Use in Synthesis 79
28.1.4.2.2 Method 2: Formation of Oxazoles 80
28.1.4.2.3 Method 3: Synthesis of Hetarene Fused Benzo 1,4 quinones 82
28.1.5 Product Subclass 5: Benzo 1,4 quinones Substituted with Carbon
with Three Bonds to Heteroatoms
M. Balci, M. Celik, and M. S. Cultekin
28.1.5 Product Subclass 5: Benzo 1,4 quinones Substituted with Carbon
with Three Bonds to Heteroatoms 87
28.1.5.1 Benzo 1,4 quinones Substituted with Carbon with Three Bonds to Halogens 87
28.1.5.1.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Three Bonds to Halogens 88
28.1.5.1.1.1 Method 1: Oxidation of Phenols with Chlorous Acid 88
28.1.5.1.1.2 Method 2: Oxidation of Phenols with Manganese(IV) Oxide 88
28.1.5.1.1.3 Method 3: Oxidative Demethylation of Dimethoxybenzenes 89
28.1.5.1.1.4 Method 4: Oxidative Debenzylation of Bis(benzyloxy)benzenes 90
28.1.5.2 Benzo 1,4 quinones Substituted with Carbon with Three Bonds to Oxygen 91
28.1.5.2.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Three Bonds to Oxygen 92
28.1.5.2.1.1 Method 1: Oxidation of Hydroquinones with Ammonium
Cerium(IV) Salts 92
28.1.5.2.1.2 Method 2: Oxidation of Hydroquinones with Silver(ll) Oxide 93
28.1.5.2.1.3 Method 3: Oxidation of Hydroquinones with Polymer Supported
(Diacetoxyiodo)benzene 94
28.1.5.2.1.4 Method 4: Oxidative Demethylation of Dimethoxybenzenes 94
28.1.5.2.1.5 Method 5: Reaction of Maleoylcobalt Complexes with Alkynes 95
28.1.5.3 Benzo 1,4 quinones Substituted with Carbon with Two Bonds to Oxygen and
One Bond to Nitrogen 96
28.1.5.3.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Oxygen and One Bond to Nitrogen 98
28.1.5.3.1.1 Method 1: Oxidation of Hydroquinones with
Ammonium Cerium(IV) Nitrate 98
28.1.5.3.1.2 Method 2: Oxidation of Hydroquinones with Silver(l) Oxide 98
28.1.5.3.1.3 Method 3: Oxidation of Hydroquinones with Fungal Laccase 98
28.1.5.3.1.4 Method 4: Oxidative Demethylation of Dimethoxybenzenes 99
28.1.5.4 Benzo 1,4 quinones Substituted with Carbon with Three Bonds to Nitrogen 101
Table of Contents XVII
28.1.5.4.1 Synthesis of Benzol ,4 quinones Substituted with Carbon with
Three Bonds to Nitrogen 101
28.1.5.4.1.1 Method 1: Oxidation of Hydroquinones with Silver Salts 101
28.1.5.4.1.2 Method 2: Oxidation of Hydroquinones with Manganese(IV) Oxide 102
28.1.6 Product Subclass 6: Benzo 1,4 quinones Substituted with Carbon
with Two Bonds to Heteroatoms
M. Balci, M. Celik, and M. S. Giiltekin
28.1.6 Product Subclass 6: Benzo 1,4 quinones Substituted with Carbon
with Two Bonds to Heteroatoms 105
28.1.6.1 Benzo 1,4 quinones Substituted with Carbon with Two Bonds to Halogens 105
28.1.6.1.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Halogens 105
28.1.6.1.1.1 Method 1: Oxidative Demethylation of a 1,4 Dimethoxybenzene 105
28.1.6.2 Benzo 1,4 quinones Substituted with Carbon with Two Bonds to Oxygen — 106
28.1.6.2.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Oxygen 106
28.1.6.2.1.1 Method 1: Oxidation of 1,4 Hydroquinones with Silver(l) Oxide 106
28.1.6.2.1.2 Method 2: Oxidation of 1,4 Hydroquinones with Manganese(IV) Oxide 108
28.1.6.2.1.3 Method 3: Oxidation of a 1,4 Hydroquinone with
2,3 Dichloro 5,6 dicyanobenzo 1,4 quinone 109
28.1.6.2.1.4 Method 4: Oxidation of a 1,4 Hydroquinone Derivative in Aqueous Media 110
28.1.6.2.1.5 Method 5: Oxidative Demethylation of 1,4 Dimethoxybenzenes 110
28.1.6.2.2 Applications of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Oxygen in Organic Synthesis 111
28.1.6.3 Benzo 1,4 quinones Substituted with Carbon with Two Bonds to Nitrogen •¦• 112
28.1.6.3.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Nitrogen 112
28.1.6.3.1.1 Method 1: Oxidation of a Diol with Manganese(IV) Oxide 112
28.1.7 Product Subclass 7: Benzo 1,4 quinones Substituted with Carbon
with One Bond to a Heteroatom
M. Balci, M. S. Gultekin, and M. Celik
28.1.7 Product Subclass 7: Benzo 1,4 quinones Substituted with Carbon
with One Bond to a Heteroatom 115
28.1.7.1 Benzo 1,4 quinones Substituted with Carbon with One Bond to a Halogen •¦¦ 115
28.1.7.1.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
One Bond to a Halogen 115
28.1.7.1.1.1 Method 1: Demethylation of 1,4 Dimethoxybenzenes by
Electrochemical Oxidation 115
XVIII Table of Contents
28.1.7.1.1.2 Method 2: Demethylation of Dimethoxybenzenes by Oxidation with
Ammonium Cerium(IV) Nitrate 116
28.1.7.1.1.3 Method 3: Demethylation of Dimethoxybenzenes by Oxidation with
Nitric Acid 116
28.1.7.1.1.4 Method 4: Allylic Bromination and Substitution 117
28.1.7.2 Benzo 1,4 quinones Substituted with Carbon with One Bond to Oxygen 119
28.1.7.2.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
One Bond to Oxygen 119
28.1.7.2.1.1 Method 1: (Diacetoxyiodo)benzene Oxidation 119
28.1.7.2.1.2 Method 2: Oxidation of Anilines 120
28.1.7.2.1.3 Method 3: Oxidation of Hydroquinones and 1,4 Dimethoxybenzenes
with Nitric Acid 120
28.1.7.2.1.4 Method 4: Oxidation of Hydroquinones and 1,4 Dimethoxybenzenes
with Ammonium Cerium(IV) Nitrate 121
28.1.7.2.1.5 Method 5: Oxidation of Hydroquinones and 1,4 Dimethoxybenzenes
with Silver(l) Oxide 122
28.1.7.2.1.6 Method 6: Oxidation of Hydroquinones and 1,4 Dimethoxybenzenes
with Iron(lll) Chloride 125
28.1.7.2.1.7 Methods 7: Additional Methods 126
28.1.7.3 Benzo 1,4 quinones Substituted with Carbon with One Bond to Sulfur 129
28.1.7.3.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
One Bond to Sulfur 129
28.1.8 Product Subclass 8: Alkynyl , Aryl , and Alkenyl Substituted
Benzo 1,4 quinones
M. Balci, M. S. Giiltekin, and M. Celik
28.1.8 Product Subclass 8: Alkynyl , Aryl , and Alkenyl Substituted
Benzo 1,4 quinones 131
28.1.8.1 Alkynyl Substituted Benzo 1,4 quinones 131
28.1.8.1.1 Synthesis of Alkynyl Substituted Benzo 1,4 quinones 131
28.1.8.1.1.1 Method 1: Suzuki Cross Coupling of Benzo 1,4 quinones 131
28.1.8.1.1.2 Method 2: Oxidative Demethylation of 1,4 Dimethoxybenzenes 132
28.1.8.1.1.3 Method 3: Addition of Organolithium Compounds to
Benzoquinone Derivatives 134
28.1.8.1.1.3.1 Variation 1: Addition to 2,5 Dialkoxybenzo 1,4 quinones 134
28.1.8.1.1.3.2 Variation 2: Addition to Dimethoxybenzo 1,2 quinones 135
28.1.8.2 Aryl Substituted Benzo 1,4 quinones 137
28.1.8.2.1 Synthesis of Aryl Substituted Benzo 1,4 quinones 137
28.1.8.2.1.1 Method 1: Coupling Reactions of Benzo 1,4 quinones 137
28.1.8.2.1.2 Method 2: Oxidative Demethylation and Coupling of
a 1,4 Dimethoxybenzene 139
28.1.8.2.1.3 Method 3: Oxidation of 1,4 Hydroquinones Catalyzed by
an Oxovanadium Complex 139
Table of Contents XIX
28.1.8.2.1.4 Method 4: Oxidation of Phenols and Derivatives Using Metals and
Metal Oxides 140
28.1.8.2.1.5 Method 5: Oxidation of Phenols with Fremy's Salt 141
28.1.8.2.1.6 Method 6: Reaction of Fischer Carbene Complexes with
Phenylacetylenes 142
28.1.8.2.1.7 Method 7: Reaction of Phenylacetylenes with a Tetracarbonyliron Species
or with Carbon Monoxide 143
28.1.8.2.1.8 Methods 8: Additional Methods 144
28.1.8.3 Alkenyl Substituted Benzo 1,4 quinones 147
28.1.8.3.1 Synthesis of Alkenyl Substituted Benzo 1,4 quinones 147
28.1.8.3.1.1 Method 1: Direct Introduction of a Vinyl Group into Benzo 1,4 quinones 147
28.1.8.3.1.2 Method 2: Suzuki Cross Coupling of Benzo 1,4 quinones 147
28.1.8.3.1.3 Method 3: Oxidation of 1,4 Hydroquinones with Silver(l) Oxide 148
28.1.8.3.1.4 Method 4: Oxidation of a 1,4 Hydroquinone with 2,3 Dichloro
5,6 dicyanobenzo 1,4 quinone 149
28.1.8.3.1.5 Method 5: Oxidative Demethylation of 1,4 Dimethoxybenzenes with
Ammonium Cerium(IV) Nitrate 150
28.1.8.3.1.6 Method 6: Electrochemical Oxidation of 1,4 Dimethoxybenzenes 150
28.1.8.3.1.7 Method 7: Thermal Ring Expansion of Cyclobutenedione Derivatives •¦• 151
28.1.8.3.1.8 Methods 8: Additional Methods 152
28.1.9 Product Subclass 9: Alkyl Substituted Benzo 1,4 quinones
M. Balci, M. S. CGItekin, and M. Celik
28.1.9 Product Subclass 9: Alkyl Substituted Benzo 1,4 quinones 157
28.1.9.1 Monoalkylbenzo 1,4 quinones 157
28.1.9.1.1 Synthesis of Monoalkylbenzo 1,4 quinones 157
28.1.9.1.1.1 Method 1: Coupling Reactions of Benzo 1,4 quinones 157
28.1.9.1.1.2 Method 2: Oxidation of 1,4 Hydroquinones with
an Organoselenium Reagent 158
28.1.9.1.1.3 Method 3: Oxidation of 1,4 Hydroquinones with
Ammonium Cerium(IV) Nitrate 159
28.1.9.1.1.4 Method 4: Oxidation of Phenols and Derivatives 160
28.1.9.2 2,3 Dialkylbenzo 1,4 quinones 161
28.1.9.2.1 Synthesis of 2,3 Dialkylbenzo 1,4 quinones 161
28.1.9.2.1.1 Method 1: Oxidation of a 1,4 Hydroquinone with Silver(l) Oxide 161
28.1.9.2.1.2 Method 2: Oxidation of N Arylsulfonamides 161
28.1.9.2.1.3 Method 3: Reaction of Fischer Carbene Complexes with Alkynes 162
28.1.9.2.1.4 Methods 4: Additional Methods 162
28.1.9.3 2,5 Dialkylbenzo 1,4 quinones 165
28.1.9.3.1 Synthesis of 2,5 Dialkylbenzo 1,4 quinones 165
28.1.9.3.1.1 Method 1: Oxidation of Phenols and 1,4 Hydroquinones Using
Methyltrioxorhenium(VII) 165
XX Table of Contents
28.1.9.3.1.2 Method 2: Oxidation of 1,4 Hydroquinones with Polymer Supported
(Diacetoxyiodo)benzene 166
28.1.9.3.1.3 Method 3: Oxidation of 1,4 Hydroquinones and Derivatives with
Ammonium Cerium(IV) Nitrate or Pyridinium Chlorochromate 166
28.1.9.3.1.4 Methods 4: Additional Methods 168
28.1.9.4 2,6 Dialkylbenzo 1,4 quinones 170
28.1.9.4.1 Synthesis of 2,6 Dialkylbenzo 1,4 quinones 170
28.1.9.4.1.1 Method 1: Oxidation of Phenols and 1,4 Hydroquinones 170
28.1.9.4.1.2 Method 2: Reaction of Acetylenes with a Carbonyliron Species 172
28.1.9.5 2,3,5 Trialkylbenzo 1,4 quinones 173
28.1.9.5.1 Synthesis of 2,3,5 Trialkylbenzo 1,4 quinones 173
28.1.9.5.1.1 Method 1: Oxidation of Phenols and 1,4 Hydroquinones 173
28.1.9.5.1.2 Methods 2: Additional Methods 174
28.1.9.6 2,3,5,6 Tetraalkylbenzo 1,4 quinones 175
28.1.9.6.1 Synthesis of 2,3,5,6 Tetraalkylbenzo 1,4 quinones 175
28.1.9.6.1.1 Method 1: Oxidation of 1,4 Hydroquinones and Derivatives 175
28.2 Product Class 2: Benzo 1,2 quinones
V. Nair and K. V. Radhakrishnan
28.2 Product Class 2: Benzo 1,2 quinones 181
28.2.1 Synthesis of Product Class 2 182
28.2.11 Method 1: Oxidation of Catechols Using Silver(l) Salts 182
28.2.1.2 Method 2: Oxidation of Catechols Using Cerium(IV) Reagents 183
28.2.1.3 Method 3: Oxidation of Catechols Using Periodate Salts 184
28.2.14 Method 4: Oxidation of Catechols Using N Chlorosuccinimide 184
28.2.1.5 Method 5: Oxidation of Catechols Using Other Reagents 185
28.2.1.6 Method 6: Oxidation of Phenols Using Benzeneseleninic Anhydride 185
28J.U Method 7: Oxidation of Phenols Using Fremy's Salt 186
28.2.1.8 Method 8: Oxidation of Phenols Using Other Reagents 187
28.2.2 Applications of Product Class 2 in Organic Synthesis 187
28.2.2.1 Method 1: Addition of Nucleophiles 187
28.2.2.2 Method 2: Diels Alder and Related Reactions 195
28.2.2.2.1 Variation 1: Benzo 1,2 quinones as Carbodienes and Heterodienes 195
28.2.2.2.2 Variation 2: Benzo 1,2 quinones as Dienophiles 196
28.2.2.2.3 Variation 3: Benzo 1,2 quinones as Heterodienophiles 198
28.2.2 3 Method 3: Dipolar Cydoadditions 198
28J.2.3.1 Variation 1: Nitrile Oxide Addition 198
28.2.2.3.2 Variation 2: Diazomethane Addition 200
28J.2.3.3 Variation 3: Acyclic Carbonyl Ylide Addition 200
28.2.2.3.4 Variation 4: Cyclic Carbonyl Ylide Addition 201
28.2.2.3.5 Variation 5: Addition of Mesoionic Compounds 202
28.2.2.3.6 Variation 6: Addition of Phosphorus Ylides 204
Table of Contents XXI
28.2.2 4 Method 4: Multicomponent Reactions 205
28.2.2.4.1 Variation 1: Addition of Zwitterions Generated from Isocyanides and
Dimethyl Acetylenedicarboxylate 205
28.2.2.4.2 Variation 2: Addition of Zwitterions Generated from Dialkoxycarbenes
and Dimethyl Acetylenedicarboxylate 207
28.2.2.5 Methods 5: Additional Methods 208
283 Product Class 3: Naphtho 1,4 quinones
E. A. Couladouros and A. T. Strongilos
283 Product Class 3: Naphtho 1,4 quinones 217
283.1 Synthesis of Product Class 3 220
283.1.1 Synthesis by Ring Closure Reactions 220
283.1.1.1 Method 1: Reaction of Fischer Type Carbene Complexes with Alkynes 220
283.1.1.2 Method 2: Synthesis from Cyclobutenediones 225
283.1.1.2.1 Variation 1: Reaction of Phthaloyl Complexes with Functionalized Alkynes 229
283.1.1.3 Method 3: Annulation Reactions of Phthalide Anions with
Michael Acceptors 232
283.1.1.4 Method 4: [4+ 2] Cycloaddition Reactions 234
283.1.1.4.1 Variation 1: Reaction of Benzo 1,4 quinones with
Heterosubstituted Dienes 239
283.1.1.4.2 Variation 2: Reaction of Benzo 1,4 quinones with Vinylarenes and
Vinylhetarenes 241
283.1.1.4.3 Variation 3: Reaction of Benzo 1,4 quinones with Dienes of
Fixed s cis Conformation 242
283.1.1.4.4 Variation 4: Quinones as Dienes 245
283.1.1.5 Method 5: Condensation of Benzaldehydes with
Succinic Acid Derivatives 246
283.1.1.6 Method 6: Friedel Crafts Condensation of Hydroquinone Derivatives
with Maleic Anhydrides 248
283.1.1.7 Method 7: Annulation of ortho Substituted Tertiary Benzamides 250
283.1.2 Synthesis by Oxidative Transformation 251
283.1.2.1 Method 1: Oxidation of Naphthalenes 252
283.1.2.1.1 Variation 1: Oxidation of Naphthalene Derivatives
Bearing Oxidation Directing Groups 255
283.1.2.2 Method 2: Oxidation of Naphthols 255
283.1.2.3 Method 3: Oxidation of Hydroquinone Derivatives 261
283.1.2.3.1 Variation 1: Oxidation of Diprotected Hydroquinone Derivatives 261
283.1.2.3.2 Variation 2: Oxidation of Monoprotected Hydroquinone Derivatives 263
283.1.2.3.3 Variation 3: Oxidation of Hydroquinones 264
283.1.2.4 Method 4: Oxidation of Naphthols Bearing Substituents
Other Than Oxygen at the 4 Position 265
283.1.2.5 Method 5: Aromatization and Benzylic Oxidation of Fused Carbocycles 267
283.1.3 Substitution of Hydrogen 267
283.1.3.1 Method 1: Using Nucleophilic Carbon Reagents 268
XXII Table of Contents
283.1.3.2 Method 2: Using Electrophilic Carbon Reagents 271
28.3.13 3 Method 3: Using Carbon Free Radicals 273
283.1.3.4 Method 4: Addition of Halides 277
283.1.3.5 Method 5: Varvoglis' lodonium Ylides 279
283.1.3.6 Method 6: Using Oxygen Nucleophiles 280
283.1.3.7 Method 7: TheThiele Winter Acetoxylation Reaction 282
283.1.3.8 Method 8: Using Sulfur Nucleophiles 283
283.1.3.9 Method 9: Addition of Amines, Azides, and Ammonia 286
283.1.4 Substitution of Heteroatoms 289
283.1.4.1 Method 1: Substitution of Halogen by Another Halogen 289
283.1.4.2 Method 2: Substitution of Halogen by Oxygen 289
283.1.4.3 Method 3: Substitution of Halogen by Sulfur 291
283.1.4.4 Method 4: Substitution of Halogen by Nitrogen 292
283.1.4.5 Method5: Substitution of Halogen by Carbon 294
283.1.4.5.1 Variation 1: Palladium Mediated Coupling of Halogenated
Naphtho 1,4 quinones 295
283.1.4.6 Method 6: Substitution of Oxygen by Halogen, Nitrogen, or Carbon — 297
28.4 Product Class 4: Naphtho 1,2 , Naphtho 1,5 , Naphtho 1,7 ,
Naphtho 2,3 , and Naphtho 2,6 quinones
C. C. Liao and R. K. Peddinti
28.4 Product Class 4: Naphtho 1,2 , Naphtho 1,5 , Naphtho 1,7 ,
Naphtho 2,3 , and Naphtho 2,6 quinones 323
28.4.1 Product Subclass 1: Naphtho 1,2 quinones 323
28.4.1.1 Synthesis of Product Subclass 1 325
28.4.1.1.1 Method 1: Reaction of Fischer Type Carbene Complexes with
tert Butyl Isocyanide 325
28.4.1.1.2 Method 2: [4+ 2] Cycloaddition Reactions 325
28.4.1.1.2.1 Variation 1: Reaction of Benzoquinones with 2,3 Dimethylbuta 1,3 diene 325
28.4.1.1.2.2 Variation 2: Reaction of Dihalocatechols with
1 (Trimethylsiloxy)buta 1,3 diene 326
28.4.1.1.3 Method 3: Dieckmann Ring Formation with Subsequent
Acyloin Cleavage 327
28.4.1.1.4 Method 4: Oxidation of a Tetralones 327
28.4.1.1.5 Method 5: Oxidation of Naphthalenes 328
28.4.1.1.6 Method 6: Oxidation of 1 Naphthols 329
28.4.1.1.6.1 Variation 1: Oxidation of 1 Naphthols with Fremy's Salt 329
28.4.1.1.6.2 Variation 2: Oxidation of 1 Naphthols with Benzeneseleninic Anhydride 332
28.4.1.1.6.3 Variation 3: Oxidation of 1 Naphthols with
Cobalt Salen Complex/Oxygen 332
28.4.1.1.6.4 Variation 4: Synthesis of Emmotin H Using lodylbenzene 333
28.4.1.1.6.5 Variations: Oxidation of a 1 Naphthol Derivative with Sodium Periodate 333
28jI.i.i.6.6 Variation 6: Oxidation of Halo 1 naphthols with Lead(IV) Acetate 334
28^4.1.1.6.7 Variation 7: Transition Metal Catalyzed Oxidations of 1 Naphthols 334
28A1.1.7 Method 7: Oxidation of 2 Naphthols 336
Table of Contents XXIII
28.4.1.1.7.1 Variation 1: Oxidation of 2 Naphthol 336
28.4.1.1.7.2 Variation 2: Oxidation of 2 Naphthols with Fremy's Salt 336
28.4.1.1.7.3 Variation 3: Synthesis of o Hibiscanone with Benzeneseleninic Anhydride 337
28.4.1.1.7.4 Variation 4: Oxidation of 2 Naphthols with Copper Chloride/Oxygen 337
28.4.1.1.7.5 Variation 5: Oxidation of 2 Naphthols with 3 Chloroperoxybenzoic Acid 338
28.4.1.1.7.6 Variation 6: Transition Metal Catalyzed Oxidations of 2 Naphthols 339
