Introductory lectures on fluctuations of Lévy processes with applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Auch als Internetausgabe |
Beschreibung: | XIII, 373 S. graph. Darst. |
ISBN: | 3540313427 9783540313427 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021632920 | ||
003 | DE-604 | ||
005 | 20070713 | ||
007 | t | ||
008 | 060627s2006 gw d||| |||| 00||| eng d | ||
015 | |a 06,N05,1061 |2 dnb | ||
016 | 7 | |a 977876845 |2 DE-101 | |
020 | |a 3540313427 |c Pb. : EUR 42.75 (freier Pr.), sfr 73.00 (freier Pr.) |9 3-540-31342-7 | ||
020 | |a 9783540313427 |9 978-3-540-31342-7 | ||
024 | 3 | |a 9783540313427 | |
028 | 5 | 2 | |a 11338987 |
035 | |a (OCoLC)181528463 | ||
035 | |a (DE-599)BVBBV021632920 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-91G |a DE-19 |a DE-824 |a DE-384 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 607f |2 stub | ||
084 | |a 510 |2 sdnb | ||
084 | |a 60G50 |2 msc | ||
100 | 1 | |a Kyprianou, Andreas E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introductory lectures on fluctuations of Lévy processes with applications |c Andreas E. Kyprianou |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XIII, 373 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
500 | |a Auch als Internetausgabe | ||
650 | 4 | |a Lévy processes | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Fluktuation |0 (DE-588)4348165-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lévy-Prozess |0 (DE-588)4463623-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lévy-Prozess |0 (DE-588)4463623-4 |D s |
689 | 0 | 1 | |a Fluktuation |0 (DE-588)4348165-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2754922&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014847792&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014847792 |
Datensatz im Suchindex
_version_ | 1804135431338459136 |
---|---|
adam_text | CONTENTS
1L
´
EVY PROCESSES AND APPLICATIONS
.......................... 1
1.1 L´EVY PROCESSES AND INFINITE DIVISIBILITY . . . . . . . . . . . . .
. . . . . . . . 1
1.2 SOME EXAMPLES OF L´EVYPROCESSES ......................... 5
1.3 L´EVY PROCESSES AND SOME APPLIED PROBABILITY MODELS . . . . . . . .
14
EXERCISES ................................................... 26
2T
H
E
L
´
EVY*IT*O DECOMPOSITION AND PATH STRUCTURE
.......... 33
2.1 THE L´EVY*IT*O DECOMPOSITION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 33
2.2 POISSONRANDOMMEASURES................................ 35
2.3 FUNCTIONALS OF POISSON RANDOM MEASURES . . . . . . . . . . . . . . .
. . . . 41
2.4 SQUARE INTEGRABLE MARTINGALES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
2.