28.4.1.1.7.7 Variation 7: Oxidation of 1 Amino 2 naphthol by Polymer Supported
Hypochlorite Ion 339
28.4.1.1.8 Method 8: Oxidation of Naphthalene 1,2 diols 339
28.4.1.1.8.1 Variation 1: Oxidation of Naphthalene 1,2 diol 340
28.4.1.1.8.2 Variation 2: Synthesis from Naphthalene 1,2 diol Disilyl Ether 340
28.4.1.1.8.3 Variation 3: Aerial Oxidation of Naphthalene 1,2 diols 341
28.4.1.1.8.4 Variation 4: Synthesis of Saprorthoquinone via Silver(l) Oxide Oxidation 342
28.4.1.1.8.5 Variation 5: Oxidation of Naphthalene 1,2 diol with Oxygen and
Bis(propane 1,3 diamine)copper(ll) Chloride 342
28.4.1.1.9 Method 9: Oxidation of a 1 Methoxynaphthalen 2 amine Derivative — 342
28.4.1.1.10 Method 10: Rearrangement of Naphtho 1,4 quinone Adducts 343
28.4.1.1.11 Method 11: Substitution of Hydrogen 343
28.4.1.1.11.1 Variation 1: Reaction of Naphtho 1,2 quinone with Pyrroles 343
28.4.1.1.11.2 Variation 2: Reaction of Naphtho 1,2 quinone with Vinylogous
Michael Donors 344
28.4.1.1.11.3 Variation 3: Lewis Acid Mediated Reactions of Naphtho 1,2 quinones — 344
28.4.1.1.H.4 Variation 4: Palladium(ll) Catalyzed Oxidative Coupling of
Naphtho 1,2 quinone and Arenes 345
28.4.1.1.11.5 Variation 5: Photochemical Reactions of Naphtho 1,2 quinones 345
28.4.1.1.11.6 Variation 6: Reactions of Naphtho 1,2 quinones with Amines 348
28.4.1.1.11.7 Variation 7: Reactions of 4 Aminonaphtho 1,2 quinone with Diazenes ¦•• 349
28.4.1.1.11.8 Variation 8: Metal Chloride Catalyzed Addition of Alcohols to
Naphtho 1,2 quinones 350
28.4.1.1.11.9 Variation 9: Reactions of Naphtho 1,2 quinones with Thiols 351
28.4.1.1.12 Method 12: Substitution of Heteroatoms 351
28.4.1.1.12.1 Variation 1: Reactions of 4 Alkoxynaphtho 1,2 quinones with Amines ••• 351
28.4.1.1.12.2 Variation 2: Reactions of Sodium 4 Sulfonatonaphtho 1,2 quinone 352
28.4.1.1.13 Method 13: Alkylation of the Silver Salt of
2 Hydroxynaphtho 1,4 quinones 355
28.4.2 Product Subclass 2: Naphtho 1,5 quinones 356
28.4.2.1 Synthesis of Product Subclass 2 356
28.4.2.1.1 Method 1: Oxidation of a 2,3 Dihydronaphtho 1,4 quinone Imine 356
28.4.2.1.2 Method 2: Oxidation of Naphthalene 1,5 diols 356
28.4.2.1.2.1 Variation 1: Air Oxidation of a Naphthalene 1,5 diol 356
28.4.2.1.2.2 Variation 2: 2,3 Dichloro 5,6 dicyanobenzo 1,4 quinone Oxidation of
3,7 Di tert butylnaphthalene 1,5 diol357
28.4.2.1.3 Method 3: Substitution of Hydrogen by Halogen 357
28.4.2.1.3.1 Variation 1: Substitution of Hydrogen by Chlorine 357
28.4.2.1.3.2 Variation 2: Substitution of Hydrogen by Bromine 358
28.4.2.1.4 Method 4: Substitution of 4,8 Diaminonaphtho 1,5 quinone 358
XXIV Table of Contents
28.4.3 Product Subclass 3: Naphtho 1,7 quinones 358
28.4.3.1 Synthesis of Product Subclass 3 358
28.4.3.1.1 Method 1: 2,3 Dichloro 5,6 dicyanobenzo 1,4 quinone Oxidation of
3,6 Di tert butyl 8 methylnaphthalene 1,7 diol 358
28.4.4 Product Subclass 4: Naphtho 2,3 quinones 359
28.4.4.1 Synthesis of Product Subclass 4 359
28.4.4.1.1 Method 1: Generation and Trapping through Desilylation
Debromination Induced by Fluoride Ion 359
28.4.4.1.2 Method 2: Oxidation of 1,4 Diarylnaphthalene 2,3 diols 360
28.4.5 Product Subclass 5: Naphtho 2,6 quinones 362
28.4.5.1 Synthesis of Product Subclass 5 362
28.4.5.1.1 Method 1: Photooxygenation of Naphthalen 2 amine 362
28.4.5.1.2 Method 2: Oxidation of a Naphthalene 2,6 diol with Lead(IV) Oxide • • • • 362
283 Product Class 5: Anthra 9,10 quinones, Anthra 1,2 quinones,
Anthra 1,4 quinones, Anthra 2,9 quinones, and Their Higher
Fused Analogues
K. Krohn and N. Boker
28.5 Product Class 5: Anthra 9,10 quinones, Anthra 1,2 quinones,
Anthra 1.4 quinones, Anthra 2,9 quinones, and Their Higher
Fused Analogues 367
28.5.1 Product Subclass 1: Anthra 9,10 quinones 367
28.5.1.1 Synthesis of Product Subclass 1 369
28.5.1.1.1 Friedel Crafts Reactions 369
28.5.1.1.1.1 Method 1: One Pot Procedures Using Fused Salts (N Alkylpyridinium
Halides) with Aluminum Trichloride as the Catalyst 371
28.5.1.1.1.2 Method 2: One Pot Procedures Using Molten Aluminum Trichloride
Potassium Chloride Sodium Chloride or Aluminum
Trichloride Sodium Chloride as the Catalysts 372
28.5.1.1.1.3 Method 3: One Pot Procedures Using Croup 4 or Croup 5 Metal Oxides
as the Catalysts 373
28.5.1.1.1.4 Method 4: One Pot Procedures Using Phthaloyl Dichlorides as
the Electrophiles 373
28.5.1.1.1.5 Method 5: Stepwise Procedures with Benzoylbenzoic Acids as
the Intermediates 374
283.1.1.1.5.1 Variation 1: Benzoylbenzoic Acids by Friedel Crafts Reaction 375
28.5.1.1.1.5.2 Variation 2: Benzoylbenzoic Acids by Addition of Crignard Reagents to
Phthalic Anhydrides 375
28.5.1.1.1.6 Method 6: Stepwise Procedures Involving Direct Cyclization of
Benzoylbenzoic Acids 376
283.1.1.1.7 Method 7: Stepwise Procedures Involving Sequential Cyclization of
Benzylbenzoic Acids and Oxidation 378
Table of Contents XXV
28.5.1.1.1.8 Method 8: Stepwise Procedures Involving Benzylbenzoic Acids Prepared
by Displacement of a Methoxy Group in Aryldihydrooxazoles 380
28.5.1.1.1.9 Method 9: Stepwise Procedures Involving Friedel Crafts Type
Alkylation of 3 Bromophthalides with Benzenes
To Form 3 Arylphthalides 381
28.5.1.1.2 Diels Alder Reactions 382
28.5.1.1.2.1 Method 1: Reaction of Open Chain Dienes with Naphtho 1,4 quinones
Followed by Elimination or Oxidation of Allylic Hydroxy
Croups 383
28.5.1.1.2.2 Method 2: Reaction of Open Chain Dienes with Naphtho 1,4 quinones
Followed by Two p Eliminations 388
28.5.1.1.2.2.1 Variation 1: Reaction of 1,3 Siloxy 1,3 dienes with
Halonaphtho 1,4 quinones 388
28.5.1.1.2.2.2 Variation 2: Reaction of 1,3 Siloxy 1,3 dienes with
Dichloronaphtho 1,4 quinones 390
28.5.1.1.2.2.3 Variation 3: Reaction of Vinylketene Acetals with
2 or3 Halonaphtho 1,4 quinones 391
28.5.1.1.2.2.4 Variation 4: Diels Alder Reactions of Sulfinylnaphtho 1,4 quinones 395
28.5.1.1.2.3 Method 3: Reaction of Cyclic Dienes with Naphtho 1,4 quinones,
Followed by a Retro Diene Reaction 395
28.5.1.1.2.4 Method 4: Reaction of Cyclic Dienes with Naphtho 1,4 quinones
Followed by Hydroxymethylation of 1,4 Ethanoanthra
9,10 quinones 399
28.5.1.1.2.5 Method 5: Reaction of Naphtho 1,4 quinones with Ketene Acetals 400
28.5.1.1.2.6 Method 6: Coupling of Naphtho 1,4 quinones with Cyclobutenones — 401
28.5.1.1.2.7 Method 7: Thermolytic Rearrangement of Arylcyclobutenones 401
28.5.1.1.2.8 Method 8: Electrocyclization of 2,3 Divinylnaphtho 1,4 quinones 402
28.5.1.1.2.9 Method 9: Electrocyclization of 2,3 Divinylnaphtho 1,4 quinones to
1,4 Diacylanthra 9,10 quinones 403
28.5.1.1.3 Ring Closing Metathesis 404
28.5.1.1.3.1 Method 1: Cyclization of 2,3 Diallylnaphtho 1,4 quinones 404
28.5.1.1.4 [2 + 2 + 2] Cycloaddition Reactions 406
28.5.1.1.4.1 Method 1: Rhodium Catalyzed Cycloaddition of
1,2 Dipropynoylbenzenes with Alkynes 406
28.5.1.1.5 Anionic Condensation Reactions 407
28.5.1.1.5.1 Method 1: Phthalide Annulation with Cyclohex 2 enones 407
28.5.1.1.5.2 Method 2: Phthalide Annulation with Cyclohexadienones 408
28.5.1.1.5.2.1 Variation 1: With Cyclohexa 2,5 dienones 409
28.5.1.1.5.2.2 Variation 2: With Cyclohexa 2,4 dienones 410
28.5.1.1.5.3 Method 3: Phthalide Annulation with Arynes 410
28.5.1.1.6 Cyclization by Nucleophilic Aromatic Substitution/Addition 411
28.5.1.1.6.1 Method 1: Cyclization of 2 (Cyanomethyl)benzophenones
(The Hassall Reaction) 411
28J.1.1.6.2 Method 2: Addition of 2 (Cyanomethyl)benzoates to Arynes 412
28.5.1.1.6.3 Method 3: Cyclization of (Nitromethyl)benzophenones 413
XXVI Table of Contents
283.1.1.6.4 Method 4: Cyclization of Monoalkylnaphtho 1,4 quinones 414
28.5.1.1.6.5 Method 5: Cyclization of 2,3 Disubstituted Naphtho 1,4 quinones by
Aldol Condensation 414
28.5.1.1.6.5.1 Variation 1: Michael Addition of 2 Acetylnaphtho 1,4 quinones 415
28.5.1.1.6.5.2 Variation 2: Base Induced Condensation of 2 Acylnaphtho 1,4 quinones 415
28.5.1.1.6.6 Method 6: Cyclization of 2,3 Dialkylnaphtho 1,4 quinones by
Reaction of Enamines with 2 Acetylnaphtho 1,4 quinones ••• 416
28.5.1.1.6.7 Method 7: Cyclization of 2,3 Dialkylnaphtho 1,4 quinones by
Iterative Addition of 1,3 Dicarbonyl Dianions 417
28.5.1.1.6.7.1 Variation 1: Addition of 1,3 Dicarbonyl Dianions to Homophthalic Diesters 417
28.5.1.1.6.7.2 Variation 2: Addition of 1,3 Dicarbonyl Dianions to
Homophthalic Monoesters 418
28.5.1.1.7 Oxidation of Anthracenes to Anthra 9,10 quinones 419
28.5.1.1.7.1 Method 1: Catalytic Oxidation of Anthracene with Dioxygen
in the Presence of Nitrogen Dioxide 420
28.5.1.1.7.2 Method 2: Transition Metal Catalyzed Liquid or Vapor Phase
Aerial Oxidation of Anthracene 421
283.1.1.7.3 Method 3: Anodic Oxidation of Anthracene 421
283.1.1.7.4 Method 4: Catalytic Oxidation of Anthracene with
Other Sources of Oxygen 422
283.1.1.7.5 Method 5: Stoichiometric Oxidations of Anthracene 423
283.1.1.8 Oxidative Cyclization Reactions of 2 Benzyl Substituted Diphenylmethanes 424
28.5.1.1.8.1 Methodi: Oxidation of 1 Benzyl 2 methylbenzene 424
283.1.1.9 Oxidation of Dihydroanthra 9,10 quinones or Anthracen 9(10H) ones to
Anthra 9,10 quinones 424
283.1.1.9.1 Methodi: Aerial Oxidation of Anthracen 9(10H) one or
9,10 Dihydroanthracenes 424
283.1.1.9.2 Method 2: Oxidation of Anthracen 9(10H) ones, 10 Hydroxyanthracen
9(10H) ones, or Hydroquinone Methyl Ethers by Ammonium
Cerium(IV) Nitrate 425
283.1.1.10 Oxidation of meso Benza nth rones and Aromatic Carbocycles 425
283.1.1.11 Alkylation Reactions 425
283.1.1.11.1 Methodi: Addition of Nitroalkanes to Hydroxyanthra 9,10 quinones ••• 426
283.1.1.11.2 Method 2: Addition of Malonate to Hydroxyanthra 9,10 quinones 426
283.1.1.11.3 Method 3: Alkylation of 1,4 Dihydroxyanthra 9,10 quinone via
Anthracene 1,4,9,10 tetrone and a 1,5 Alkyl Shift 427
283.1.1.11.4 Method 4: Alkylation with Intermediate Reduction 427
283.1.1.11.4.1 Variation 1: Alkylation under Strongly Basic Conditions
(Marschalk Conditions) 427
283.1.1.11.4.2 Variation 2: Alkylation with Piperidine Acetate as the Catalyst
(Lewis Conditions) 429
283.1.1.11.4.3 Variation 3: Alkylation with Pyrrolidine as the Catalyst
(Broadbent Conditions) 430
283.1.1.11.4.4 Variation 4: Hydroxyalkylation of peri Hydroxyanthra 9,10 quinones
(Modified Marschalk Reaction) 431
Table of Contents XXVII
28.5.1.U1.4.5 Variation 5: 1,5 Oiazabicyclo[5.4.0]undec 7 ene or 1,5 Diazabicylo[4.3.0]
non 5 ene in Tetrahydrofuran in Marschalk Reactions 432
28.5.1.1.11.4.6 Variation 6: Successive Marschalk Reactions in Syntheses of
2,3 Dialkylanthra 9,10 quinones 434
28.5.1.1.11.4.7 Variation 7: Addition of 1 Hydroxyanthra 9,10 quinones and
Their Tautomers to Michael Acceptors 434
28.5.1.1.11.4.8 Variation 8: Alkylation of 1 Aminoanthra 9,10 quinones 435
28.5.1.1.11.4.9 Variation 9: Alkylation of 1 Hydroxyanthra 9,10 quinones 435
28.5.1.1.11.5 Method 5: Alkylation of Anthra 9,10 quinones by
the Reductive Claisen Rearrangement 436
28.5.1.1.11.6 Method 6: Alkylation by a Combination of the Marschalk Reaction and
the Reductive Claisen Rearrangement 437
28.5.1.1.11.7 Method 7: Alkylation via Diazonium Ions 438
28.5.1.1.12 Arylation Reactions 439
28.5.1.1.13 Alkenylation Reactions 439
28.5.1.1.14 Alkynylation Reactions 439
28.5.1.1.14.1 Methodi: Isomerization of Allylanthra 9,10 quinones 439
28.5.1.1.15 Halogenation Reactions 440
28.5.1.1.15.1 Methodi: Fluorination 440
28.5.1.1.15.2 Methodi: Chlorination 440
28.5.1.1.15.3 Method 3: Bromination 441
28.5.1.1.15.4 Method 4: lodination 443
28.5.1.1.16 Sulfonation Reactions 443
28.5.1.1.17 Amination Reactions 444
28.5.1.1.18 Hydroxylation Reactions 445
28.5.1.1.19 Nitration Reactions 445
28.5.1.1.20 Synthesis by Substitution 447
28.5.1.1.20.1 Methodi: Substitution of Fluoride 447
28.5.1.1.20.2 Method 2: Substitution of Chloride 448
28.5.1.1.20.3 Method 3: Substitution of Bromide or Iodide 450
28.5.1.1.20.3.1 Variation 1: Substitution of Bromide and Iodide by Heteroatoms 450
283.1.1.20.3.2 Variation 2: Substitution of Bromide by Aryl Croups (The Heck Reaction) 450
28.5.1.1.20.3.3 Variation 3: Substitution of Bromide and Iodide by Acetylene Nucleophiles 451
28.5.1.1.20.3.4 Variation 4: Substitution of Iodide with Tin Nucleophiles 453
28.5.1.1.20.4 Method 4: Substitution of Nitro Croups 453
28.5.1.1.20.5 Method 5: Substitution of Trifluoromethanesulfonates 454
28.5.2 Product Subclass 2: Anthra 1,2 quinones 455
28.5.2.1 Synthesis of Product Subclass 2 455
28.5.2.1.1 Oxidation Reactions 455
28.5.2.1.1.1 Methodi: Oxidation of 1,2 Dihydroxyanthracenes 455
28.5.2.1.1.2 Method 2: ortho Specific Oxygenation of 1 Anthrols 456
XXVIII Table of Contents
28.5.3 Product Subclass 3: Anthra 1,4 quinones 457
28.5.3.1 Synthesis of Product Subclass 3 457
28.5.3.1.1 Fixation of the 1,4 Dicarbonyl Tautomer of 1,4 Dihydroxyanthra 9,10 quinone 457
28.5.3.1.1.1 Method!: Chlorination of 1,4 Dihydroxyanthra 9,10 quinone 457
28.5.3.1.1.2 Method 2: Transesterification of N,O,O Triacylated 1,4 Dihydroxy
10 iminoanthracen 9(10H) ones 458
28.5.3.1.2 Diels Alder Reactions 458
28.5.3.1.2.1 Method 1: Addition of Quinodimethanes to Benzoquinones 458
28.5.3.1.2.2 Method 2: Strong Base Mediated Addition of Homophthalic Anhydrides
to Benzoquinones 459
28.5.3.1.2.3 Method 3: Tandem Claisen Diels Alder Reactions 460
28.5.3.1.2.4 Method 4: Phthalide Annulation 461
28.5.4 Product Subclass 4: Anthra 2,9 quinones 461
28.5.5 Product Subclass 5: Anthraquinones Fused with Other Carbon Rings 462
283.5.1 Synthesis of Product Subclass 5 462
28.5.5.1.1 Synthesis of Anthraquinones Fused with Four Membered Rings 462
28.5.5.1.1.1 Method 1: Double Aldol Condensation 462
28.5.5.1.2 Synthesis of Anthraquinones Fused with Five Membered Rings 463
28.5.5.1.2.1 Method 1: Friedel Crafts Reaction of Phthalic Anhydride with Indanes 463
28.5.5.1.2.2 Method 2: Diels Alder Reactions of Naphtho 1,4 quinone with
1 Vinylcyclopentenes 463
28.5.5.1.2.3 Method 3: Cyclization of Monoalkylanthra 9,10 quinones 463
28.5.5.1.2.4 Method 4: Cyclization of 2,3 Dialkylanthra 9,10 quinones 464
28.5.5.1.3 Synthesis of Anthraquinones Fused with Six Membered Rings:
Tetracene 5,12 diones 465
28.5.5.1.3.1 Method 1: One Pot Friedel Crafts Condensation 466
28.5.5.1.3.1.1 Variation 1: Double Friedel Crafts Condensation with Phthalic Anhydride 466
28.5.5.1.3.1.2 Variation 2: Successive Fries Shift and Friedel Crafts Reaction 466
28.5.5.1.3.2 Method 2: Multistep Friedel Crafts Condensation 467
28.5.5.1.3.2.1 Variation 1: Friedel Crafts Reaction of Benzylbenzoic Acids 467
28J.5.1.3.2.2 Variation 2: Friedel Crafts Reaction of a Lactone 468
28.5.5.1.3.2.3 Variation 3: Friedel Crafts Reaction of Benzoylbenzoic Acids 468
28.5.5.1.3.3 Method 3: Tetracene 5,12 diones by Diels Alder Reactions: Trapping of
o Quinodimethanes with Dienes 469
28.5.5.1.3.3.1 Variation 1: Intermolecular Trapping of o Quinodimethanes 470
28.5.5.1.3.3.2 Variation 2: Intramolecular Trapping of o Quinodimethanes 471
28.5.5.1.3.4 Method 4: Diels Alder Reactions of Anthra 1,4 quinones and Derivatives
as the Dienophiles 471
28J.5.1.3.4.1 Variation 1: Anthra 1,4 quinones as the Dienophiles 471
28.5.5.1.3.4.2 Variation 2: Anthracenetetrones as the Dienophiles 472
28.5.5.1.3.4.3 Variation 3: Anthradiquinone Epoxides as the Dienophiles 473
28J.5.1.3.4.4 Variation 4: 1,4 Dihydroxyanthra 9,10 quinone and Its 9 lmine as
Dienophiles 474
28.5.5.1.3.4.5 Variation 5: Partially Hydrogenated or Bridged Anthra 9,10 quinones — 474
Table of Contents XXIX
28.5.5.1.3.5 Method 5: Diels Alder Reactions with Benzocyclobutenes as
the Diene Precursors 475
28.5.5.1.3.6 Method 6: Diels Alder Reactions of Exocyclic Dienes and
Exocyclic Vinylketene Acetals 476
28.5.5.1.3.7 Method 7: Strong Base Induced Cycloaddition of Homophthalic
Anhydrides to Naphthoquinones 477
28.5.5.1.3.8 Method 8: Intramolecular Diels Alder Reactions 478
28.5.5.1.3.9 Method 9: Anionic Cyclization of Monoalkylanthra 9,10 quinones 479
28.5.5.1.3.9.1 Variation 1: Cyclization of Nitronatoanthra 9,10 quinones 479
28.5.5.1.3.9.2 Variation 2: Cyclization of 4 Hydroxy 2 (4 oxobutyl)anthra 9,10 quinone 480
28.5.5.1.3.10 Method 10: Anionic Cyclization of Dialkylanthra 9,10 quinones 481
28.5.5.1.3.10.1 Variation 1: Biomimetic Oxo Ester Cyclization 481
28.5.5.1.3.10.2 Variation 2: Lewis Acid Mediated Cyclization of ort/io Allyl Substituted
Dioxolanyl Anthraquinones and Formylanthraquinones 482
28.5.5.1.3.10.3 Variation 3: Base Catalyzed Cyclization of a Nonsymmetrically Substituted
2,3 Diallylanthra 9,10 quinone 482
28.5.5.1.3.11 Method 11: 1,4 Dipolar Additions to Enones and Arynes 483
28.5.5.1.4 Synthesis of Anthraquinones Fused with Six Membered Rings:
Tetraphene 7,12 diones 484
28.5.5.1.4.1 Method 1: Friedel Crafts Reactions 484
28.5.5.1.4.2 Method 2: Diels Alder Reactions 484
28.5.5.1.4.3 Method 3: Anionic Cyclizations 485
28.5.5.1.4.3.1 Variation 1: Cyclization of Monoalkylanthra 9,10 quinones 485
28.5.5.1.4.3.2 Variation 2: Cyclization of Dialkylanthra 9,10 quinones 486
28.5.5.1.4.4 Method4: [2 + 2 + 2] Cycloaddition 486
28.5.5.1.4.5 Method5: Rearrangement of Spiroanthracenediones 487
28.6 Product Class 6: Phenanthrene 9,10 diones, Stilbenequinones,
Diphenoquinones, and Related Ring Assemblies
A. M. Echavarren and S. Porcel
28.6 Product Class 6: Phenanthrene 9,10 diones, Stilbenequinones,
Oiphenoquinones, and Related Ring Assemblies 507
28.6.1 Product Subclass 1: Phenanthrene 9,10 diones 507
28.6.1.1 Synthesis of Product Subclass 1 508
28.6.1.1.1 Method 1: Direct Oxidation of Polycyclic Arenes 508
28.6.1.1.1.1 Variation 1: Oxidation with Stoichiometric Oxidizing Reagents 508
28.6.1.1.1.2 Variation 2: Oxidation with Catalytic Oxidizing Reagents 511
28.6.1.1.2 Method 2: Ring Closure Reactions 512
28.6.1.1.2.1 Variation 1: Oxidative Biaryl Coupling of a Dicarbonyl Compounds 512
28.6.1.1.2.2 Variation 2: Photochemical Cyclization 513
28.6.1.1.2.3 Variation 3: Reductive Coupling of Carbonyls 516
28.6.1.2 Applications of Product Subclass 1 in Organic Synthesis 518
28.6.1.2.1 Method 1: Synthesis of Functionalized Fused Furans 518
XXX Table of Contents
28.6.1.2.2 Method 2: Catalyzed Epoxidation in the Presence of
Phenanthrene 9,10 dione 519
28.6.1.2.3 Method 3: Synthesis of Heterocycles 519
28.6.1.2.4 Method 4: Synthesis of Biphenyl 2,2' dicarboxylic Acids 521
28.6.1.2.5 Method 5: Protection of 1,2 Diols 521
28.6.1.2.6 Method 6: Synthesis of Polycyclic Arenes via Bis Wittig Reactions 522
28.6.2 Product Subclass 2: Heterocyclic Analogues of Phenanthrene 9,10 diones 523
28.6.2.1 Synthesis of Product Subclass 2 524
28.6.2.1.1 Method 1: Oxidation of Hetarenes 524
28.6.2.1.1.1 Variation 1: Direct Oxidation of Hetarenes 524
28.6.2.1.1.2 Variation 2: Chlorination of Hetarenes 527
28.6.2.1.1.3 Variation 3: Oxidation of Hydroxy and/or Alkoxy Substituted Hetarenes
with Strong Oxidants 528
28.6.2.1.1.4 Variation 4: Oxidation of Hydroxy and/or Alkoxy Substituted Hetarenes
with Mild Oxidants 531
28.6.2.1.1.5 Variation 5: Oxidation of Amino Substituted Hetarenes 535
28.6.2.1.2 Method 2: Ring Closure Reactions 537
28.6.2.1.2.1 Variation 1: N—C Bond Forming Reactions 537
28.6.2.1.2.2 Variation 2: C—C Bond Forming Reactions 538
28.6.2 2 Applications of Product Subclass 2 in Organic Synthesis 539
28.6.2.2.1 Method 1: Oxidation of Functional Croups 539
28.6.3 Product Subclass 3: Stilbenequinones 541
28.6.3.1 Synthesis of Product Subclass 3 542
28.6.3.1.1 Method 1: Oxidation of Dihydroxystilbenes 543
28.6.3.1.2 Method 2: Oxidative Dimerization of Aromatic Compounds 544
28.6.3.1.2.1 Variation 1: Oxidation Dimerization of Phenols 544
28.6.3.1.2.2 Variation 2: Oxidative Dimerization of 2,4,6 Trimethylphenyl
Chloroformate 547
28.6.3.2 Applications of Product Subclass 3 in Organic Synthesis 547
28.6.3.2.1 Method 1: Acid Catalyzed Rearrangement of Stilbenequinones 547
28.6.4 Product Subclass 4: Diphenoquinones 548
28.6.4.1 Synthesis of Product Subclass 4 550
28.6.4.1.1 Method 1: Oxidation of Biphenyldiols 550
28.6.4.1.2 Method 2: Oxidative Coupling of Phenols 551
28.6.4.1.2.1 Variation 1: Oxidative Coupling Using Stoichiometric Oxidants 551
28.6.4.1.2.2 Variation 2: Oxidative Coupling with Metal Catalysts 553
28.6.4.1.2.3 Variation 3: Enzymatic Oxidative Coupling 555
Table of Contents XXXI
28.7 Product Class 7: Hetarene Fused Quinones
28.7.1 Product Subclass 1: Nitrogen Containing Hetarene Quinones
U. Pindur and T. Lemster
28.7.1 Product Subclass 1: Nitrogen Containing Hetarene Quinones 561
28.7.1.1 Synthesis of Product Subclass 1 561
28.7.1.1.1 Nitrogen Containing Hetarene p Quinones 561
28.7.1.1.1.1 Indolequinones, Carbazolequinones, and Higher Analogues 561
28.7.1.1.1.1.1 Method 1: Direct Oxidation of Hydroquinone Derivatives 562
28.7.1.1.1.1.2 Method 2: Ring Closure Reactions of Pyrroles 563
28.7.1.1.1.1.3 Method 3: Ring Closure Reactions of Substituted Benzoquinones 564
28.7.1.1.1.1.4 Method 4: Ring Expansion of Cyclobutenone Derivatives 566
28.7.1.1.1.2 Naphthindolizinequinones 567
28.7.1.1.1.2.1 Method 1: Ring Closure of 2 Pyridinium Substituted
Naphtho 1,4 quinones with Nitromethane 567
28.7.1.1.1.3 Bispyrrolo Fused Quinones and Further Variants 568
28.7.1.1.1.3.1 Method 1: Cyclocondensation at Indolequinone 568
28.7.1.1.1.3.2 Method 2: Diels Alder Reaction with Indolequinones 569
28.7.1.1.1.3.3 Method 3: Double Cyclization of 2,5 Bis(arylamino)
3,6 dibromobenzo 1,4 quinones 570
28.7.1.1.1.4 Isoindolequinones 571
28.7.1.1.1.4.1 Method 1: o Dialkynylarene Annulation 571
28.7.1.1.1.4.2 Method 2: Azomethine 1,3 DipolarCycloaddition 572
28.7.1.1.1.5 Benzoxazolequinones 573
28.7.1.1.1.5.1 Method 1: Annulation of a Phenol Followed by Oxidation 573
28.7.1.1.1.6 Benzothiazolequinones 574
28.7.1.1.1.6.1 Method 1: Fremy's Salt Oxidation Followed by Nucleophilic Addition ¦¦¦ 574
28.7.1.1.1.7 Indazolequinones and Benzindazolequinones 576
28.7.1.1.1.7.1 Method 1: Ring Closure Reactions of Substituted Benzoquinones 576
28.7.1.1.1.7.2 Method 2: 1,3 DipolarCycloaddition Reactions with Quinones 577
28.7.1.1.1.8 Benzimidazolequinones 578
28.7.1.1.1.8.1 Method 1: Oxidation Reactions 578
28.7.1.1.1.9 Benzotriazolequinones 580
28.7.1.1.1.9.1 Method 1: 1,3 DipolarCycloaddition of p Quinones with Sodium Azide 580
28.7.1.1.1.10 Quinolinequinones, Isoquinolinequinones, and Higher Analogues 581
28.7.1.1.1.10.1 Method 1: Ring Closure Reactions of Substituted Benzoquinones 581
28.7.1.1.1.10.2 Method 2: Intramolecular Acid Catalyzed Cyclization of
2 [(2 Acetylaryl)amino]benzo 1,4 quinones 581
28.7.1.1.1.10.3 Method 3: Aza Diels Alder Reactions 582
XXXII Table of Contents
28.7.1.1.1.11 Isoquinolinequinones 583
28.7.1.1.1.11.1 Method 1: Oxidative Demethylation 583
28.7.1.1.1.11.2 Method 2: Ring Expansion of Cyclobutenone Derivatives
Followed by Oxidation 584
28.7.1.1.1.12 Quinoxaline and Quinazolinequinones 585
28.7.1.1.1.12.1 Method 1: Oxidative Demethylation or Oxidation with
Ammonium Cerium(IV) Nitrate 585
28.7.1.1.1.12.2 Method 2: Classical Annulation of 2,5 Dimethoxybenzaldehyde 587
28.7.1.1.2 Nitrogen Containing Hetarene o Quinones 587
28.7.1.1.2.1 Indolequinones 587
28.7.1.1.2.1.1 Method 1: Thermolysis of a 3 Azido 4 styrylbenzo 1,2 quinone 587
28.7.1.1.2.1.2 Method 2: Oxidation 588
28.7.1.1.2.2 o Quinones of Quinolines and Isoquinolines 588
28.7.1.1.2.2.1 Method 1: Fremy's Salt Oxidation 589
28.7.2 Product Subclass 2: Oxygen and Sulfur Containing
Hetarene Quinones
A. C. Criesbeck
28.7.2 Product Subclass 2: Oxygen and Sulfur Containing
Hetarene Quinones 593
28.7.2.1 Synthesis of Product Subclass 2 594
28.7.2.1.1 Benzofuranquinones, Benzothiophenequinones,
and Higher Annulated Analogues 594
28.7.2.1.1.1 Method 1: Oxidation of Benzofurans 595
28.7.2.1.1.1.1 Variation 1: Oxidation with Fremy's Salt 595
28.7.2.1.1.1.2 Variation 2: Oxidation with Chromium Reagents 597
28.7.2.1.1.1.3 Variation 3: Oxidation with Other Reagents 597
28.7.2.1.1.2 Method 2: Ring Closure Reactions of Furans 598
28.7.2.1.1.2.1 Variation 1: Furan Metalation and Cyclization 598
28.7.2.1.1.2.2 Variation 2: Fischer Carbene Reactions (Dotz Benzannulation) 598
28.7.2.1.1.2.3 Variation 3: Intramolecular Friedel Crafts Acylation 600
28.7.2.1.1.3 Method 3: Ring Closure Reactions of Quinones 601
28.7.2.1.1.3.1 Variation 1: Ullmann Reaction of Benzoquinones 601
28.7.2.1.1.3.2 Variation 2: Dehydration of Hydroxylated Quinones 601
28.7.2.1.1.3.3 Variation 3: Nucleophilic Addition of Hydroxyaryl Substituted Quinones 602
28.7.2.1.1.3.4 Variation 4: Intramolecular Nucleophilic Substitution 602
28.7.2.1.1.3.5 Variation 5: Oxidative Cyclization by Mercury(ll) Acetate and
3 Chloroperoxybenzoic Acid 603
28.7.2.1.1.4 Method 4: Ring Annulation of Quinones 604
28.7.2.1.1.4.1 Variation 1: Michael Addition and Subsequent Cyclization of
CH Active Methylene Compounds 604
28.7.2.1.1.4.2 Variation 2: Michael Addition and Subsequent Cyclization of Phenols — 604
28.7.2.1.1.4.3 Variation 3: Addition of Enamines and Vinyl Sulfides 605
Table of Contents XXXIII
28.7.2.1.1.4.4 Variation 4: Photochemical Addition of Alkenes and Alkynes to Quinones 606
28.7.2.1.1.4.5 Variation 5: Palladium Catalyzed Coupling and Ring Closure of
Phenyliodonium Betaines 607
28.7.2.1.1.4.6 Variation 6: Diels Alder Cycloaddition 607
28.7.2.1.1.5 Method 5: Ring Closure Reactions of Bi(quinones) 608
28.7.2.1.1.5.1 Variation 1: Acid and Base Induced Ring Closure 608
28.7.2.1.1.5.2 Variation 2: Thermal and Photochemical Ring Closure 609
28.7.2.1.1.6 Method 6: Ring Enlargement of Cyclobutenones 609
28.7.2.1.1.7 Method 7: Modification of Benzo[b]furanquinones 611
28.7.2.1.1.7.1 Variation 1: Diels Alder Reactions 611
28.7.2.1.1.7.2 Variation 2: Hetero Diels Alder Reactions 613
28.7.2.1.1.7.3 Variation 3: Palladium Catalyzed Coupling of Boronates 613
28.7.2.1.2 Benzo[c]furanquinones 614
28.7.2.1.3 Pyranbenzoquinones and Pyrannaphthoquinones 614
28.7.2.1.4 Benzothiophenequinones 614
28.7.2.1.4.1 Method 1: Oxidation of Benzo[b]thiophene Derivatives 615
28.7.2.1.4.2 Method 2: Intramolecular Condensation of Thiophenecarboxylates 615
28.7.2.1.4.2.1 Variation 1: Using Thiophenecarboxylates 615
28.7.2.1.4.2.2 Variation 2: Using Benzoic Acid Derivatives 616
28.7.2.1.4.3 Method 3: Thiophene Metalation and Tandem Nucleophilic Addition ¦•¦ 616
28.7.2.1.4.4 Method 4: Tandem Conjugate Addition and Cyclization 616
28.7.2.1.4.5 Method 5: Intra and Intermolecular Friedel Crafts Acylations 617
28.8 Product Class 8: Sulfur Analogues of Quinones
M. Yoshifuji and S. Kawasaki
28.8 Product Class 8: Sulfur Analogues of Quinones 623
28.8.1 Product Subclass 1: p Monothioquinones 623
28.8.1.1 Synthesis of Product Subclass 1 623
28.8.2 Product Subclass 2: o Monothioquinones 626
28.8.21 Synthesis of Product Subclass 2 626
28.8.3 Product Subclass 3: Dithioquinones 627
28*3.1 Synthesis of Product Subclass 3 627
28.9 Product Class 9: Benzo 1,2 , Benzo 1,4 , Naphtho 1,2 ,
and Naphtho 1,4 quinone Imines and Diimines
M. C. Carrefio and M. Ribagorda
28.9 Product Class 9: Benzo 1,2 , Benzo 1,4 , Naphtho 1,2 ,
and Naphtho 1,4 quinone Imines and Diimines 629
28.9.1 Product Subclass 1: Benzoquinone Imines and Diimines 630
28^.1.1 Synthesis of Product Subclass 1 630
28.9.1.1.1 Method 1: Oxidation of Anilines and Benzenediamines 630
XXXIV Table of Contents
28.9.1.1.1.1 Variation 1: Using Lead(IV) Acetate 630
28.9.1.1.1.2 Variation 2: Using Hypohalites 635
28.9.1.1.1.3 Variation 3: Using Silver(l) Oxide 638
28.9.1.1.1.4 Variation 4: Using Iron(lll) Chloride 640
28.9.1.1.1.5 Variation 5: Using Manganese(IV) Oxide 642
28.9.1.1.1.6 Variation 6: Using Hypervalent Iodine Reagents 644
28.9.1.1.1.7 Variation 7: Using Peroxides 645
28.9.1.1.1.8 Variation 8: Using Cobalt Mediated Catalytic Oxidation by Oxygen 646
283.1.1.1.9 Variation 9: Using Fremy's Salt 647
28.9.1.1.1.10 Variation 10: Using Ammonium Cerium(IV) Nitrate 647
28.9.1.1.1.11 Variation 11: Oxidative Coupling of Phenols and Anilines with Amines — 647
28.9.1.1.1.12 Variation 12: Electrooxidation 649
28.9.1.1.2 Method 2: Condensation of Quinone Derivatives with Amines 658
28.9.1.1.2.1 Variation 1: Intermolecular Processes 658
28.9.1.1.2.2 Variation 2: Intramolecular Processes 663
28.9.1.1.3 Method 3: Transition Metal Quinone Diimine Synthesis 667
28.9.1.1.4 Method 4: Organometallic C—N Coupling from N Chloroquinone Imines 669
283.1.2 Applications of Product Subclass 1 in Organic Synthesis 670
28.9.1.2.1 Method 1: Diels Alder Reactions 670
28.9.1.2.1.1 Variation 1: Cycloaddition Reactions of Benzo 1,2 quinone Imines 670
28.9.1.2.1.2 Variation 2: Cycloaddition Reactions of Benzo 1,4 quinone Imines 673
28.9.1.2.2 Method 2: Dipolar Cycloadditions 681
283.1.2.3 Method 3: Reactions with Alkenes Promoted by Lewis Acids 682
28.9.1.2.4 Method 4: 1,4 Addition Reactions 695
28.9.2 Product Subclass 2: Naphthoquinone Imines and Diimines 706
28.9.2.1 Synthesis of Product Subclass 2 706
28.9.2.1.1 Method 1: Oxidative Coupling of Naphthols with Amines 706
28.9.2.1.2 Method 2: Oxidative Coupling of 1 Naphthylcyanamide with Anilines ••• 710
28.9.2.1.3 Method 3: Substitutions on Naphthoquinones with Amines 712
283.2.1.3.1 Variation 1: Substitution of Sulfonic Groups 712
28.9.2.1.3.2 Variation 2: Substitution of Methoxy Groups 714
283.2.1.4 Method 4: Condensation of Naphthoquinones with Amines 714
28.9.2.1.5 Method 5: Condensation of Naphthoquinones with /V Sulfinylarylamines 716
283.2.1.6 Method 6: Reactions of Naphthoquinones with
N Phenyliminophosphoranes 717
283.2.1.7 Method 7: Oxidation of Aminonaphthols, Naphthalenediamines,
and Naphthylamines 718
283.2.1.8 Method 8: Diels Alder Reactions of Isoindoles with
Activated Acetylene Derivatives 721
283.2.1.9 Method 9: Synthesis and Oxidation of N Hydroxy N phenyl
naphthalen 1 amines 722
283.2.1.10 Method 10: Reactions of Naphthoquinones with
Bis(trimethylsilyl)carbodiimide 723
283.2.2 Applications of Product Subclass 2 in Organic Synthesis 724
283.2.2.1 Method 1: Halogenation 724
283.2.2.2 Method 2: [3 + 2] Photoaddition with Alkenes 726
Table of Contents XXXV
28.9.2.2.3 Method 3: 1,4 Addition Aromatization 726
28.9.2.2.4 Method 4: Oxidative Coupling 729
28.9.2.2.5 Method 5: The Imino Group as Nucleophile 729
28.10 Product Class 10: Anthraquinone and Phenanthrenedione Imines and
Diimines
C. Avendano and J. C. Menendez
28.10 Product Class 10: Anthraquinone and Phenanthrenedione Imines and
Diimines 735
28.10.1 Product Subclass 1:Anthra 9,10 quinone Imines and Diimines 739
28.io.li Synthesis of Product Subclass 1 739
28.10.1.1.1 Ring Annulation or Ring Closure Reactions 739
28.10.1.1.1.1 Method 1: Diels Alder Reactions of Naphthoquinone Imines 739
28.10.1.1.1.2 Method 2: Oxidative Photochemical Cyclization of
9 (2 lodoanilino) 4,5 phenanthrolin 10 ols 740
28.10.1.1.1.3 Method 3: Intramolecular Friedel Crafts Acylation of
1 (2 Carboxyphenyl)isoquinolines 741
28.10.1.1.1.4 Method 4: Intramolecular Friedel Crafts Acylation of
10 Hetaryl 2,9 phenanthridine 1 carbonitriles 741
28.10.1.1.1.5 Method 5: Intramolecular Cyclization of 2,2' Bis(phthalimido)biphenyls 742
28.10.1.1.1.6 Method 6: Double Cyclization of 3 [(2 Arylethyl)amino]
benzo[c]furan 1(3H) one 743
28.10.1.1.1.7 Method 7: Hydrolytic Cyclization of N (3 {2 [(5,8 Dioxo 5,8 dihydro
quinolin 6 yl)amino]phenyl} 3 oxopropyl) 2,2,2 trifluoro
acetamide 744
28.10.1.1.2 Creation of the Quinone Imine Functionality on a Preexisting
Six Membered Ring 745
28.10.1.1.2.1 Method 1: Oxidation of N Arylanthracen 9 amines, Tetracen 5 amines,
or Azaviolanthrenes 745
28.10.1.1.2.2 Method 2: Photonitrosation of 9 Anthrol 748
28.10.1.1.2.3 Method 3: Palladium Catalyzed Amination/Oxidation of
9 Bromoanthracenes 749
28.10.1.1.2.4 Method 4: Oxidative Amination of 9 Anthrones 750
28.10.1.1.2.5 Method 5: Oxidation of 10 Amino 9 anthrols 750
28.10.1.1.2.6 Method 6: Condensation of 9 Anthrones with Nitrosoarenes 751
28.10.1.1.2.7 Method 7: Reactions of 10,10 Dibromo 9 anthrones with
Nitrogen Containing Nucleophiles 752
28.10.1.1.2.8 Method 8: Nitrosation of Anthracen 9 amine 752
28.10.1.1.2.9 Method 9: Diazocoupling of 9 Anthrones 753
28.10.1.1.2.10 Method 10: Decomposition of 10 Azido 9 anthrones 754
28.10.1.1.2.11 Method 11: Condensation of Anthra 9,10 quinones or
Anthra 9,10 quinone Acetals with Ammonia or Amines 754
28.10.1.1.2.12 Method 12: Condensation of 1 Aminoanthra 9,10 quinones with Amides,
Amidines, or Nitriles 756
XXXVI Table of Contents
28.10.1.1.2.13 Method 13: Intramolecular Condensations of Anthra 9,10 quinones with
Masked Amino Croups 757
28.10.1.1.2.14 Method 14: Reactionsof Anthra 9,10 quinones with
Aryliminodimagnesium Reagents 759
28.10.1.1.2.15 Method 15: Reactions of Anthraquinones with
Bis(trimethylsilyl)carbodiimide 760
28.10.1.1.2.16 Method 16: Intramolecular Cyclization of 1 (Cyanomethyl) or
1 (Carbamoylmethyl)anthra 9,10 quinones 761
28.10.1.1.2.17 Method 17: Reactions of 9 Aryloxyanthra 1,10 quinones with Amines ••• 761
28.10.1.1.2.18 Method 18: Reactionsof 1 [2 (Dimethylamino)vinyl]azanthraquinones
with Ammonia 762
28.10.1.1.2.19 Method 19: Self Coupling of 1 Aminoanthra 9,10 quinones 763
28.10.1.1.2.20 Method 20: Reactions of 1 Substituted Anthra 9,10 quinones with
Nucleophiles 764
28.10.1.1.2.20.1 Variation 1: Reactionsof 1 Haloanthra 9,10 quinones with Hydrazine or
2 Aminobenzenethiol 764
28.10.1.1.2.20.2 Variation 2: Reactionsof 1 Alk 1 ynylanthra 9,10 quinoneswith
Hydrazines 765
28.10.1.1.2.21 Method 21: Copper Catalyzed Reactions of 1 Haloanthra 9,10 quinones
with Amidines, Guanidines, and Related Compounds 766
28.10.1.1.2.22 Method 22: Synthesis from Anthracenes and Anthracene Diones
Bearing a Nitrogen Containing Croup or Groups 767
28.10.1.1.2.22.1 Variation 1: Hydrolysis of Anthra 9,10 quinone Diimines to Monoimines 767
28.10.1.1.2.22.2 Variation 2: Dipolar Cycloadditions between Quinomethanes and Azides,
and Diazoalkane Extrusion 768
28.10.1.1.2.22.3 Variation 3: Transformations of Anthra 9,10 quinone Imines and
Hydrazones 769
28.10.1.1.2.22.4 Variation 4: Transformations of Anthra 9,10 quinone Oximes 769
28.10.1.1.2.22.5 Variation 5: Reactionsof 10 Diazoanthracen 9(10H) ones with
Nitrogen Containing Electrophiles 770
28.10.1.1.2.22.6 Variation 6: ReductiveTautomerization of Anthra 1,4 quinone Imines ••¦ 771
28.10.2 Product Subclass 2: Anthra 1,2 quinone and Anthra 1,4 quinone Imines
and Diimines 771
28.10.21 Synthesis of Product Subclass 2 771
28.10.2.1.1 Ring Closure Reactions 771
28.10.2.1.1.1 Method 1: Oxidative Coupling of 1 Phenyl 2,3 bis(pyrimidin 5 yl)
benzenes 771
28.10.2.1.1.2 Method 2: Cycloaddition of Homophthalic Anhydrides and
Benzo 1,4 quinone Imines and Subsequent Oxidation 772
28.10.2.1.2 Creation of the Quinone Imine Functionality on a Preexisting
Six Membered Ring 774
28.10.2.1.2.1 Method 1: Oxidation of 1 (Acylamino) 2 anthrols 774
28.10.2.1.2.2 Method 2: Oxidation of Anthracenamines and Their Derivatives 774
28.10.2.1.2.3 Method 3: Rearrangement of 4 Aryloxyanthracen 1 amines and
Related Compounds 775
Table of Contents XXXVII
28.10.2.1.2.4 Method 4: Condensation of Anthra 9,10 quinone Diamines and
Anthracenamines with Carbonyl Compounds 777
28.10.2.1.2.5 Method 5: Condensation of Anthra 1,2 quinones with Hydrazines 778
28.10.3 Product Subclass 3: Phenanthrene 9,10 dione Imines and Diimines 779
28.io.3i Synthesis of Product Subclass 3 779
28.10.3.1.1 Ring Closure Reactions 779
28.10.3.1.1.1 Method 1: Transannular Cyclizations of [22]Metacyclophanes with
N Bromosuccinimide 780
28.10.3.1.1.2 Method 2: Metal Induced Oxidative Intramolecular Aryl Aryl Coupling 780
28.10.3.1.1.3 Method 3: Synthesis of Oxoaporphine Alkaloids by Aryl Aryl Coupling 782
28.10.3.1.1.4 Method 4: PschorrCyclization of 1 (2 Aminobenzyl)isoquinolines 784
28.10.3.1.1.5 Method 5: Oxidative Cyclization of Bisarylhydrazones 785
28.10.31 2 Creation of the Quinone Imine Functionality on a Preexisting
Six Membered Ring 787
28.10.3.1.2.1 Method 1: Reaction of Phenanthrene 9,10 diones with Nucleophiles ••• 787
28.10.3.1.2.1.1 Variationi: Reactions with 1,2 Diamines 787
28.10.3.1.2.1.2 Variation 2: Condensation of Phenanthrene 9,10 diones with
Hydroxylamine or Sodium Hexamethyldisilazanide 789
28.10.3.1.2.1.3 Variation 3: Condensation of Phenanthrene 9,10 diones with Imino
hydrazides, Sulfanamide, Thiosemicarbazide, Semicarbazide,
or Aminoguanidines 790
28.10.3.1.2.1.4 Variation 4: Condensation of Phenanthrene 9,10 diones with
S Alkylisothiosemicarbazides and Related Compounds 791
28.10.3.1.2.1.5 Variation 5: Reductive Condensation of Phenanthrene 9,10 diones with
Aromatic Nitroso or Nitro Compounds 793
28.10.3.1.2.2 Method 2: Condensation of Phenanthrene 9,10 diamines with
a Dicarbonyl Compounds 793
28.10.3.1.2.3 Method 3: Condensation of Phenanthrene 9,10 diamines with
Bis(methyloximes) 794
28.10.3.1.2.4 Method 4: Reactions of Phenanthrene 9,10 diamines with
a Nitro Ketones 795
28.10.3.1.2.5 Method 5: Condensation of Phenanthrene 3,9 diones with 1,2 Diamines 796
28.10.3.1.2.6 Method 6: Condensation of 9 Nitrophenanthrenes with Anilines 797
28.10.3.1.2.7 Method 7: Condensation of lminophenanthren 9(10H) ones with Amines 797
28.10.3.1.2.8 Method 8: Reaction of Phenanthrene 9,10 diones with Arsinimines 798
28.10.3.1.2.9 Method 9: Condensation of Phenanthrene 9,10 dione Monooxime with
1,1 Diarylalkenes 799
28.10.3.1.2.10 Method 10: Condensation of Phenanthrene 9,10 dione Diimines or
Dioximeswithgem Dihalides 800
28.10.3.1.2.11 Method 11: Reaction of Phenanthrene with Trithiazyl Trichloride 801
28.10.3.1.2.12 Method 12: Ring Expansion of Phenanthro[9,10 d][1,2,3]triazoles or
Phenanthro[9,10 c][1,2,5]oxadiazoles 801
XXXVIII Table of Contents _
28.11 Product Class 11: Quinone Diazides
A. C. Griesbeck and E. Zimmermann
28.11 Product Class 11: Quinone Diazides 807
28.11.1 Synthesis of Product Class 11 809
28.11.1.1 Method 1: Diazotization of Amino Substituted Aromatic Alcohols 810
28.11.1.1.1 Variation 1: Diazotization in Aqueous Media 810
28.11.1.1.2 Variation 2: Diazotization in Organic Solvents 812
28.11.1.1.3 Variation 3: Nitration of Substituted Anilines 816
28.11.1.2 Method 2: Aromatic Substitution of Diazonium Salts 818
28.11.1.2.1 Variation 1: Hydrolysis of 2 or 4 Substituted Diazonium Salts 818
28.11.1.2.2 Variation 2: Elimination of HX from Diazonium Salts 819
28.11.1.2.3 Variation 3: Aromatic Substitution of Aryl Fluorides 820
28.11.1.3 Method 3: Oxidation of Arenediazonium Cations 821
28.11.1.4 Method 4: o or p Nitrosylation of Phenols 821
28.11.1.5 Method 5: Formation of Tosylhydrazones from Quinones 822
28.11.1 6 Method 6: Electrophilic Substitution of Quinone Diazides 823
28.11.1.7 Method 7: Diazo Croup Transfer Reactions 823
28.11.1.8 Methods 8: Additional Methods 825
28.11.2 Applications of Product Class 11 in Organic Synthesis 825
28.11.2.1 Method 1: The Sus Reaction 825
28.11.2.2 Method 2: Application in Photolithographic Processes 827
28.12 Product Class 12: Quinomethanes
28.12.1 Product Subclass 1: o Quinomethanes
T. R. R. Pettus and C. Selenski
28.12.1 Product Subclass 1: o Quinomethanes 831
28.12.11 Synthesis of Product Subclass 1 835
28.12.1.1.1 Quinone Enolization 835
28.12.1.1.1.1 Methodi: Heat Assisted Quinone Enolization 835
28.12.1.1.1.2 Method 2: Base Assisted Quinone Enolization 836
28.12.1.1.1.2.1 Variation 1: Using Lithium Methoxide 836
28.12.1.1.1.2.2 Variation 2: Using Sodium Methanethiolate 837
28.12.1.1.1.2.3 Variation 3: Using Amines 838
28.12.1.1.1.3 Method 3: Photochemically Assisted Quinone Enolization 839
28.12.1.1.2 Oxidation 840
28.12.1.1.2.1 Methodi: Oxidation Using Silver(l) Oxide 840
28.12.1.1.3 Extrusions and Retrocycloadditions 843
28.12.1.1.3.1 Method 1: Nucleophilic Displacement 843
28.12.1.1.3.2 Method 2: Mannich Base Precursors 843
Table of Contents XXXIX
28.12.1.1.3.2.1 Variation 1: Thermal Induction 844
28.12.1.1.3.2.2 Variation 2: Quaternization 846
28.12.1.1.3.3 Method 3: 2 (1H Benzotriazol 1 ylmethyl)phenol Precursors 847
28.12.1.1.3.3.1 Variation 1: Basic Conditions 848
28.12.1.1.3.3.2 Variation 2: Thermal Conditions 849
28.12.1.1.3.4 Method 4: 4H 1,2 Benzoxazine Precursors (Thermal Extrusion) 851
28.12.1.1.3.5 Method 5: 2 (fert Butoxycarbonyloxy)benzaldehyde and 2 (tert Butoxy
carbonyloxy)benzyl Alcohol Precursors (Basic Conditions) ¦•• 852
28.12.1.1.3.6 Method 6: 2 (Hydroxymethyl)phenol Precursors 858
28.12.1.1.3.6.1 Variation 1: Thermal Induction 858
28.12.1.1.3.6.2 Variation 2: Derivatization of the 2 (Hydroxymethyl)phenol Precursor ••¦ 860
28.12.1.1.3.6.3 Variation 3: Photochemical Induction 860
28.12.1.1.3.6.4 Variation 4: Lewis Acid Induction 861
28.12.1.1.3.6.5 Variation 5: Lewis Base Induction 862
28.12.1.1.3.7 Method 7: 2 Phenylbenzodioxaborin Precursors 863
28.12.1.1.3.7.1 Variation 1: Lewis Acid Induction 864
28.12.1.1.3.8 Method 8: 2 (Halomethyl)phenol Precursors 866
28.12.1.1.3.8.1 Variation 1: Neutral Conditions 867
28.12.1.1.3.8.2 Variation 2: Basic Conditions 867
28.12.1.1.3.8.3 Variation 3: Lewis Acidic Conditions 868
28.12.2 Product Subclass 2: p Quinomethanes
A. G. Griesbeck
28.12.2 Product Subclass 2: p Quinomethanes 873
28.i2.2i Synthesis of Product Subclass 2 874
28.12.2.1.1 Method 1: Oxidation of 4 Substituted Phenols 876
28.12.2.1.1.1 Variation 1: Using Silver(l), Lead(IV), or Manganese(IV) Oxide 876
28.12.2.1.1.2 Variation 2: Using Potassium Hexacyanoferrate(lll) 877
28.12.2.1.1.3 Variation 3: Using Other Oxidants 877
28.12.2.1.2 Method 2: Dehydration of 4 (Hydroxyalkyl) and
4 (Hydroxyalkyl)phenyl Substituted Phenols 879
28.12.2.1.2.1 Variation 1: Thermal Dehydration of 4 (Hydroxyalkyl) Substituted Phenols 879
28.12.2.1.2.2 Variation 2: Acid Catalyzed Dehydration of 4 (Hydroxyalkyl) Substituted
Phenols 879
28.12.2.1.2.3 Variation 3: Dehydration of 4 (Hydroxyalkyl) Substituted Phenols Using
Lithium Aluminum Hydride 879
28.12.2.1.3 Method 3: Dehydrohalogenation of 4 Halomethyl Substituted Phenols 880
28.12.2.1.3.1 Variation 1: Using Amine Bases 880
28.12.2.1.3.2 Variation 2: Using Weak Bases in Aqueous Media 881
28.12.2.1.3.3 Variation 3: Using Metal Alkoxides 881
28.12.2.1.4 Method 4: Acid Catalyzed Dehydration of 4 Methoxyphenyl Substituted
Alcohols 882
28.12.2.1.5 Method 5: Elimination of Chloromethane from 4 Chloroalkyl Substituted
Anisoles 882
28.12.2.1.6 Method 6: Acid Elimination from 4 (Acyloxy)alkyl Substituted Phenols 883
XL Table of Contents
28.12.2.1.7 Method 7: Decomplexation of Quinomethanes from
re Palladium Complexes 884
28.12.2 1.8 Method 8: Condensation of Phenols with Alkyl or Acyl Halides 884
28.12.2.1.8.1 Variation 1: Thermal Condensation 885
28.12.2.1.8.2 Variation 2: Lewis Acid Catalyzed Condensation 885
28.12.2.1.9 Method 9: Reaction of Phenols with Carbenium Ions 885
28.i2.2i.io Method 10: Reaction of Aryl Carbanions with Carbonyl Compounds — 886
28.12.2.1.10.1 Variation 1: Reaction of Metalated Phenols with Carbonyl Compounds 886
28.12.2.1.10.2 Variation 2: Reaction of Metalated Arenes with 4 Acylphenols 887
28.12.2.1.11 Method 11: Oxidation of Phenols to p Diphenoquinones 888
28.12.2.1.12 Method 12: Ring Closure Reactions 888
28.12.2.1.13 Method 13: Addition of Nudeophiles to o Quinones 889
28.12.2.1.14 Method 14: Addition of Nudeophiles to p Quinones 890
28.i2.2i.i5 Method 15: Knoevenagel Addition to p Quinones 890
28.12.2.1.16 Method 16: Wittig Reaction of p Quinones 891
28.12.2.1.17 Method 17: Ketene Additions to p Quinones 893
28.i2.2i.i8 Method 18: Photochemical Addition of Alkynes to p Quinones 893
28.12.2.1.19 Method 19: Modification of p Quinomethanes 894
28.12.2.1.20 Method 20: Condensation of Carbonyl Compounds with Anthrones — 894
28.12.2.1.21 Method 21: Oxidation of Nitrobenzylic Carbanions 895
Keyword Index 901
Author Index 949
Abbreviations 1001 |
adam_txt |
^^^^.^ _™™_ XIII
Table of Contents
Introduction
A. G. Griesbeck
Introduction 1
28.1 Product Class 1: Benzo 1,4 quinones
28.1.1 Product Subclass 1: Metal Substituted Benzo 1,4 quinones
B. G. Vong and E. A. Theodorakis
28.1.1 Product Subclass 1: Metal Substituted Benzo 1,4 quinones 13
28.1.1.1 Synthesis of Product Subclass 1 14
28.1.1.1.1 Method 1: Tin Substituted Benzo 1,4 quinones by Cyclobutenone
Ring Expansion 14
28.1.1.1.2 Method 2: Tin Substituted Benzo 1,4 quinones by Stannylation of
Benzo 1,4 quinones 16
28.1.1.1.3 Method 3: Silicon Substituted Benzo 1,4 quinones by Reaction of
Organolithium Species 16
28.1.1.1.4 Method 4: Silicon Substituted Benzo 1,4 quinones by Cyclobutenone
Ring Expansion 17
28.1.1.1.5 Method 5: Silicon Substituted Benzo 1,4 quinones by Carbene Annulation 20
28.1.1.1.6 Method 6: Silicon Substituted Benzo 1,4 quinones by
Nucleophilic Substitution 21
28.1.1.1.7 Method 7: Boron Substituted Benzo 1,4 quinones by
Carbene Benzannulation 22
28.1.1.2 Applications of Product Subclass 1 in Organic Synthesis 22
28.1.1.2.1 Method 1: Palladium Catalyzed Cross Coupling Reactions of
Tin Substituted Benzo 1,4 quinones 22
28.1.1.2.1.1 Variation 1: Allylation 23
28.1.1.2.1.2 Variation 2: Coupling with Aromatic and Heteroaromatic Iodides 23
28.1.1.2.1.3 Variation 3: Oxidative Dimerization 25
28.1.1.2.1.4 Variation 4: Benzannulation 26
28.1.1.2.2 Method 2: Silicon/Halide Exchange Reactions of Silicon Substituted
Benzo 1,4 quinones 27
28.1.1.2.3 Method 3: Oxidation of the Boron Substituent in Boron Substituted
Benzo 1,4 quinones 28
XIV Table of Contents
28.1.2 Product Subclass 2: Halogen Substituted Benzo 1,4 quinones
M. Balci, M. Celik, and M. S. Gultekin
28.1.2 Product Subclass 2: Halogen Substituted Benzo 1,4 quinones 31
28.1.2.1 Monohalobenzo 1,4 quinones 31
28.1.2.1.1 Synthesis of Monohalobenzo 1,4 quinones 31
28.1.2.1.1.1 Method 1: Oxidation of 4 Amino 3 iodophenol Using
Potassium Dichromate 31
28.1.2.1.1.2 Method 2: Oxidation of 1,4 Hydroquinones with Persulfate or
Ammonium Cerium(IV) Nitrate 32
28.1.2.1.1.3 Method 3: Oxidation of 1,4 Hydroquinones Catalyzed by
an Oxovanadium Complex 34
28.1.2.1.1.4 Method 4: Oxidation of 1,4 Hydroquinones Catalyzed by
Caseous Nitrogen Oxides 34
28.1.2.1.1.5 Methods 5: Miscellaneous Oxidations of Anilines and 1,4 Hydroquinones 35
28.1.2.1.2 Applications of Monohalobenzo 1,4 quinones in Organic Synthesis 35
28.1.2.2 2,3 Dihalobenzo 1,4 quinones 39
28.1.2.2.1 Synthesis of 2,3 Dihalobenzo 1,4 quinones 39
28.1.2.2.1.1 Methodi: Halogenation of Benzo 1,4 quinone 39
28.1.2.2.1.2 Method 2: Oxidation of a 1,4 Hydroquinone Using
Ammonium Cerium(IV) Nitrate 41
28.1.2.2.2 Applications of 2,3 Dihalobenzo 1,4 quinones in Organic Synthesis 41
28.1.2.3 2,5 Dihalobenzo 1,4 quinones 42
28.1.2.3.1 Synthesis of 2,5 Dihalobenzo 1,4 quinones 42
28.1.2.3.1.1 Methodi: Oxidation of 1,2,4,5 Tetrafluorobenzene 42
28.1.2.3.1.2 Method 2: Oxidation of 1,4 Hydroquinones 43
28.1.2.3.1.3 Method 3: Oxidative Demethylation of 1,4 Dimethoxybenzenes 43
28.1.2.4 2,6 Dihalobenzo 1,4 quinones 43
28.1.2.4.1 Synthesis of 2,6 Dihalobenzo 1,4 quinones 43
28.1.2.4.1.1 Method 1: Oxidation of Phenols and 1,4 Hydroquinones Catalyzed by
Metalated Phthalocyanines 43
28.1.2.4.1.2 Method 2: Oxidation of a 1,4 Hydroquinone Using
Ammonium Cerium(IV) Nitrate 44
28.1.2.4.1.3 Method 3: Oxidation of Phenols Using Metal Oxides 44
28.1.2.4.2 Applications of 2,6 Dihalobenzo 1,4 quinones in Organic Synthesis 45
28.1.2.5 2,3,5 Trihalobenzo 1,4 quinones 46
28.1.2.5.1 Synthesis of 2,3,5 Trihalobenzo 1,4 quinones 46
28.1.2.5.1.1 Methodi: Halogenation of Benzo 1,4 quinones 46
28.1.2.5.1.2 Method 2: Bromination of 2,5 Dichlorobenzo 1,4 quinone 46
28.1.2.5.1.3 Method 3: Oxidation of a 1,4 Hydroquinone Using
Ammonium Cerium(IV) Nitrate 47
28.1.2.5.2 Applications of 2,3,5 Trihalobenzo 1,4 quinones in Organic Synthesis 47
Table of Contents XV
28.1.2.6 2,3.5,6 Tetrahalobenzo 1,4 quinones 48
28.1.2.6.1 Synthesis of 2,3,5,6 Tetrahalobenzo 1,4 quinones 48
28.1.2.6.1.1 Method 1: Halogenation of Benzo 1,4 quinone 48
28.1.2.6.1.2 Method 2: Oxidation of 1,4 Hydroquinones Using
Hydrogen Peroxide or Chlorine 49
28.1.2.6.1.3 Method 3: Oxidation of a 1,4 Hydroquinone Using Ammonium Cerium(IV)
Nitrate, and Other Reactions 49
28.1.2.6.2 Applications of 2,3,5,6 Tetrahalobenzo 1,4 quinones in Organic Synthesis — 49
28.1.3 Product Subclass 3: Chalcogen Substituted Benzo 1,4 quinones
S. H. Kim and E. A. Theodorakis
28.1.3 Product Subclass 3: Chalcogen Substituted Benzo 1,4 quinones 53
28.1.3.1 Synthesis of Product Subclass 3 54
28.1.3.1.1 Method 1: Oxidative Dearomatization 54
28.1.3.1.1.1 Variation 1: Oxidation of Chalcogen Substituted Phenols 54
28.1.3.1.1.2 Variation 2: Oxidation of Chalcogen Substituted Hydroquinones 56
28.1.3.1.1.3 Variation 3: Oxidative Demethylation of Chalcogen Substituted
Hydroquinone Mono and Diethers 57
28.1.3.1.1.4 Variation 4: Miscellaneous Oxidations 58
28.1.3.1.2 Method 2: Nucleophilic Additions on the Benzoquinone Motif 59
28.1.3.1.2.1 Variation 1: Conjugate Addition/Oxidation 59
28.1.3.1.2.2 Variation 2: Conjugate Addition Elimination 61
28.1.3.1.3 Method 3: Ring Expansion of Cyclobutenediones 61
28.1.3.2 Applications of Product Subclass 3 in Organic Synthesis 64
28.1.3.2.1 Method 1: Cycloaddition Reactions of Chalcogen Substituted
Benzo 1,4 quinones 64
28.1.3.2.2 Method 2: Conjugate Additions of Chalcogen Substituted
Benzo 1,4 quinones 66
28.1.4 Product Subclass 4: Nitrogen and Phosphorus Substituted
Benzo 1,4 quinones
H. Lee and E. A. Theodorakis
28.1.4 Product Subclass 4: Nitrogen and Phosphorus Substituted
Benzo 1,4 quinones 71
28.1.4.1 Synthesis of Product Subclass 4 71
28.1.4.1.1 Method 1: Nitrogen Substituted Benzo 1,4 quinones by
Nucleophilic Addition/Oxidation 71
28.1.4.1.2 Method 2: Nitrogen Substituted Benzo 1,4 quinones by
Nucleophilic Substitution 74
28.1.4.1.3 Method 3: Nitrogen Substituted Benzo 1,4 quinones by
Oxidation of a Benzene Ring 75
XVI Table of Contents
28.1.4.1.4 Method 4: Phosphorus Substituted Benzo 1,4 quinones by
Addition/Elimination and Addition/Oxidation Sequences — 76
28.1.4.2 Applications of Product Subclass 4 in Organic Synthesis 77
28.1.4.2.1 Method 1: Ring Contraction of Benzoquinones 77
28.1.4.2.1.1 Variation 1: Synthesis of Cyclopentenediones from Azidoquinones 77
28.1.4.2.1.2 Variation 2: Synthesis of Butenolides from Azidoquinones 78
28.1.4.2.1.3 Variation 3: Cyanoketenes from Aminoquinones and
Their Use in Synthesis 79
28.1.4.2.2 Method 2: Formation of Oxazoles 80
28.1.4.2.3 Method 3: Synthesis of Hetarene Fused Benzo 1,4 quinones 82
28.1.5 Product Subclass 5: Benzo 1,4 quinones Substituted with Carbon
with Three Bonds to Heteroatoms
M. Balci, M. Celik, and M. S. Cultekin
28.1.5 Product Subclass 5: Benzo 1,4 quinones Substituted with Carbon
with Three Bonds to Heteroatoms 87
28.1.5.1 Benzo 1,4 quinones Substituted with Carbon with Three Bonds to Halogens 87
28.1.5.1.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Three Bonds to Halogens 88
28.1.5.1.1.1 Method 1: Oxidation of Phenols with Chlorous Acid 88
28.1.5.1.1.2 Method 2: Oxidation of Phenols with Manganese(IV) Oxide 88
28.1.5.1.1.3 Method 3: Oxidative Demethylation of Dimethoxybenzenes 89
28.1.5.1.1.4 Method 4: Oxidative Debenzylation of Bis(benzyloxy)benzenes 90
28.1.5.2 Benzo 1,4 quinones Substituted with Carbon with Three Bonds to Oxygen 91
28.1.5.2.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Three Bonds to Oxygen 92
28.1.5.2.1.1 Method 1: Oxidation of Hydroquinones with Ammonium
Cerium(IV) Salts 92
28.1.5.2.1.2 Method 2: Oxidation of Hydroquinones with Silver(ll) Oxide 93
28.1.5.2.1.3 Method 3: Oxidation of Hydroquinones with Polymer Supported
(Diacetoxyiodo)benzene 94
28.1.5.2.1.4 Method 4: Oxidative Demethylation of Dimethoxybenzenes 94
28.1.5.2.1.5 Method 5: Reaction of Maleoylcobalt Complexes with Alkynes 95
28.1.5.3 Benzo 1,4 quinones Substituted with Carbon with Two Bonds to Oxygen and
One Bond to Nitrogen 96
28.1.5.3.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Oxygen and One Bond to Nitrogen 98
28.1.5.3.1.1 Method 1: Oxidation of Hydroquinones with
Ammonium Cerium(IV) Nitrate 98
28.1.5.3.1.2 Method 2: Oxidation of Hydroquinones with Silver(l) Oxide 98
28.1.5.3.1.3 Method 3: Oxidation of Hydroquinones with Fungal Laccase 98
28.1.5.3.1.4 Method 4: Oxidative Demethylation of Dimethoxybenzenes 99
28.1.5.4 Benzo 1,4 quinones Substituted with Carbon with Three Bonds to Nitrogen 101
Table of Contents XVII
28.1.5.4.1 Synthesis of Benzol ,4 quinones Substituted with Carbon with
Three Bonds to Nitrogen 101
28.1.5.4.1.1 Method 1: Oxidation of Hydroquinones with Silver Salts 101
28.1.5.4.1.2 Method 2: Oxidation of Hydroquinones with Manganese(IV) Oxide 102
28.1.6 Product Subclass 6: Benzo 1,4 quinones Substituted with Carbon
with Two Bonds to Heteroatoms
M. Balci, M. Celik, and M. S. Giiltekin
28.1.6 Product Subclass 6: Benzo 1,4 quinones Substituted with Carbon
with Two Bonds to Heteroatoms 105
28.1.6.1 Benzo 1,4 quinones Substituted with Carbon with Two Bonds to Halogens 105
28.1.6.1.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Halogens 105
28.1.6.1.1.1 Method 1: Oxidative Demethylation of a 1,4 Dimethoxybenzene 105
28.1.6.2 Benzo 1,4 quinones Substituted with Carbon with Two Bonds to Oxygen — 106
28.1.6.2.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Oxygen 106
28.1.6.2.1.1 Method 1: Oxidation of 1,4 Hydroquinones with Silver(l) Oxide 106
28.1.6.2.1.2 Method 2: Oxidation of 1,4 Hydroquinones with Manganese(IV) Oxide 108
28.1.6.2.1.3 Method 3: Oxidation of a 1,4 Hydroquinone with
2,3 Dichloro 5,6 dicyanobenzo 1,4 quinone 109
28.1.6.2.1.4 Method 4: Oxidation of a 1,4 Hydroquinone Derivative in Aqueous Media 110
28.1.6.2.1.5 Method 5: Oxidative Demethylation of 1,4 Dimethoxybenzenes 110
28.1.6.2.2 Applications of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Oxygen in Organic Synthesis 111
28.1.6.3 Benzo 1,4 quinones Substituted with Carbon with Two Bonds to Nitrogen •¦• 112
28.1.6.3.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
Two Bonds to Nitrogen 112
28.1.6.3.1.1 Method 1: Oxidation of a Diol with Manganese(IV) Oxide 112
28.1.7 Product Subclass 7: Benzo 1,4 quinones Substituted with Carbon
with One Bond to a Heteroatom
M. Balci, M. S. Gultekin, and M. Celik
28.1.7 Product Subclass 7: Benzo 1,4 quinones Substituted with Carbon
with One Bond to a Heteroatom 115
28.1.7.1 Benzo 1,4 quinones Substituted with Carbon with One Bond to a Halogen •¦¦ 115
28.1.7.1.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
One Bond to a Halogen 115
28.1.7.1.1.1 Method 1: Demethylation of 1,4 Dimethoxybenzenes by
Electrochemical Oxidation 115
XVIII Table of Contents
28.1.7.1.1.2 Method 2: Demethylation of Dimethoxybenzenes by Oxidation with
Ammonium Cerium(IV) Nitrate 116
28.1.7.1.1.3 Method 3: Demethylation of Dimethoxybenzenes by Oxidation with
Nitric Acid 116
28.1.7.1.1.4 Method 4: Allylic Bromination and Substitution 117
28.1.7.2 Benzo 1,4 quinones Substituted with Carbon with One Bond to Oxygen 119
28.1.7.2.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
One Bond to Oxygen 119
28.1.7.2.1.1 Method 1: (Diacetoxyiodo)benzene Oxidation 119
28.1.7.2.1.2 Method 2: Oxidation of Anilines 120
28.1.7.2.1.3 Method 3: Oxidation of Hydroquinones and 1,4 Dimethoxybenzenes
with Nitric Acid 120
28.1.7.2.1.4 Method 4: Oxidation of Hydroquinones and 1,4 Dimethoxybenzenes
with Ammonium Cerium(IV) Nitrate 121
28.1.7.2.1.5 Method 5: Oxidation of Hydroquinones and 1,4 Dimethoxybenzenes
with Silver(l) Oxide 122
28.1.7.2.1.6 Method 6: Oxidation of Hydroquinones and 1,4 Dimethoxybenzenes
with Iron(lll) Chloride 125
28.1.7.2.1.7 Methods 7: Additional Methods 126
28.1.7.3 Benzo 1,4 quinones Substituted with Carbon with One Bond to Sulfur 129
28.1.7.3.1 Synthesis of Benzo 1,4 quinones Substituted with Carbon with
One Bond to Sulfur 129
28.1.8 Product Subclass 8: Alkynyl , Aryl , and Alkenyl Substituted
Benzo 1,4 quinones
M. Balci, M. S. Giiltekin, and M. Celik
28.1.8 Product Subclass 8: Alkynyl , Aryl , and Alkenyl Substituted
Benzo 1,4 quinones 131
28.1.8.1 Alkynyl Substituted Benzo 1,4 quinones 131
28.1.8.1.1 Synthesis of Alkynyl Substituted Benzo 1,4 quinones 131
28.1.8.1.1.1 Method 1: Suzuki Cross Coupling of Benzo 1,4 quinones 131
28.1.8.1.1.2 Method 2: Oxidative Demethylation of 1,4 Dimethoxybenzenes 132
28.1.8.1.1.3 Method 3: Addition of Organolithium Compounds to
Benzoquinone Derivatives 134
28.1.8.1.1.3.1 Variation 1: Addition to 2,5 Dialkoxybenzo 1,4 quinones 134
28.1.8.1.1.3.2 Variation 2: Addition to Dimethoxybenzo 1,2 quinones 135
28.1.8.2 Aryl Substituted Benzo 1,4 quinones 137
28.1.8.2.1 Synthesis of Aryl Substituted Benzo 1,4 quinones 137
28.1.8.2.1.1 Method 1: Coupling Reactions of Benzo 1,4 quinones 137
28.1.8.2.1.2 Method 2: Oxidative Demethylation and Coupling of
a 1,4 Dimethoxybenzene 139
28.1.8.2.1.3 Method 3: Oxidation of 1,4 Hydroquinones Catalyzed by
an Oxovanadium Complex 139
Table of Contents XIX
28.1.8.2.1.4 Method 4: Oxidation of Phenols and Derivatives Using Metals and
Metal Oxides 140
28.1.8.2.1.5 Method 5: Oxidation of Phenols with Fremy's Salt 141
28.1.8.2.1.6 Method 6: Reaction of Fischer Carbene Complexes with
Phenylacetylenes 142
28.1.8.2.1.7 Method 7: Reaction of Phenylacetylenes with a Tetracarbonyliron Species
or with Carbon Monoxide 143
28.1.8.2.1.8 Methods 8: Additional Methods 144
28.1.8.3 Alkenyl Substituted Benzo 1,4 quinones 147
28.1.8.3.1 Synthesis of Alkenyl Substituted Benzo 1,4 quinones 147
28.1.8.3.1.1 Method 1: Direct Introduction of a Vinyl Group into Benzo 1,4 quinones 147
28.1.8.3.1.2 Method 2: Suzuki Cross Coupling of Benzo 1,4 quinones 147
28.1.8.3.1.3 Method 3: Oxidation of 1,4 Hydroquinones with Silver(l) Oxide 148
28.1.8.3.1.4 Method 4: Oxidation of a 1,4 Hydroquinone with 2,3 Dichloro
5,6 dicyanobenzo 1,4 quinone 149
28.1.8.3.1.5 Method 5: Oxidative Demethylation of 1,4 Dimethoxybenzenes with
Ammonium Cerium(IV) Nitrate 150
28.1.8.3.1.6 Method 6: Electrochemical Oxidation of 1,4 Dimethoxybenzenes 150
28.1.8.3.1.7 Method 7: Thermal Ring Expansion of Cyclobutenedione Derivatives •¦• 151
28.1.8.3.1.8 Methods 8: Additional Methods 152
28.1.9 Product Subclass 9: Alkyl Substituted Benzo 1,4 quinones
M. Balci, M. S. CGItekin, and M. Celik
28.1.9 Product Subclass 9: Alkyl Substituted Benzo 1,4 quinones 157
28.1.9.1 Monoalkylbenzo 1,4 quinones 157
28.1.9.1.1 Synthesis of Monoalkylbenzo 1,4 quinones 157
28.1.9.1.1.1 Method 1: Coupling Reactions of Benzo 1,4 quinones 157
28.1.9.1.1.2 Method 2: Oxidation of 1,4 Hydroquinones with
an Organoselenium Reagent 158
28.1.9.1.1.3 Method 3: Oxidation of 1,4 Hydroquinones with
Ammonium Cerium(IV) Nitrate 159
28.1.9.1.1.4 Method 4: Oxidation of Phenols and Derivatives 160
28.1.9.2 2,3 Dialkylbenzo 1,4 quinones 161
28.1.9.2.1 Synthesis of 2,3 Dialkylbenzo 1,4 quinones 161
28.1.9.2.1.1 Method 1: Oxidation of a 1,4 Hydroquinone with Silver(l) Oxide 161
28.1.9.2.1.2 Method 2: Oxidation of N Arylsulfonamides 161
28.1.9.2.1.3 Method 3: Reaction of Fischer Carbene Complexes with Alkynes 162
28.1.9.2.1.4 Methods 4: Additional Methods 162
28.1.9.3 2,5 Dialkylbenzo 1,4 quinones 165
28.1.9.3.1 Synthesis of 2,5 Dialkylbenzo 1,4 quinones 165
28.1.9.3.1.1 Method 1: Oxidation of Phenols and 1,4 Hydroquinones Using
Methyltrioxorhenium(VII) 165
XX Table of Contents
28.1.9.3.1.2 Method 2: Oxidation of 1,4 Hydroquinones with Polymer Supported
(Diacetoxyiodo)benzene 166
28.1.9.3.1.3 Method 3: Oxidation of 1,4 Hydroquinones and Derivatives with
Ammonium Cerium(IV) Nitrate or Pyridinium Chlorochromate 166
28.1.9.3.1.4 Methods 4: Additional Methods 168
28.1.9.4 2,6 Dialkylbenzo 1,4 quinones 170
28.1.9.4.1 Synthesis of 2,6 Dialkylbenzo 1,4 quinones 170
28.1.9.4.1.1 Method 1: Oxidation of Phenols and 1,4 Hydroquinones 170
28.1.9.4.1.2 Method 2: Reaction of Acetylenes with a Carbonyliron Species 172
28.1.9.5 2,3,5 Trialkylbenzo 1,4 quinones 173
28.1.9.5.1 Synthesis of 2,3,5 Trialkylbenzo 1,4 quinones 173
28.1.9.5.1.1 Method 1: Oxidation of Phenols and 1,4 Hydroquinones 173
28.1.9.5.1.2 Methods 2: Additional Methods 174
28.1.9.6 2,3,5,6 Tetraalkylbenzo 1,4 quinones 175
28.1.9.6.1 Synthesis of 2,3,5,6 Tetraalkylbenzo 1,4 quinones 175
28.1.9.6.1.1 Method 1: Oxidation of 1,4 Hydroquinones and Derivatives 175
28.2 Product Class 2: Benzo 1,2 quinones
V. Nair and K. V. Radhakrishnan
28.2 Product Class 2: Benzo 1,2 quinones 181
28.2.1 Synthesis of Product Class 2 182
28.2.11 Method 1: Oxidation of Catechols Using Silver(l) Salts 182
28.2.1.2 Method 2: Oxidation of Catechols Using Cerium(IV) Reagents 183
28.2.1.3 Method 3: Oxidation of Catechols Using Periodate Salts 184
28.2.14 Method 4: Oxidation of Catechols Using N Chlorosuccinimide 184
28.2.1.5 Method 5: Oxidation of Catechols Using Other Reagents 185
28.2.1.6 Method 6: Oxidation of Phenols Using Benzeneseleninic Anhydride 185
28J.U Method 7: Oxidation of Phenols Using Fremy's Salt 186
28.2.1.8 Method 8: Oxidation of Phenols Using Other Reagents 187
28.2.2 Applications of Product Class 2 in Organic Synthesis 187
28.2.2.1 Method 1: Addition of Nucleophiles 187
28.2.2.2 Method 2: Diels Alder and Related Reactions 195
28.2.2.2.1 Variation 1: Benzo 1,2 quinones as Carbodienes and Heterodienes 195
28.2.2.2.2 Variation 2: Benzo 1,2 quinones as Dienophiles 196
28.2.2.2.3 Variation 3: Benzo 1,2 quinones as Heterodienophiles 198
28.2.2 3 Method 3: Dipolar Cydoadditions 198
28J.2.3.1 Variation 1: Nitrile Oxide Addition 198
28.2.2.3.2 Variation 2: Diazomethane Addition 200
28J.2.3.3 Variation 3: Acyclic Carbonyl Ylide Addition 200
28.2.2.3.4 Variation 4: Cyclic Carbonyl Ylide Addition 201
28.2.2.3.5 Variation 5: Addition of Mesoionic Compounds 202
28.2.2.3.6 Variation 6: Addition of Phosphorus Ylides 204
Table of Contents XXI
28.2.2 4 Method 4: Multicomponent Reactions 205
28.2.2.4.1 Variation 1: Addition of Zwitterions Generated from Isocyanides and
Dimethyl Acetylenedicarboxylate 205
28.2.2.4.2 Variation 2: Addition of Zwitterions Generated from Dialkoxycarbenes
and Dimethyl Acetylenedicarboxylate 207
28.2.2.5 Methods 5: Additional Methods 208
283 Product Class 3: Naphtho 1,4 quinones
E. A. Couladouros and A. T. Strongilos
283 Product Class 3: Naphtho 1,4 quinones 217
283.1 Synthesis of Product Class 3 220
283.1.1 Synthesis by Ring Closure Reactions 220
283.1.1.1 Method 1: Reaction of Fischer Type Carbene Complexes with Alkynes 220
283.1.1.2 Method 2: Synthesis from Cyclobutenediones 225
283.1.1.2.1 Variation 1: Reaction of Phthaloyl Complexes with Functionalized Alkynes 229
283.1.1.3 Method 3: Annulation Reactions of Phthalide Anions with
Michael Acceptors 232
283.1.1.4 Method 4: [4+ 2] Cycloaddition Reactions 234
283.1.1.4.1 Variation 1: Reaction of Benzo 1,4 quinones with
Heterosubstituted Dienes 239
283.1.1.4.2 Variation 2: Reaction of Benzo 1,4 quinones with Vinylarenes and
Vinylhetarenes 241
283.1.1.4.3 Variation 3: Reaction of Benzo 1,4 quinones with Dienes of
Fixed s cis Conformation 242
283.1.1.4.4 Variation 4: Quinones as Dienes 245
283.1.1.5 Method 5: Condensation of Benzaldehydes with
Succinic Acid Derivatives 246
283.1.1.6 Method 6: Friedel Crafts Condensation of Hydroquinone Derivatives
with Maleic Anhydrides 248
283.1.1.7 Method 7: Annulation of ortho Substituted Tertiary Benzamides 250
283.1.2 Synthesis by Oxidative Transformation 251
283.1.2.1 Method 1: Oxidation of Naphthalenes 252
283.1.2.1.1 Variation 1: Oxidation of Naphthalene Derivatives
Bearing Oxidation Directing Groups 255
283.1.2.2 Method 2: Oxidation of Naphthols 255
283.1.2.3 Method 3: Oxidation of Hydroquinone Derivatives 261
283.1.2.3.1 Variation 1: Oxidation of Diprotected Hydroquinone Derivatives 261
283.1.2.3.2 Variation 2: Oxidation of Monoprotected Hydroquinone Derivatives 263
283.1.2.3.3 Variation 3: Oxidation of Hydroquinones 264
283.1.2.4 Method 4: Oxidation of Naphthols Bearing Substituents
Other Than Oxygen at the 4 Position 265
283.1.2.5 Method 5: Aromatization and Benzylic Oxidation of Fused Carbocycles 267
283.1.3 Substitution of Hydrogen 267
283.1.3.1 Method 1: Using Nucleophilic Carbon Reagents 268
XXII Table of Contents
283.1.3.2 Method 2: Using Electrophilic Carbon Reagents 271
28.3.13 3 Method 3: Using Carbon Free Radicals 273
283.1.3.4 Method 4: Addition of Halides 277
283.1.3.5 Method 5: Varvoglis' lodonium Ylides 279
283.1.3.6 Method 6: Using Oxygen Nucleophiles 280
283.1.3.7 Method 7: TheThiele Winter Acetoxylation Reaction 282
283.1.3.8 Method 8: Using Sulfur Nucleophiles 283
283.1.3.9 Method 9: Addition of Amines, Azides, and Ammonia 286
283.1.4 Substitution of Heteroatoms 289
283.1.4.1 Method 1: Substitution of Halogen by Another Halogen 289
283.1.4.2 Method 2: Substitution of Halogen by Oxygen 289
283.1.4.3 Method 3: Substitution of Halogen by Sulfur 291
283.1.4.4 Method 4: Substitution of Halogen by Nitrogen 292
283.1.4.5 Method5: Substitution of Halogen by Carbon 294
283.1.4.5.1 Variation 1: Palladium Mediated Coupling of Halogenated
Naphtho 1,4 quinones 295
283.1.4.6 Method 6: Substitution of Oxygen by Halogen, Nitrogen, or Carbon — 297
28.4 Product Class 4: Naphtho 1,2 , Naphtho 1,5 , Naphtho 1,7 ,
Naphtho 2,3 , and Naphtho 2,6 quinones
C. C. Liao and R. K. Peddinti
28.4 Product Class 4: Naphtho 1,2 , Naphtho 1,5 , Naphtho 1,7 ,
Naphtho 2,3 , and Naphtho 2,6 quinones 323
28.4.1 Product Subclass 1: Naphtho 1,2 quinones 323
28.4.1.1 Synthesis of Product Subclass 1 325
28.4.1.1.1 Method 1: Reaction of Fischer Type Carbene Complexes with
tert Butyl Isocyanide 325
28.4.1.1.2 Method 2: [4+ 2] Cycloaddition Reactions 325
28.4.1.1.2.1 Variation 1: Reaction of Benzoquinones with 2,3 Dimethylbuta 1,3 diene 325
28.4.1.1.2.2 Variation 2: Reaction of Dihalocatechols with
1 (Trimethylsiloxy)buta 1,3 diene 326
28.4.1.1.3 Method 3: Dieckmann Ring Formation with Subsequent
Acyloin Cleavage 327
28.4.1.1.4 Method 4: Oxidation of a Tetralones 327
28.4.1.1.5 Method 5: Oxidation of Naphthalenes 328
28.4.1.1.6 Method 6: Oxidation of 1 Naphthols 329
28.4.1.1.6.1 Variation 1: Oxidation of 1 Naphthols with Fremy's Salt 329
28.4.1.1.6.2 Variation 2: Oxidation of 1 Naphthols with Benzeneseleninic Anhydride 332
28.4.1.1.6.3 Variation 3: Oxidation of 1 Naphthols with
Cobalt Salen Complex/Oxygen 332
28.4.1.1.6.4 Variation 4: Synthesis of Emmotin H Using lodylbenzene 333
28.4.1.1.6.5 Variations: Oxidation of a 1 Naphthol Derivative with Sodium Periodate 333
28jI.i.i.6.6 Variation 6: Oxidation of Halo 1 naphthols with Lead(IV) Acetate 334
28^4.1.1.6.7 Variation 7: Transition Metal Catalyzed Oxidations of 1 Naphthols 334
28A1.1.7 Method 7: Oxidation of 2 Naphthols 336
Table of Contents XXIII
28.4.1.1.7.1 Variation 1: Oxidation of 2 Naphthol 336
28.4.1.1.7.2 Variation 2: Oxidation of 2 Naphthols with Fremy's Salt 336
28.4.1.1.7.3 Variation 3: Synthesis of o Hibiscanone with Benzeneseleninic Anhydride 337
28.4.1.1.7.4 Variation 4: Oxidation of 2 Naphthols with Copper Chloride/Oxygen 337
28.4.1.1.7.5 Variation 5: Oxidation of 2 Naphthols with 3 Chloroperoxybenzoic Acid 338
28.4.1.1.7.6 Variation 6: Transition Metal Catalyzed Oxidations of 2 Naphthols 339
28.4.1.1.7.7 Variation 7: Oxidation of 1 Amino 2 naphthol by Polymer Supported
Hypochlorite Ion 339
28.4.1.1.8 Method 8: Oxidation of Naphthalene 1,2 diols 339
28.4.1.1.8.1 Variation 1: Oxidation of Naphthalene 1,2 diol 340
28.4.1.1.8.2 Variation 2: Synthesis from Naphthalene 1,2 diol Disilyl Ether 340
28.4.1.1.8.3 Variation 3: Aerial Oxidation of Naphthalene 1,2 diols 341
28.4.1.1.8.4 Variation 4: Synthesis of Saprorthoquinone via Silver(l) Oxide Oxidation 342
28.4.1.1.8.5 Variation 5: Oxidation of Naphthalene 1,2 diol with Oxygen and
Bis(propane 1,3 diamine)copper(ll) Chloride 342
28.4.1.1.9 Method 9: Oxidation of a 1 Methoxynaphthalen 2 amine Derivative — 342
28.4.1.1.10 Method 10: Rearrangement of Naphtho 1,4 quinone Adducts 343
28.4.1.1.11 Method 11: Substitution of Hydrogen 343
28.4.1.1.11.1 Variation 1: Reaction of Naphtho 1,2 quinone with Pyrroles 343
28.4.1.1.11.2 Variation 2: Reaction of Naphtho 1,2 quinone with Vinylogous
Michael Donors 344
28.4.1.1.11.3 Variation 3: Lewis Acid Mediated Reactions of Naphtho 1,2 quinones — 344
28.4.1.1.H.4 Variation 4: Palladium(ll) Catalyzed Oxidative Coupling of
Naphtho 1,2 quinone and Arenes 345
28.4.1.1.11.5 Variation 5: Photochemical Reactions of Naphtho 1,2 quinones 345
28.4.1.1.11.6 Variation 6: Reactions of Naphtho 1,2 quinones with Amines 348
28.4.1.1.11.7 Variation 7: Reactions of 4 Aminonaphtho 1,2 quinone with Diazenes ¦•• 349
28.4.1.1.11.8 Variation 8: Metal Chloride Catalyzed Addition of Alcohols to
Naphtho 1,2 quinones 350
28.4.1.1.11.9 Variation 9: Reactions of Naphtho 1,2 quinones with Thiols 351
28.4.1.1.12 Method 12: Substitution of Heteroatoms 351
28.4.1.1.12.1 Variation 1: Reactions of 4 Alkoxynaphtho 1,2 quinones with Amines ••• 351
28.4.1.1.12.2 Variation 2: Reactions of Sodium 4 Sulfonatonaphtho 1,2 quinone 352
28.4.1.1.13 Method 13: Alkylation of the Silver Salt of
2 Hydroxynaphtho 1,4 quinones 355
28.4.2 Product Subclass 2: Naphtho 1,5 quinones 356
28.4.2.1 Synthesis of Product Subclass 2 356
28.4.2.1.1 Method 1: Oxidation of a 2,3 Dihydronaphtho 1,4 quinone Imine 356
28.4.2.1.2 Method 2: Oxidation of Naphthalene 1,5 diols 356
28.4.2.1.2.1 Variation 1: Air Oxidation of a Naphthalene 1,5 diol 356
28.4.2.1.2.2 Variation 2: 2,3 Dichloro 5,6 dicyanobenzo 1,4 quinone Oxidation of
3,7 Di tert butylnaphthalene 1,5 diol357
28.4.2.1.3 Method 3: Substitution of Hydrogen by Halogen 357
28.4.2.1.3.1 Variation 1: Substitution of Hydrogen by Chlorine 357
28.4.2.1.3.2 Variation 2: Substitution of Hydrogen by Bromine 358
28.4.2.1.4 Method 4: Substitution of 4,8 Diaminonaphtho 1,5 quinone 358
XXIV Table of Contents
28.4.3 Product Subclass 3: Naphtho 1,7 quinones 358
28.4.3.1 Synthesis of Product Subclass 3 358
28.4.3.1.1 Method 1: 2,3 Dichloro 5,6 dicyanobenzo 1,4 quinone Oxidation of
3,6 Di tert butyl 8 methylnaphthalene 1,7 diol 358
28.4.4 Product Subclass 4: Naphtho 2,3 quinones 359
28.4.4.1 Synthesis of Product Subclass 4 359
28.4.4.1.1 Method 1: Generation and Trapping through Desilylation
Debromination Induced by Fluoride Ion 359
28.4.4.1.2 Method 2: Oxidation of 1,4 Diarylnaphthalene 2,3 diols 360
28.4.5 Product Subclass 5: Naphtho 2,6 quinones 362
28.4.5.1 Synthesis of Product Subclass 5 362
28.4.5.1.1 Method 1: Photooxygenation of Naphthalen 2 amine 362
28.4.5.1.2 Method 2: Oxidation of a Naphthalene 2,6 diol with Lead(IV) Oxide • • • • 362
283 Product Class 5: Anthra 9,10 quinones, Anthra 1,2 quinones,
Anthra 1,4 quinones, Anthra 2,9 quinones, and Their Higher
Fused Analogues
K. Krohn and N. Boker
28.5 Product Class 5: Anthra 9,10 quinones, Anthra 1,2 quinones,
Anthra 1.4 quinones, Anthra 2,9 quinones, and Their Higher
Fused Analogues 367
28.5.1 Product Subclass 1: Anthra 9,10 quinones 367
28.5.1.1 Synthesis of Product Subclass 1 369
28.5.1.1.1 Friedel Crafts Reactions 369
28.5.1.1.1.1 Method 1: One Pot Procedures Using Fused Salts (N Alkylpyridinium
Halides) with Aluminum Trichloride as the Catalyst 371
28.5.1.1.1.2 Method 2: One Pot Procedures Using Molten Aluminum Trichloride
Potassium Chloride Sodium Chloride or Aluminum
Trichloride Sodium Chloride as the Catalysts 372
28.5.1.1.1.3 Method 3: One Pot Procedures Using Croup 4 or Croup 5 Metal Oxides
as the Catalysts 373
28.5.1.1.1.4 Method 4: One Pot Procedures Using Phthaloyl Dichlorides as
the Electrophiles 373
28.5.1.1.1.5 Method 5: Stepwise Procedures with Benzoylbenzoic Acids as
the Intermediates 374
283.1.1.1.5.1 Variation 1: Benzoylbenzoic Acids by Friedel Crafts Reaction 375
28.5.1.1.1.5.2 Variation 2: Benzoylbenzoic Acids by Addition of Crignard Reagents to
Phthalic Anhydrides 375
28.5.1.1.1.6 Method 6: Stepwise Procedures Involving Direct Cyclization of
Benzoylbenzoic Acids 376
283.1.1.1.7 Method 7: Stepwise Procedures Involving Sequential Cyclization of
Benzylbenzoic Acids and Oxidation 378
Table of Contents XXV
28.5.1.1.1.8 Method 8: Stepwise Procedures Involving Benzylbenzoic Acids Prepared
by Displacement of a Methoxy Group in Aryldihydrooxazoles 380
28.5.1.1.1.9 Method 9: Stepwise Procedures Involving Friedel Crafts Type
Alkylation of 3 Bromophthalides with Benzenes
To Form 3 Arylphthalides 381
28.5.1.1.2 Diels Alder Reactions 382
28.5.1.1.2.1 Method 1: Reaction of Open Chain Dienes with Naphtho 1,4 quinones
Followed by Elimination or Oxidation of Allylic Hydroxy
Croups 383
28.5.1.1.2.2 Method 2: Reaction of Open Chain Dienes with Naphtho 1,4 quinones
Followed by Two p Eliminations 388
28.5.1.1.2.2.1 Variation 1: Reaction of 1,3 Siloxy 1,3 dienes with
Halonaphtho 1,4 quinones 388
28.5.1.1.2.2.2 Variation 2: Reaction of 1,3 Siloxy 1,3 dienes with
Dichloronaphtho 1,4 quinones 390
28.5.1.1.2.2.3 Variation 3: Reaction of Vinylketene Acetals with
2 or3 Halonaphtho 1,4 quinones 391
28.5.1.1.2.2.4 Variation 4: Diels Alder Reactions of Sulfinylnaphtho 1,4 quinones 395
28.5.1.1.2.3 Method 3: Reaction of Cyclic Dienes with Naphtho 1,4 quinones,
Followed by a Retro Diene Reaction 395
28.5.1.1.2.4 Method 4: Reaction of Cyclic Dienes with Naphtho 1,4 quinones
Followed by Hydroxymethylation of 1,4 Ethanoanthra
9,10 quinones 399
28.5.1.1.2.5 Method 5: Reaction of Naphtho 1,4 quinones with Ketene Acetals 400
28.5.1.1.2.6 Method 6: Coupling of Naphtho 1,4 quinones with Cyclobutenones — 401
28.5.1.1.2.7 Method 7: Thermolytic Rearrangement of Arylcyclobutenones 401
28.5.1.1.2.8 Method 8: Electrocyclization of 2,3 Divinylnaphtho 1,4 quinones 402
28.5.1.1.2.9 Method 9: Electrocyclization of 2,3 Divinylnaphtho 1,4 quinones to
1,4 Diacylanthra 9,10 quinones 403
28.5.1.1.3 Ring Closing Metathesis 404
28.5.1.1.3.1 Method 1: Cyclization of 2,3 Diallylnaphtho 1,4 quinones 404
28.5.1.1.4 [2 + 2 + 2] Cycloaddition Reactions 406
28.5.1.1.4.1 Method 1: Rhodium Catalyzed Cycloaddition of
1,2 Dipropynoylbenzenes with Alkynes 406
28.5.1.1.5 Anionic Condensation Reactions 407
28.5.1.1.5.1 Method 1: Phthalide Annulation with Cyclohex 2 enones 407
28.5.1.1.5.2 Method 2: Phthalide Annulation with Cyclohexadienones 408
28.5.1.1.5.2.1 Variation 1: With Cyclohexa 2,5 dienones 409
28.5.1.1.5.2.2 Variation 2: With Cyclohexa 2,4 dienones 410
28.5.1.1.5.3 Method 3: Phthalide Annulation with Arynes 410
28.5.1.1.6 Cyclization by Nucleophilic Aromatic Substitution/Addition 411
28.5.1.1.6.1 Method 1: Cyclization of 2 (Cyanomethyl)benzophenones
(The Hassall Reaction) 411
28J.1.1.6.2 Method 2: Addition of 2 (Cyanomethyl)benzoates to Arynes 412
28.5.1.1.6.3 Method 3: Cyclization of (Nitromethyl)benzophenones 413
XXVI Table of Contents
283.1.1.6.4 Method 4: Cyclization of Monoalkylnaphtho 1,4 quinones 414
28.5.1.1.6.5 Method 5: Cyclization of 2,3 Disubstituted Naphtho 1,4 quinones by
Aldol Condensation 414
28.5.1.1.6.5.1 Variation 1: Michael Addition of 2 Acetylnaphtho 1,4 quinones 415
28.5.1.1.6.5.2 Variation 2: Base Induced Condensation of 2 Acylnaphtho 1,4 quinones 415
28.5.1.1.6.6 Method 6: Cyclization of 2,3 Dialkylnaphtho 1,4 quinones by
Reaction of Enamines with 2 Acetylnaphtho 1,4 quinones ••• 416
28.5.1.1.6.7 Method 7: Cyclization of 2,3 Dialkylnaphtho 1,4 quinones by
Iterative Addition of 1,3 Dicarbonyl Dianions 417
28.5.1.1.6.7.1 Variation 1: Addition of 1,3 Dicarbonyl Dianions to Homophthalic Diesters 417
28.5.1.1.6.7.2 Variation 2: Addition of 1,3 Dicarbonyl Dianions to
Homophthalic Monoesters 418
28.5.1.1.7 Oxidation of Anthracenes to Anthra 9,10 quinones 419
28.5.1.1.7.1 Method 1: Catalytic Oxidation of Anthracene with Dioxygen
in the Presence of Nitrogen Dioxide 420
28.5.1.1.7.2 Method 2: Transition Metal Catalyzed Liquid or Vapor Phase
Aerial Oxidation of Anthracene 421
283.1.1.7.3 Method 3: Anodic Oxidation of Anthracene 421
283.1.1.7.4 Method 4: Catalytic Oxidation of Anthracene with
Other Sources of Oxygen 422
283.1.1.7.5 Method 5: Stoichiometric Oxidations of Anthracene 423
283.1.1.8 Oxidative Cyclization Reactions of 2 Benzyl Substituted Diphenylmethanes 424
28.5.1.1.8.1 Methodi: Oxidation of 1 Benzyl 2 methylbenzene 424
283.1.1.9 Oxidation of Dihydroanthra 9,10 quinones or Anthracen 9(10H) ones to
Anthra 9,10 quinones 424
283.1.1.9.1 Methodi: Aerial Oxidation of Anthracen 9(10H) one or
9,10 Dihydroanthracenes 424
283.1.1.9.2 Method 2: Oxidation of Anthracen 9(10H) ones, 10 Hydroxyanthracen
9(10H) ones, or Hydroquinone Methyl Ethers by Ammonium
Cerium(IV) Nitrate 425
283.1.1.10 Oxidation of meso Benza nth rones and Aromatic Carbocycles 425
283.1.1.11 Alkylation Reactions 425
283.1.1.11.1 Methodi: Addition of Nitroalkanes to Hydroxyanthra 9,10 quinones ••• 426
283.1.1.11.2 Method 2: Addition of Malonate to Hydroxyanthra 9,10 quinones 426
283.1.1.11.3 Method 3: Alkylation of 1,4 Dihydroxyanthra 9,10 quinone via
Anthracene 1,4,9,10 tetrone and a 1,5 Alkyl Shift 427
283.1.1.11.4 Method 4: Alkylation with Intermediate Reduction 427
283.1.1.11.4.1 Variation 1: Alkylation under Strongly Basic Conditions
(Marschalk Conditions) 427
283.1.1.11.4.2 Variation 2: Alkylation with Piperidine Acetate as the Catalyst
(Lewis Conditions) 429
283.1.1.11.4.3 Variation 3: Alkylation with Pyrrolidine as the Catalyst
(Broadbent Conditions) 430
283.1.1.11.4.4 Variation 4: Hydroxyalkylation of peri Hydroxyanthra 9,10 quinones
(Modified Marschalk Reaction) 431
Table of Contents XXVII
28.5.1.U1.4.5 Variation 5: 1,5 Oiazabicyclo[5.4.0]undec 7 ene or 1,5 Diazabicylo[4.3.0]
non 5 ene in Tetrahydrofuran in Marschalk Reactions 432
28.5.1.1.11.4.6 Variation 6: Successive Marschalk Reactions in Syntheses of
2,3 Dialkylanthra 9,10 quinones 434
28.5.1.1.11.4.7 Variation 7: Addition of 1 Hydroxyanthra 9,10 quinones and
Their Tautomers to Michael Acceptors 434
28.5.1.1.11.4.8 Variation 8: Alkylation of 1 Aminoanthra 9,10 quinones 435
28.5.1.1.11.4.9 Variation 9: Alkylation of 1 Hydroxyanthra 9,10 quinones 435
28.5.1.1.11.5 Method 5: Alkylation of Anthra 9,10 quinones by
the Reductive Claisen Rearrangement 436
28.5.1.1.11.6 Method 6: Alkylation by a Combination of the Marschalk Reaction and
the Reductive Claisen Rearrangement 437
28.5.1.1.11.7 Method 7: Alkylation via Diazonium Ions 438
28.5.1.1.12 Arylation Reactions 439
28.5.1.1.13 Alkenylation Reactions 439
28.5.1.1.14 Alkynylation Reactions 439
28.5.1.1.14.1 Methodi: Isomerization of Allylanthra 9,10 quinones 439
28.5.1.1.15 Halogenation Reactions 440
28.5.1.1.15.1 Methodi: Fluorination 440
28.5.1.1.15.2 Methodi: Chlorination 440
28.5.1.1.15.3 Method 3: Bromination 441
28.5.1.1.15.4 Method 4: lodination 443
28.5.1.1.16 Sulfonation Reactions 443
28.5.1.1.17 Amination Reactions 444
28.5.1.1.18 Hydroxylation Reactions 445
28.5.1.1.19 Nitration Reactions 445
28.5.1.1.20 Synthesis by Substitution 447
28.5.1.1.20.1 Methodi: Substitution of Fluoride 447
28.5.1.1.20.2 Method 2: Substitution of Chloride 448
28.5.1.1.20.3 Method 3: Substitution of Bromide or Iodide 450
28.5.1.1.20.3.1 Variation 1: Substitution of Bromide and Iodide by Heteroatoms 450
283.1.1.20.3.2 Variation 2: Substitution of Bromide by Aryl Croups (The Heck Reaction) 450
28.5.1.1.20.3.3 Variation 3: Substitution of Bromide and Iodide by Acetylene Nucleophiles 451
28.5.1.1.20.3.4 Variation 4: Substitution of Iodide with Tin Nucleophiles 453
28.5.1.1.20.4 Method 4: Substitution of Nitro Croups 453
28.5.1.1.20.5 Method 5: Substitution of Trifluoromethanesulfonates 454
28.5.2 Product Subclass 2: Anthra 1,2 quinones 455
28.5.2.1 Synthesis of Product Subclass 2 455
28.5.2.1.1 Oxidation Reactions 455
28.5.2.1.1.1 Methodi: Oxidation of 1,2 Dihydroxyanthracenes 455
28.5.2.1.1.2 Method 2: ortho Specific Oxygenation of 1 Anthrols 456
XXVIII Table of Contents
28.5.3 Product Subclass 3: Anthra 1,4 quinones 457
28.5.3.1 Synthesis of Product Subclass 3 457
28.5.3.1.1 Fixation of the 1,4 Dicarbonyl Tautomer of 1,4 Dihydroxyanthra 9,10 quinone 457
28.5.3.1.1.1 Method!: Chlorination of 1,4 Dihydroxyanthra 9,10 quinone 457
28.5.3.1.1.2 Method 2: Transesterification of N,O,O Triacylated 1,4 Dihydroxy
10 iminoanthracen 9(10H) ones 458
28.5.3.1.2 Diels Alder Reactions 458
28.5.3.1.2.1 Method 1: Addition of Quinodimethanes to Benzoquinones 458
28.5.3.1.2.2 Method 2: Strong Base Mediated Addition of Homophthalic Anhydrides
to Benzoquinones 459
28.5.3.1.2.3 Method 3: Tandem Claisen Diels Alder Reactions 460
28.5.3.1.2.4 Method 4: Phthalide Annulation 461
28.5.4 Product Subclass 4: Anthra 2,9 quinones 461
28.5.5 Product Subclass 5: Anthraquinones Fused with Other Carbon Rings 462
283.5.1 Synthesis of Product Subclass 5 462
28.5.5.1.1 Synthesis of Anthraquinones Fused with Four Membered Rings 462
28.5.5.1.1.1 Method 1: Double Aldol Condensation 462
28.5.5.1.2 Synthesis of Anthraquinones Fused with Five Membered Rings 463
28.5.5.1.2.1 Method 1: Friedel Crafts Reaction of Phthalic Anhydride with Indanes 463
28.5.5.1.2.2 Method 2: Diels Alder Reactions of Naphtho 1,4 quinone with
1 Vinylcyclopentenes 463
28.5.5.1.2.3 Method 3: Cyclization of Monoalkylanthra 9,10 quinones 463
28.5.5.1.2.4 Method 4: Cyclization of 2,3 Dialkylanthra 9,10 quinones 464
28.5.5.1.3 Synthesis of Anthraquinones Fused with Six Membered Rings:
Tetracene 5,12 diones 465
28.5.5.1.3.1 Method 1: One Pot Friedel Crafts Condensation 466
28.5.5.1.3.1.1 Variation 1: Double Friedel Crafts Condensation with Phthalic Anhydride 466
28.5.5.1.3.1.2 Variation 2: Successive Fries Shift and Friedel Crafts Reaction 466
28.5.5.1.3.2 Method 2: Multistep Friedel Crafts Condensation 467
28.5.5.1.3.2.1 Variation 1: Friedel Crafts Reaction of Benzylbenzoic Acids 467
28J.5.1.3.2.2 Variation 2: Friedel Crafts Reaction of a Lactone 468
28.5.5.1.3.2.3 Variation 3: Friedel Crafts Reaction of Benzoylbenzoic Acids 468
28.5.5.1.3.3 Method 3: Tetracene 5,12 diones by Diels Alder Reactions: Trapping of
o Quinodimethanes with Dienes 469
28.5.5.1.3.3.1 Variation 1: Intermolecular Trapping of o Quinodimethanes 470
28.5.5.1.3.3.2 Variation 2: Intramolecular Trapping of o Quinodimethanes 471
28.5.5.1.3.4 Method 4: Diels Alder Reactions of Anthra 1,4 quinones and Derivatives
as the Dienophiles 471
28J.5.1.3.4.1 Variation 1: Anthra 1,4 quinones as the Dienophiles 471
28.5.5.1.3.4.2 Variation 2: Anthracenetetrones as the Dienophiles 472
28.5.5.1.3.4.3 Variation 3: Anthradiquinone Epoxides as the Dienophiles 473
28J.5.1.3.4.4 Variation 4: 1,4 Dihydroxyanthra 9,10 quinone and Its 9 lmine as
Dienophiles 474
28.5.5.1.3.4.5 Variation 5: Partially Hydrogenated or Bridged Anthra 9,10 quinones — 474
Table of Contents XXIX
28.5.5.1.3.5 Method 5: Diels Alder Reactions with Benzocyclobutenes as
the Diene Precursors 475
28.5.5.1.3.6 Method 6: Diels Alder Reactions of Exocyclic Dienes and
Exocyclic Vinylketene Acetals 476
28.5.5.1.3.7 Method 7: Strong Base Induced Cycloaddition of Homophthalic
Anhydrides to Naphthoquinones 477
28.5.5.1.3.8 Method 8: Intramolecular Diels Alder Reactions 478
28.5.5.1.3.9 Method 9: Anionic Cyclization of Monoalkylanthra 9,10 quinones 479
28.5.5.1.3.9.1 Variation 1: Cyclization of Nitronatoanthra 9,10 quinones 479
28.5.5.1.3.9.2 Variation 2: Cyclization of 4 Hydroxy 2 (4 oxobutyl)anthra 9,10 quinone 480
28.5.5.1.3.10 Method 10: Anionic Cyclization of Dialkylanthra 9,10 quinones 481
28.5.5.1.3.10.1 Variation 1: Biomimetic Oxo Ester Cyclization 481
28.5.5.1.3.10.2 Variation 2: Lewis Acid Mediated Cyclization of ort/io Allyl Substituted
Dioxolanyl Anthraquinones and Formylanthraquinones 482
28.5.5.1.3.10.3 Variation 3: Base Catalyzed Cyclization of a Nonsymmetrically Substituted
2,3 Diallylanthra 9,10 quinone 482
28.5.5.1.3.11 Method 11: 1,4 Dipolar Additions to Enones and Arynes 483
28.5.5.1.4 Synthesis of Anthraquinones Fused with Six Membered Rings:
Tetraphene 7,12 diones 484
28.5.5.1.4.1 Method 1: Friedel Crafts Reactions 484
28.5.5.1.4.2 Method 2: Diels Alder Reactions 484
28.5.5.1.4.3 Method 3: Anionic Cyclizations 485
28.5.5.1.4.3.1 Variation 1: Cyclization of Monoalkylanthra 9,10 quinones 485
28.5.5.1.4.3.2 Variation 2: Cyclization of Dialkylanthra 9,10 quinones 486
28.5.5.1.4.4 Method4: [2 + 2 + 2] Cycloaddition 486
28.5.5.1.4.5 Method5: Rearrangement of Spiroanthracenediones 487
28.6 Product Class 6: Phenanthrene 9,10 diones, Stilbenequinones,
Diphenoquinones, and Related Ring Assemblies
A. M. Echavarren and S. Porcel
28.6 Product Class 6: Phenanthrene 9,10 diones, Stilbenequinones,
Oiphenoquinones, and Related Ring Assemblies 507
28.6.1 Product Subclass 1: Phenanthrene 9,10 diones 507
28.6.1.1 Synthesis of Product Subclass 1 508
28.6.1.1.1 Method 1: Direct Oxidation of Polycyclic Arenes 508
28.6.1.1.1.1 Variation 1: Oxidation with Stoichiometric Oxidizing Reagents 508
28.6.1.1.1.2 Variation 2: Oxidation with Catalytic Oxidizing Reagents 511
28.6.1.1.2 Method 2: Ring Closure Reactions 512
28.6.1.1.2.1 Variation 1: Oxidative Biaryl Coupling of a Dicarbonyl Compounds 512
28.6.1.1.2.2 Variation 2: Photochemical Cyclization 513
28.6.1.1.2.3 Variation 3: Reductive Coupling of Carbonyls 516
28.6.1.2 Applications of Product Subclass 1 in Organic Synthesis 518
28.6.1.2.1 Method 1: Synthesis of Functionalized Fused Furans 518
XXX Table of Contents
28.6.1.2.2 Method 2: Catalyzed Epoxidation in the Presence of
Phenanthrene 9,10 dione 519
28.6.1.2.3 Method 3: Synthesis of Heterocycles 519
28.6.1.2.4 Method 4: Synthesis of Biphenyl 2,2' dicarboxylic Acids 521
28.6.1.2.5 Method 5: Protection of 1,2 Diols 521
28.6.1.2.6 Method 6: Synthesis of Polycyclic Arenes via Bis Wittig Reactions 522
28.6.2 Product Subclass 2: Heterocyclic Analogues of Phenanthrene 9,10 diones 523
28.6.2.1 Synthesis of Product Subclass 2 524
28.6.2.1.1 Method 1: Oxidation of Hetarenes 524
28.6.2.1.1.1 Variation 1: Direct Oxidation of Hetarenes 524
28.6.2.1.1.2 Variation 2: Chlorination of Hetarenes 527
28.6.2.1.1.3 Variation 3: Oxidation of Hydroxy and/or Alkoxy Substituted Hetarenes
with Strong Oxidants 528
28.6.2.1.1.4 Variation 4: Oxidation of Hydroxy and/or Alkoxy Substituted Hetarenes
with Mild Oxidants 531
28.6.2.1.1.5 Variation 5: Oxidation of Amino Substituted Hetarenes 535
28.6.2.1.2 Method 2: Ring Closure Reactions 537
28.6.2.1.2.1 Variation 1: N—C Bond Forming Reactions 537
28.6.2.1.2.2 Variation 2: C—C Bond Forming Reactions 538
28.6.2 2 Applications of Product Subclass 2 in Organic Synthesis 539
28.6.2.2.1 Method 1: Oxidation of Functional Croups 539
28.6.3 Product Subclass 3: Stilbenequinones 541
28.6.3.1 Synthesis of Product Subclass 3 542
28.6.3.1.1 Method 1: Oxidation of Dihydroxystilbenes 543
28.6.3.1.2 Method 2: Oxidative Dimerization of Aromatic Compounds 544
28.6.3.1.2.1 Variation 1: Oxidation Dimerization of Phenols 544
28.6.3.1.2.2 Variation 2: Oxidative Dimerization of 2,4,6 Trimethylphenyl
Chloroformate 547
28.6.3.2 Applications of Product Subclass 3 in Organic Synthesis 547
28.6.3.2.1 Method 1: Acid Catalyzed Rearrangement of Stilbenequinones 547
28.6.4 Product Subclass 4: Diphenoquinones 548
28.6.4.1 Synthesis of Product Subclass 4 550
28.6.4.1.1 Method 1: Oxidation of Biphenyldiols 550
28.6.4.1.2 Method 2: Oxidative Coupling of Phenols 551
28.6.4.1.2.1 Variation 1: Oxidative Coupling Using Stoichiometric Oxidants 551
28.6.4.1.2.2 Variation 2: Oxidative Coupling with Metal Catalysts 553
28.6.4.1.2.3 Variation 3: Enzymatic Oxidative Coupling 555
Table of Contents XXXI
28.7 Product Class 7: Hetarene Fused Quinones
28.7.1 Product Subclass 1: Nitrogen Containing Hetarene Quinones
U. Pindur and T. Lemster
28.7.1 Product Subclass 1: Nitrogen Containing Hetarene Quinones 561
28.7.1.1 Synthesis of Product Subclass 1 561
28.7.1.1.1 Nitrogen Containing Hetarene p Quinones 561
28.7.1.1.1.1 Indolequinones, Carbazolequinones, and Higher Analogues 561
28.7.1.1.1.1.1 Method 1: Direct Oxidation of Hydroquinone Derivatives 562
28.7.1.1.1.1.2 Method 2: Ring Closure Reactions of Pyrroles 563
28.7.1.1.1.1.3 Method 3: Ring Closure Reactions of Substituted Benzoquinones 564
28.7.1.1.1.1.4 Method 4: Ring Expansion of Cyclobutenone Derivatives 566
28.7.1.1.1.2 Naphthindolizinequinones 567
28.7.1.1.1.2.1 Method 1: Ring Closure of 2 Pyridinium Substituted
Naphtho 1,4 quinones with Nitromethane 567
28.7.1.1.1.3 Bispyrrolo Fused Quinones and Further Variants 568
28.7.1.1.1.3.1 Method 1: Cyclocondensation at Indolequinone 568
28.7.1.1.1.3.2 Method 2: Diels Alder Reaction with Indolequinones 569
28.7.1.1.1.3.3 Method 3: Double Cyclization of 2,5 Bis(arylamino)
3,6 dibromobenzo 1,4 quinones 570
28.7.1.1.1.4 Isoindolequinones 571
28.7.1.1.1.4.1 Method 1: o Dialkynylarene Annulation 571
28.7.1.1.1.4.2 Method 2: Azomethine 1,3 DipolarCycloaddition 572
28.7.1.1.1.5 Benzoxazolequinones 573
28.7.1.1.1.5.1 Method 1: Annulation of a Phenol Followed by Oxidation 573
28.7.1.1.1.6 Benzothiazolequinones 574
28.7.1.1.1.6.1 Method 1: Fremy's Salt Oxidation Followed by Nucleophilic Addition ¦¦¦ 574
28.7.1.1.1.7 Indazolequinones and Benzindazolequinones 576
28.7.1.1.1.7.1 Method 1: Ring Closure Reactions of Substituted Benzoquinones 576
28.7.1.1.1.7.2 Method 2: 1,3 DipolarCycloaddition Reactions with Quinones 577
28.7.1.1.1.8 Benzimidazolequinones 578
28.7.1.1.1.8.1 Method 1: Oxidation Reactions 578
28.7.1.1.1.9 Benzotriazolequinones 580
28.7.1.1.1.9.1 Method 1: 1,3 DipolarCycloaddition of p Quinones with Sodium Azide 580
28.7.1.1.1.10 Quinolinequinones, Isoquinolinequinones, and Higher Analogues 581
28.7.1.1.1.10.1 Method 1: Ring Closure Reactions of Substituted Benzoquinones 581
28.7.1.1.1.10.2 Method 2: Intramolecular Acid Catalyzed Cyclization of
2 [(2 Acetylaryl)amino]benzo 1,4 quinones 581
28.7.1.1.1.10.3 Method 3: Aza Diels Alder Reactions 582
XXXII Table of Contents
28.7.1.1.1.11 Isoquinolinequinones 583
28.7.1.1.1.11.1 Method 1: Oxidative Demethylation 583
28.7.1.1.1.11.2 Method 2: Ring Expansion of Cyclobutenone Derivatives
Followed by Oxidation 584
28.7.1.1.1.12 Quinoxaline and Quinazolinequinones 585
28.7.1.1.1.12.1 Method 1: Oxidative Demethylation or Oxidation with
Ammonium Cerium(IV) Nitrate 585
28.7.1.1.1.12.2 Method 2: Classical Annulation of 2,5 Dimethoxybenzaldehyde 587
28.7.1.1.2 Nitrogen Containing Hetarene o Quinones 587
28.7.1.1.2.1 Indolequinones 587
28.7.1.1.2.1.1 Method 1: Thermolysis of a 3 Azido 4 styrylbenzo 1,2 quinone 587
28.7.1.1.2.1.2 Method 2: Oxidation 588
28.7.1.1.2.2 o Quinones of Quinolines and Isoquinolines 588
28.7.1.1.2.2.1 Method 1: Fremy's Salt Oxidation 589
28.7.2 Product Subclass 2: Oxygen and Sulfur Containing
Hetarene Quinones
A. C. Criesbeck
28.7.2 Product Subclass 2: Oxygen and Sulfur Containing
Hetarene Quinones 593
28.7.2.1 Synthesis of Product Subclass 2 594
28.7.2.1.1 Benzofuranquinones, Benzothiophenequinones,
and Higher Annulated Analogues 594
28.7.2.1.1.1 Method 1: Oxidation of Benzofurans 595
28.7.2.1.1.1.1 Variation 1: Oxidation with Fremy's Salt 595
28.7.2.1.1.1.2 Variation 2: Oxidation with Chromium Reagents 597
28.7.2.1.1.1.3 Variation 3: Oxidation with Other Reagents 597
28.7.2.1.1.2 Method 2: Ring Closure Reactions of Furans 598
28.7.2.1.1.2.1 Variation 1: Furan Metalation and Cyclization 598
28.7.2.1.1.2.2 Variation 2: Fischer Carbene Reactions (Dotz Benzannulation) 598
28.7.2.1.1.2.3 Variation 3: Intramolecular Friedel Crafts Acylation 600
28.7.2.1.1.3 Method 3: Ring Closure Reactions of Quinones 601
28.7.2.1.1.3.1 Variation 1: Ullmann Reaction of Benzoquinones 601
28.7.2.1.1.3.2 Variation 2: Dehydration of Hydroxylated Quinones 601
28.7.2.1.1.3.3 Variation 3: Nucleophilic Addition of Hydroxyaryl Substituted Quinones 602
28.7.2.1.1.3.4 Variation 4: Intramolecular Nucleophilic Substitution 602
28.7.2.1.1.3.5 Variation 5: Oxidative Cyclization by Mercury(ll) Acetate and
3 Chloroperoxybenzoic Acid 603
28.7.2.1.1.4 Method 4: Ring Annulation of Quinones 604
28.7.2.1.1.4.1 Variation 1: Michael Addition and Subsequent Cyclization of
CH Active Methylene Compounds 604
28.7.2.1.1.4.2 Variation 2: Michael Addition and Subsequent Cyclization of Phenols — 604
28.7.2.1.1.4.3 Variation 3: Addition of Enamines and Vinyl Sulfides 605
Table of Contents XXXIII
28.7.2.1.1.4.4 Variation 4: Photochemical Addition of Alkenes and Alkynes to Quinones 606
28.7.2.1.1.4.5 Variation 5: Palladium Catalyzed Coupling and Ring Closure of
Phenyliodonium Betaines 607
28.7.2.1.1.4.6 Variation 6: Diels Alder Cycloaddition 607
28.7.2.1.1.5 Method 5: Ring Closure Reactions of Bi(quinones) 608
28.7.2.1.1.5.1 Variation 1: Acid and Base Induced Ring Closure 608
28.7.2.1.1.5.2 Variation 2: Thermal and Photochemical Ring Closure 609
28.7.2.1.1.6 Method 6: Ring Enlargement of Cyclobutenones 609
28.7.2.1.1.7 Method 7: Modification of Benzo[b]furanquinones 611
28.7.2.1.1.7.1 Variation 1: Diels Alder Reactions 611
28.7.2.1.1.7.2 Variation 2: Hetero Diels Alder Reactions 613
28.7.2.1.1.7.3 Variation 3: Palladium Catalyzed Coupling of Boronates 613
28.7.2.1.2 Benzo[c]furanquinones 614
28.7.2.1.3 Pyranbenzoquinones and Pyrannaphthoquinones 614
28.7.2.1.4 Benzothiophenequinones 614
28.7.2.1.4.1 Method 1: Oxidation of Benzo[b]thiophene Derivatives 615
28.7.2.1.4.2 Method 2: Intramolecular Condensation of Thiophenecarboxylates 615
28.7.2.1.4.2.1 Variation 1: Using Thiophenecarboxylates 615
28.7.2.1.4.2.2 Variation 2: Using Benzoic Acid Derivatives 616
28.7.2.1.4.3 Method 3: Thiophene Metalation and Tandem Nucleophilic Addition ¦•¦ 616
28.7.2.1.4.4 Method 4: Tandem Conjugate Addition and Cyclization 616
28.7.2.1.4.5 Method 5: Intra and Intermolecular Friedel Crafts Acylations 617
28.8 Product Class 8: Sulfur Analogues of Quinones
M. Yoshifuji and S. Kawasaki
28.8 Product Class 8: Sulfur Analogues of Quinones 623
28.8.1 Product Subclass 1: p Monothioquinones 623
28.8.1.1 Synthesis of Product Subclass 1 623
28.8.2 Product Subclass 2: o Monothioquinones 626
28.8.21 Synthesis of Product Subclass 2 626
28.8.3 Product Subclass 3: Dithioquinones 627
28*3.1 Synthesis of Product Subclass 3 627
28.9 Product Class 9: Benzo 1,2 , Benzo 1,4 , Naphtho 1,2 ,
and Naphtho 1,4 quinone Imines and Diimines
M. C. Carrefio and M. Ribagorda
28.9 Product Class 9: Benzo 1,2 , Benzo 1,4 , Naphtho 1,2 ,
and Naphtho 1,4 quinone Imines and Diimines 629
28.9.1 Product Subclass 1: Benzoquinone Imines and Diimines 630
28^.1.1 Synthesis of Product Subclass 1 630
28.9.1.1.1 Method 1: Oxidation of Anilines and Benzenediamines 630
XXXIV Table of Contents
28.9.1.1.1.1 Variation 1: Using Lead(IV) Acetate 630
28.9.1.1.1.2 Variation 2: Using Hypohalites 635
28.9.1.1.1.3 Variation 3: Using Silver(l) Oxide 638
28.9.1.1.1.4 Variation 4: Using Iron(lll) Chloride 640
28.9.1.1.1.5 Variation 5: Using Manganese(IV) Oxide 642
28.9.1.1.1.6 Variation 6: Using Hypervalent Iodine Reagents 644
28.9.1.1.1.7 Variation 7: Using Peroxides 645
28.9.1.1.1.8 Variation 8: Using Cobalt Mediated Catalytic Oxidation by Oxygen 646
283.1.1.1.9 Variation 9: Using Fremy's Salt 647
28.9.1.1.1.10 Variation 10: Using Ammonium Cerium(IV) Nitrate 647
28.9.1.1.1.11 Variation 11: Oxidative Coupling of Phenols and Anilines with Amines — 647
28.9.1.1.1.12 Variation 12: Electrooxidation 649
28.9.1.1.2 Method 2: Condensation of Quinone Derivatives with Amines 658
28.9.1.1.2.1 Variation 1: Intermolecular Processes 658
28.9.1.1.2.2 Variation 2: Intramolecular Processes 663
28.9.1.1.3 Method 3: Transition Metal Quinone Diimine Synthesis 667
28.9.1.1.4 Method 4: Organometallic C—N Coupling from N Chloroquinone Imines 669
283.1.2 Applications of Product Subclass 1 in Organic Synthesis 670
28.9.1.2.1 Method 1: Diels Alder Reactions 670
28.9.1.2.1.1 Variation 1: Cycloaddition Reactions of Benzo 1,2 quinone Imines 670
28.9.1.2.1.2 Variation 2: Cycloaddition Reactions of Benzo 1,4 quinone Imines 673
28.9.1.2.2 Method 2: Dipolar Cycloadditions 681
283.1.2.3 Method 3: Reactions with Alkenes Promoted by Lewis Acids 682
28.9.1.2.4 Method 4: 1,4 Addition Reactions 695
28.9.2 Product Subclass 2: Naphthoquinone Imines and Diimines 706
28.9.2.1 Synthesis of Product Subclass 2 706
28.9.2.1.1 Method 1: Oxidative Coupling of Naphthols with Amines 706
28.9.2.1.2 Method 2: Oxidative Coupling of 1 Naphthylcyanamide with Anilines ••• 710
28.9.2.1.3 Method 3: Substitutions on Naphthoquinones with Amines 712
283.2.1.3.1 Variation 1: Substitution of Sulfonic Groups 712
28.9.2.1.3.2 Variation 2: Substitution of Methoxy Groups 714
283.2.1.4 Method 4: Condensation of Naphthoquinones with Amines 714
28.9.2.1.5 Method 5: Condensation of Naphthoquinones with /V Sulfinylarylamines 716
283.2.1.6 Method 6: Reactions of Naphthoquinones with
N Phenyliminophosphoranes 717
283.2.1.7 Method 7: Oxidation of Aminonaphthols, Naphthalenediamines,
and Naphthylamines 718
283.2.1.8 Method 8: Diels Alder Reactions of Isoindoles with
Activated Acetylene Derivatives 721
283.2.1.9 Method 9: Synthesis and Oxidation of N Hydroxy N phenyl
naphthalen 1 amines 722
283.2.1.10 Method 10: Reactions of Naphthoquinones with
Bis(trimethylsilyl)carbodiimide 723
283.2.2 Applications of Product Subclass 2 in Organic Synthesis 724
283.2.2.1 Method 1: Halogenation 724
283.2.2.2 Method 2: [3 + 2] Photoaddition with Alkenes 726
Table of Contents XXXV
28.9.2.2.3 Method 3: 1,4 Addition Aromatization 726
28.9.2.2.4 Method 4: Oxidative Coupling 729
28.9.2.2.5 Method 5: The Imino Group as Nucleophile 729
28.10 Product Class 10: Anthraquinone and Phenanthrenedione Imines and
Diimines
C. Avendano and J. C. Menendez
28.10 Product Class 10: Anthraquinone and Phenanthrenedione Imines and
Diimines 735
28.10.1 Product Subclass 1:Anthra 9,10 quinone Imines and Diimines 739
28.io.li Synthesis of Product Subclass 1 739
28.10.1.1.1 Ring Annulation or Ring Closure Reactions 739
28.10.1.1.1.1 Method 1: Diels Alder Reactions of Naphthoquinone Imines 739
28.10.1.1.1.2 Method 2: Oxidative Photochemical Cyclization of
9 (2 lodoanilino) 4,5 phenanthrolin 10 ols 740
28.10.1.1.1.3 Method 3: Intramolecular Friedel Crafts Acylation of
1 (2 Carboxyphenyl)isoquinolines 741
28.10.1.1.1.4 Method 4: Intramolecular Friedel Crafts Acylation of
10 Hetaryl 2,9 phenanthridine 1 carbonitriles 741
28.10.1.1.1.5 Method 5: Intramolecular Cyclization of 2,2' Bis(phthalimido)biphenyls 742
28.10.1.1.1.6 Method 6: Double Cyclization of 3 [(2 Arylethyl)amino]
benzo[c]furan 1(3H) one 743
28.10.1.1.1.7 Method 7: Hydrolytic Cyclization of N (3 {2 [(5,8 Dioxo 5,8 dihydro
quinolin 6 yl)amino]phenyl} 3 oxopropyl) 2,2,2 trifluoro
acetamide 744
28.10.1.1.2 Creation of the Quinone Imine Functionality on a Preexisting
Six Membered Ring 745
28.10.1.1.2.1 Method 1: Oxidation of N Arylanthracen 9 amines, Tetracen 5 amines,
or Azaviolanthrenes 745
28.10.1.1.2.2 Method 2: Photonitrosation of 9 Anthrol 748
28.10.1.1.2.3 Method 3: Palladium Catalyzed Amination/Oxidation of
9 Bromoanthracenes 749
28.10.1.1.2.4 Method 4: Oxidative Amination of 9 Anthrones 750
28.10.1.1.2.5 Method 5: Oxidation of 10 Amino 9 anthrols 750
28.10.1.1.2.6 Method 6: Condensation of 9 Anthrones with Nitrosoarenes 751
28.10.1.1.2.7 Method 7: Reactions of 10,10 Dibromo 9 anthrones with
Nitrogen Containing Nucleophiles 752
28.10.1.1.2.8 Method 8: Nitrosation of Anthracen 9 amine 752
28.10.1.1.2.9 Method 9: Diazocoupling of 9 Anthrones 753
28.10.1.1.2.10 Method 10: Decomposition of 10 Azido 9 anthrones 754
28.10.1.1.2.11 Method 11: Condensation of Anthra 9,10 quinones or
Anthra 9,10 quinone Acetals with Ammonia or Amines 754
28.10.1.1.2.12 Method 12: Condensation of 1 Aminoanthra 9,10 quinones with Amides,
Amidines, or Nitriles 756
XXXVI Table of Contents
28.10.1.1.2.13 Method 13: Intramolecular Condensations of Anthra 9,10 quinones with
Masked Amino Croups 757
28.10.1.1.2.14 Method 14: Reactionsof Anthra 9,10 quinones with
Aryliminodimagnesium Reagents 759
28.10.1.1.2.15 Method 15: Reactions of Anthraquinones with
Bis(trimethylsilyl)carbodiimide 760
28.10.1.1.2.16 Method 16: Intramolecular Cyclization of 1 (Cyanomethyl) or
1 (Carbamoylmethyl)anthra 9,10 quinones 761
28.10.1.1.2.17 Method 17: Reactions of 9 Aryloxyanthra 1,10 quinones with Amines ••• 761
28.10.1.1.2.18 Method 18: Reactionsof 1 [2 (Dimethylamino)vinyl]azanthraquinones
with Ammonia 762
28.10.1.1.2.19 Method 19: Self Coupling of 1 Aminoanthra 9,10 quinones 763
28.10.1.1.2.20 Method 20: Reactions of 1 Substituted Anthra 9,10 quinones with
Nucleophiles 764
28.10.1.1.2.20.1 Variation 1: Reactionsof 1 Haloanthra 9,10 quinones with Hydrazine or
2 Aminobenzenethiol 764
28.10.1.1.2.20.2 Variation 2: Reactionsof 1 Alk 1 ynylanthra 9,10 quinoneswith
Hydrazines 765
28.10.1.1.2.21 Method 21: Copper Catalyzed Reactions of 1 Haloanthra 9,10 quinones
with Amidines, Guanidines, and Related Compounds 766
28.10.1.1.2.22 Method 22: Synthesis from Anthracenes and Anthracene Diones
Bearing a Nitrogen Containing Croup or Groups 767
28.10.1.1.2.22.1 Variation 1: Hydrolysis of Anthra 9,10 quinone Diimines to Monoimines 767
28.10.1.1.2.22.2 Variation 2: Dipolar Cycloadditions between Quinomethanes and Azides,
and Diazoalkane Extrusion 768
28.10.1.1.2.22.3 Variation 3: Transformations of Anthra 9,10 quinone Imines and
Hydrazones 769
28.10.1.1.2.22.4 Variation 4: Transformations of Anthra 9,10 quinone Oximes 769
28.10.1.1.2.22.5 Variation 5: Reactionsof 10 Diazoanthracen 9(10H) ones with
Nitrogen Containing Electrophiles 770
28.10.1.1.2.22.6 Variation 6: ReductiveTautomerization of Anthra 1,4 quinone Imines ••¦ 771
28.10.2 Product Subclass 2: Anthra 1,2 quinone and Anthra 1,4 quinone Imines
and Diimines 771
28.10.21 Synthesis of Product Subclass 2 771
28.10.2.1.1 Ring Closure Reactions 771
28.10.2.1.1.1 Method 1: Oxidative Coupling of 1 Phenyl 2,3 bis(pyrimidin 5 yl)
benzenes 771
28.10.2.1.1.2 Method 2: Cycloaddition of Homophthalic Anhydrides and
Benzo 1,4 quinone Imines and Subsequent Oxidation 772
28.10.2.1.2 Creation of the Quinone Imine Functionality on a Preexisting
Six Membered Ring 774
28.10.2.1.2.1 Method 1: Oxidation of 1 (Acylamino) 2 anthrols 774
28.10.2.1.2.2 Method 2: Oxidation of Anthracenamines and Their Derivatives 774
28.10.2.1.2.3 Method 3: Rearrangement of 4 Aryloxyanthracen 1 amines and
Related Compounds 775
Table of Contents XXXVII
28.10.2.1.2.4 Method 4: Condensation of Anthra 9,10 quinone Diamines and
Anthracenamines with Carbonyl Compounds 777
28.10.2.1.2.5 Method 5: Condensation of Anthra 1,2 quinones with Hydrazines 778
28.10.3 Product Subclass 3: Phenanthrene 9,10 dione Imines and Diimines 779
28.io.3i Synthesis of Product Subclass 3 779
28.10.3.1.1 Ring Closure Reactions 779
28.10.3.1.1.1 Method 1: Transannular Cyclizations of [22]Metacyclophanes with
N Bromosuccinimide 780
28.10.3.1.1.2 Method 2: Metal Induced Oxidative Intramolecular Aryl Aryl Coupling 780
28.10.3.1.1.3 Method 3: Synthesis of Oxoaporphine Alkaloids by Aryl Aryl Coupling 782
28.10.3.1.1.4 Method 4: PschorrCyclization of 1 (2 Aminobenzyl)isoquinolines 784
28.10.3.1.1.5 Method 5: Oxidative Cyclization of Bisarylhydrazones 785
28.10.31 2 Creation of the Quinone Imine Functionality on a Preexisting
Six Membered Ring 787
28.10.3.1.2.1 Method 1: Reaction of Phenanthrene 9,10 diones with Nucleophiles ••• 787
28.10.3.1.2.1.1 Variationi: Reactions with 1,2 Diamines 787
28.10.3.1.2.1.2 Variation 2: Condensation of Phenanthrene 9,10 diones with
Hydroxylamine or Sodium Hexamethyldisilazanide 789
28.10.3.1.2.1.3 Variation 3: Condensation of Phenanthrene 9,10 diones with Imino
hydrazides, Sulfanamide, Thiosemicarbazide, Semicarbazide,
or Aminoguanidines 790
28.10.3.1.2.1.4 Variation 4: Condensation of Phenanthrene 9,10 diones with
S Alkylisothiosemicarbazides and Related Compounds 791
28.10.3.1.2.1.5 Variation 5: Reductive Condensation of Phenanthrene 9,10 diones with
Aromatic Nitroso or Nitro Compounds 793
28.10.3.1.2.2 Method 2: Condensation of Phenanthrene 9,10 diamines with
a Dicarbonyl Compounds 793
28.10.3.1.2.3 Method 3: Condensation of Phenanthrene 9,10 diamines with
Bis(methyloximes) 794
28.10.3.1.2.4 Method 4: Reactions of Phenanthrene 9,10 diamines with
a Nitro Ketones 795
28.10.3.1.2.5 Method 5: Condensation of Phenanthrene 3,9 diones with 1,2 Diamines 796
28.10.3.1.2.6 Method 6: Condensation of 9 Nitrophenanthrenes with Anilines 797
28.10.3.1.2.7 Method 7: Condensation of lminophenanthren 9(10H) ones with Amines 797
28.10.3.1.2.8 Method 8: Reaction of Phenanthrene 9,10 diones with Arsinimines 798
28.10.3.1.2.9 Method 9: Condensation of Phenanthrene 9,10 dione Monooxime with
1,1 Diarylalkenes 799
28.10.3.1.2.10 Method 10: Condensation of Phenanthrene 9,10 dione Diimines or
Dioximeswithgem Dihalides 800
28.10.3.1.2.11 Method 11: Reaction of Phenanthrene with Trithiazyl Trichloride 801
28.10.3.1.2.12 Method 12: Ring Expansion of Phenanthro[9,10 d][1,2,3]triazoles or
Phenanthro[9,10 c][1,2,5]oxadiazoles 801
XXXVIII Table of Contents _
28.11 Product Class 11: Quinone Diazides
A. C. Griesbeck and E. Zimmermann
28.11 Product Class 11: Quinone Diazides 807
28.11.1 Synthesis of Product Class 11 809
28.11.1.1 Method 1: Diazotization of Amino Substituted Aromatic Alcohols 810
28.11.1.1.1 Variation 1: Diazotization in Aqueous Media 810
28.11.1.1.2 Variation 2: Diazotization in Organic Solvents 812
28.11.1.1.3 Variation 3: Nitration of Substituted Anilines 816
28.11.1.2 Method 2: Aromatic Substitution of Diazonium Salts 818
28.11.1.2.1 Variation 1: Hydrolysis of 2 or 4 Substituted Diazonium Salts 818
28.11.1.2.2 Variation 2: Elimination of HX from Diazonium Salts 819
28.11.1.2.3 Variation 3: Aromatic Substitution of Aryl Fluorides 820
28.11.1.3 Method 3: Oxidation of Arenediazonium Cations 821
28.11.1.4 Method 4: o or p Nitrosylation of Phenols 821
28.11.1.5 Method 5: Formation of Tosylhydrazones from Quinones 822
28.11.1 6 Method 6: Electrophilic Substitution of Quinone Diazides 823
28.11.1.7 Method 7: Diazo Croup Transfer Reactions 823
28.11.1.8 Methods 8: Additional Methods 825
28.11.2 Applications of Product Class 11 in Organic Synthesis 825
28.11.2.1 Method 1: The Sus Reaction 825
28.11.2.2 Method 2: Application in Photolithographic Processes 827
28.12 Product Class 12: Quinomethanes
28.12.1 Product Subclass 1: o Quinomethanes
T. R. R. Pettus and C. Selenski
28.12.1 Product Subclass 1: o Quinomethanes 831
28.12.11 Synthesis of Product Subclass 1 835
28.12.1.1.1 Quinone Enolization 835
28.12.1.1.1.1 Methodi: Heat Assisted Quinone Enolization 835
28.12.1.1.1.2 Method 2: Base Assisted Quinone Enolization 836
28.12.1.1.1.2.1 Variation 1: Using Lithium Methoxide 836
28.12.1.1.1.2.2 Variation 2: Using Sodium Methanethiolate 837
28.12.1.1.1.2.3 Variation 3: Using Amines 838
28.12.1.1.1.3 Method 3: Photochemically Assisted Quinone Enolization 839
28.12.1.1.2 Oxidation 840
28.12.1.1.2.1 Methodi: Oxidation Using Silver(l) Oxide 840
28.12.1.1.3 Extrusions and Retrocycloadditions 843
28.12.1.1.3.1 Method 1: Nucleophilic Displacement 843
28.12.1.1.3.2 Method 2: Mannich Base Precursors 843
Table of Contents XXXIX
28.12.1.1.3.2.1 Variation 1: Thermal Induction 844
28.12.1.1.3.2.2 Variation 2: Quaternization 846
28.12.1.1.3.3 Method 3: 2 (1H Benzotriazol 1 ylmethyl)phenol Precursors 847
28.12.1.1.3.3.1 Variation 1: Basic Conditions 848
28.12.1.1.3.3.2 Variation 2: Thermal Conditions 849
28.12.1.1.3.4 Method 4: 4H 1,2 Benzoxazine Precursors (Thermal Extrusion) 851
28.12.1.1.3.5 Method 5: 2 (fert Butoxycarbonyloxy)benzaldehyde and 2 (tert Butoxy
carbonyloxy)benzyl Alcohol Precursors (Basic Conditions) ¦•• 852
28.12.1.1.3.6 Method 6: 2 (Hydroxymethyl)phenol Precursors 858
28.12.1.1.3.6.1 Variation 1: Thermal Induction 858
28.12.1.1.3.6.2 Variation 2: Derivatization of the 2 (Hydroxymethyl)phenol Precursor ••¦ 860
28.12.1.1.3.6.3 Variation 3: Photochemical Induction 860
28.12.1.1.3.6.4 Variation 4: Lewis Acid Induction 861
28.12.1.1.3.6.5 Variation 5: Lewis Base Induction 862
28.12.1.1.3.7 Method 7: 2 Phenylbenzodioxaborin Precursors 863
28.12.1.1.3.7.1 Variation 1: Lewis Acid Induction 864
28.12.1.1.3.8 Method 8: 2 (Halomethyl)phenol Precursors 866
28.12.1.1.3.8.1 Variation 1: Neutral Conditions 867
28.12.1.1.3.8.2 Variation 2: Basic Conditions 867
28.12.1.1.3.8.3 Variation 3: Lewis Acidic Conditions 868
28.12.2 Product Subclass 2: p Quinomethanes
A. G. Griesbeck
28.12.2 Product Subclass 2: p Quinomethanes 873
28.i2.2i Synthesis of Product Subclass 2 874
28.12.2.1.1 Method 1: Oxidation of 4 Substituted Phenols 876
28.12.2.1.1.1 Variation 1: Using Silver(l), Lead(IV), or Manganese(IV) Oxide 876
28.12.2.1.1.2 Variation 2: Using Potassium Hexacyanoferrate(lll) 877
28.12.2.1.1.3 Variation 3: Using Other Oxidants 877
28.12.2.1.2 Method 2: Dehydration of 4 (Hydroxyalkyl) and
4 (Hydroxyalkyl)phenyl Substituted Phenols 879
28.12.2.1.2.1 Variation 1: Thermal Dehydration of 4 (Hydroxyalkyl) Substituted Phenols 879
28.12.2.1.2.2 Variation 2: Acid Catalyzed Dehydration of 4 (Hydroxyalkyl) Substituted
Phenols 879
28.12.2.1.2.3 Variation 3: Dehydration of 4 (Hydroxyalkyl) Substituted Phenols Using
Lithium Aluminum Hydride 879
28.12.2.1.3 Method 3: Dehydrohalogenation of 4 Halomethyl Substituted Phenols 880
28.12.2.1.3.1 Variation 1: Using Amine Bases 880
28.12.2.1.3.2 Variation 2: Using Weak Bases in Aqueous Media 881
28.12.2.1.3.3 Variation 3: Using Metal Alkoxides 881
28.12.2.1.4 Method 4: Acid Catalyzed Dehydration of 4 Methoxyphenyl Substituted
Alcohols 882
28.12.2.1.5 Method 5: Elimination of Chloromethane from 4 Chloroalkyl Substituted
Anisoles 882
28.12.2.1.6 Method 6: Acid Elimination from 4 (Acyloxy)alkyl Substituted Phenols 883
XL Table of Contents
28.12.2.1.7 Method 7: Decomplexation of Quinomethanes from
re Palladium Complexes 884
28.12.2 1.8 Method 8: Condensation of Phenols with Alkyl or Acyl Halides 884
28.12.2.1.8.1 Variation 1: Thermal Condensation 885
28.12.2.1.8.2 Variation 2: Lewis Acid Catalyzed Condensation 885
28.12.2.1.9 Method 9: Reaction of Phenols with Carbenium Ions 885
28.i2.2i.io Method 10: Reaction of Aryl Carbanions with Carbonyl Compounds — 886
28.12.2.1.10.1 Variation 1: Reaction of Metalated Phenols with Carbonyl Compounds 886
28.12.2.1.10.2 Variation 2: Reaction of Metalated Arenes with 4 Acylphenols 887
28.12.2.1.11 Method 11: Oxidation of Phenols to p Diphenoquinones 888
28.12.2.1.12 Method 12: Ring Closure Reactions 888
28.12.2.1.13 Method 13: Addition of Nudeophiles to o Quinones 889
28.12.2.1.14 Method 14: Addition of Nudeophiles to p Quinones 890
28.i2.2i.i5 Method 15: Knoevenagel Addition to p Quinones 890
28.12.2.1.16 Method 16: Wittig Reaction of p Quinones 891
28.12.2.1.17 Method 17: Ketene Additions to p Quinones 893
28.i2.2i.i8 Method 18: Photochemical Addition of Alkynes to p Quinones 893
28.12.2.1.19 Method 19: Modification of p Quinomethanes 894
28.12.2.1.20 Method 20: Condensation of Carbonyl Compounds with Anthrones — 894
28.12.2.1.21 Method 21: Oxidation of Nitrobenzylic Carbanions 895
Keyword Index 901
Author Index 949
Abbreviations 1001 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Avendaño, C. |
author2 | Griesbeck, Axel G. |
author2_role | edt |
author2_variant | a g g ag agg |
author_GND | (DE-588)1029929874 (DE-588)117013870 |
author_facet | Avendaño, C. Griesbeck, Axel G. |
author_role | aut |
author_sort | Avendaño, C. |
author_variant | c a ca |
building | Verbundindex |
bvnumber | BV021661431 |
classification_rvk | VK 7000 |
ctrlnum | (OCoLC)634482094 (DE-599)BVBBV021661431 |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008cc4500</leader><controlfield tag="001">BV021661431</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240614</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060718s2006 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3131187913</subfield><subfield code="9">3-13-118791-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1588904601</subfield><subfield code="9">1-58890-460-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783131187918</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-13-118791-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634482094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021661431</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 7000</subfield><subfield code="0">(DE-625)147414:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Avendaño, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Science of synthesis</subfield><subfield code="b">Houben-Weyl methods of molecular transformations</subfield><subfield code="n">28 = Category 4, Compounds with two carbon-heteroatom bonds</subfield><subfield code="p">Quinones and heteroatom analogues</subfield><subfield code="c">ed. board: D. Bellus ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stuttgart [u.a.]</subfield><subfield code="b">Thieme</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XL, 1006 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chinone</subfield><subfield code="0">(DE-588)4147707-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chinone</subfield><subfield code="0">(DE-588)4147707-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellus, Daniel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griesbeck, Axel G.</subfield><subfield code="0">(DE-588)1029929874</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houben, Josef</subfield><subfield code="d">1875-1940</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)117013870</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV013247070</subfield><subfield code="g">28</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-13-183811-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014875927&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014875927</subfield></datafield></record></collection> |
id | DE-604.BV021661431 |
illustrated | Illustrated |
index_date | 2024-07-02T15:06:08Z |
indexdate | 2024-08-20T00:15:10Z |
institution | BVB |
isbn | 3131187913 1588904601 9783131187918 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014875927 |
oclc_num | 634482094 |
open_access_boolean | |
owner | DE-20 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-210 DE-91G DE-BY-TUM DE-188 DE-11 |
owner_facet | DE-20 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-210 DE-91G DE-BY-TUM DE-188 DE-11 |
physical | XL, 1006 Seiten Illustrationen 26 cm |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Thieme |
record_format | marc |
spelling | Avendaño, C. aut Science of synthesis Houben-Weyl methods of molecular transformations 28 = Category 4, Compounds with two carbon-heteroatom bonds Quinones and heteroatom analogues ed. board: D. Bellus ... Stuttgart [u.a.] Thieme 2006 XL, 1006 Seiten Illustrationen 26 cm txt rdacontent n rdamedia nc rdacarrier Chemische Synthese (DE-588)4133806-6 gnd rswk-swf Chinone (DE-588)4147707-8 gnd rswk-swf Chinone (DE-588)4147707-8 s Chemische Synthese (DE-588)4133806-6 s DE-604 Bellus, Daniel Sonstige oth Griesbeck, Axel G. (DE-588)1029929874 edt Houben, Josef 1875-1940 Sonstige (DE-588)117013870 oth (DE-604)BV013247070 28 Erscheint auch als Online-Ausgabe 978-3-13-183811-7 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014875927&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Science of synthesis Houben-Weyl methods of molecular transformations Chemische Synthese (DE-588)4133806-6 gnd Chinone (DE-588)4147707-8 gnd Avendaño, C. |
subject_GND | (DE-588)4133806-6 (DE-588)4147707-8 |
title | Science of synthesis Houben-Weyl methods of molecular transformations |
title_auth | Science of synthesis Houben-Weyl methods of molecular transformations |
title_exact_search | Science of synthesis Houben-Weyl methods of molecular transformations |
title_exact_search_txtP | Science of synthesis Houben-Weyl methods of molecular transformations |
title_full | Science of synthesis Houben-Weyl methods of molecular transformations 28 = Category 4, Compounds with two carbon-heteroatom bonds Quinones and heteroatom analogues ed. board: D. Bellus ... |
title_fullStr | Science of synthesis Houben-Weyl methods of molecular transformations 28 = Category 4, Compounds with two carbon-heteroatom bonds Quinones and heteroatom analogues ed. board: D. Bellus ... |
title_full_unstemmed | Science of synthesis Houben-Weyl methods of molecular transformations 28 = Category 4, Compounds with two carbon-heteroatom bonds Quinones and heteroatom analogues ed. board: D. Bellus ... |
title_short | Science of synthesis |
title_sort | science of synthesis houben weyl methods of molecular transformations quinones and heteroatom analogues |
title_sub | Houben-Weyl methods of molecular transformations |
topic | Chemische Synthese (DE-588)4133806-6 gnd Chinone (DE-588)4147707-8 gnd |
topic_facet | Chemische Synthese Chinone |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014875927&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013247070 |
work_keys_str_mv | AT avendanoc scienceofsynthesishoubenweylmethodsofmoleculartransformations28category4compoundswithtwocarbonheteroatombonds AT bellusdaniel scienceofsynthesishoubenweylmethodsofmoleculartransformations28category4compoundswithtwocarbonheteroatombonds AT griesbeckaxelg scienceofsynthesishoubenweylmethodsofmoleculartransformations28category4compoundswithtwocarbonheteroatombonds AT houbenjosef scienceofsynthesishoubenweylmethodsofmoleculartransformations28category4compoundswithtwocarbonheteroatombonds |