5 PR
OOFOFTHEL´
EVY*IT*O DECOMPOSITION . . . . . . . . . . . . . . . . . . . . . . 51
2.6 L´EVY PROCESSES DISTINGUISHED BY THEIR PATH TYPE . . . . . . . . . .
. 53
2.7 INTERPRETATIONS OF THE L´EVY*IT*O DECOMPOSITION . . . . . . . . . .
. . . . 56
EXERCISES ................................................... 62
3 MORE DISTRIBUTIONAL AND PATH-RELATED PROPERTIES
.......... 67
3.1 THESTRONGMARKOVPROPERTY ............................. 67
3.2 DUALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 73
3.3 EXPONENTIAL MOMENTS AND MARTINGALES . . . . . . . . . . . . . . . .
. . . . . 75
EXERCISES ................................................... 83
4 GENERAL STORAGE MODELS AND PATHS OF BOUNDED VARIATION
.. 87
4.1 GENERAL STORAGE MODELS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 87
4.2 IDLE TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 88
4.3 CHANGE OF VARIABLE AND COMPENSATION FORMULAE . . . . . . . . . . . .
90
4.4 THE KELLA*WHITT MARTINGALE . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 97
4.5 STATIONARY DISTRIBUTION OF THE WORKLOAD . . . . . . . . . . . . . .
. . . . . . 100
4.6 SMALL-TIME BEHAVIOUR AND THE POLLACZEK*KHINTCHINE FORMULA . 102
EXERCISES ...................................................105
XII CONTENTS
5 SUBORDINATORS AT FIRST PASSAGE AND RENEWAL MEASURES
....111
5.1 KILLED SUBORDINATORS AND RENEWAL MEASURES . . . . . . . . . . . . .
. . . 111
5.2 OVERSHOOTS AND UNDERSHOOTS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 119
5.3 CREEPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 121
5.4 REGULAR VARIATION AND TAUBERIAN THEOREMS . . . . . . . . . . . . . .
. . . 126
5.5 DYNKIN*LAMPERTI ASYMPTOTICS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 130
EXERCISES ...................................................133
6 THE WIENER*HOPF FACTORISATION
............................139
6.1 LOCAL TIME AT THE MAXIMUM . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 140
6.2 THE LADDER PROCESS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 147
6.3 EXCURSIONS..............................................154
6.4 THE WIENER*HOPF FACTORISATION . . . . . . . . . . . . . . . . . . .
. . . . . . . . 157
6.5 EXAMPLES OF THE WIENER*HOPF FACTORISATION . . . . . . . . . . . . .
. . . . 168
6.6 BRIEF REMARKS ON THE TERM *WIENER*HOPF* . . . . . . . . . . . . . .
. . . 174
EXERCISES ...................................................174
7L
´
EVY PROCESSES AT FIRST PASSAGE AND INSURANCE RISK
......179
7.1 DRIFTING AND OSCILLATING . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 179
7.2 CRAM´ER*S ESTIMATE OF RUIN . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 185
7.3 A QUINTUPLELAWATFIRSTPASSAGE .........................189
7.4 THE JUMP MEASURE OF THE ASCENDING LADDER HEIGHT PROCESS . . 195
7.5 CREEPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 197
7.6 REGULAR VARIATION AND INFINITE DIVISIBILITY . . . . . . . . . . . .
. . . . . . 200
7.7 ASYMPTOTIC RUINOUS BEHAVIOUR WITH REGULAR VARIATION . . . . . . .
203
EXERCISES ...................................................206
8 EXIT PROBLEMS FOR SPECTRALLY NEGATIVE PROCESSES
...........211
8.1 BASICPROPERTIESREVIEWED................................211
8.2 THE ONE-SIDED AND TWO-SIDED EXIT PROBLEMS . . . . . . . . . . . . .
. . 214
8.3 THE SCALE FUNCTIONS
W
(
Q
)
AND
Z
(
Q
)
........................220
8.4 POTENTIAL MEASURES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 223
8.5 IDENTITIES FOR REFLECTED PROCESSES . . . . . . . . . . . . . . . . .
. . . . . . . . . 227
8.6 BRIEF REMARKS ON SPECTRALLY NEGATIVE GOUS . . . . . . . . . . . . .
. . . 231
EXERCISES ...................................................233
9 APPLICATIONS TO OPTIMAL STOPPING PROBLEMS
...............239
9.1 SUFFICIENT CONDITIONS FOR OPTIMALITY . . . . . . . . . . . . . . . .
. . . . . . . . 240
9.2 THE MCKEAN OPTIMAL STOPPING PROBLEM . . . . . . . . . . . . . . . .
. . . 241
9.3 SMOOTHFITVERSUSCONTINUOUSFIT .........................245
9.4 THE NOVIKOV*SHIRYAEV OPTIMAL STOPPING PROBLEM . . . . . . . . . . .
249
9.5 THE SHEPP*SHIRYAEV OPTIMAL STOPPING PROBLEM . . . . . . . . . . . .
. 255
9.6 STOCHASTICGAMES........................................260
EXERCISES ...................................................269
CONTENTS XIII
10 CONTINUOUS-STATE BRANCHING PROCESSES
.....................271
10.1 THE LAMPERTI TRANSFORM . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 271
10.2 LONG-TERM BEHAVIOUR . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 274
10.3 CONDITIONED PROCESSES AND IMMIGRATION . . . . . . . . . . . . . . .
. . . . . 280
10.4 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 291
EXERCISES ...................................................293
EPILOGUE
.......................................................295
SOLUTIONS
......................................................299
REFERENCES
.....................................................361
INDEX
..........................................................371
|
adam_txt |
CONTENTS
1L
´
EVY PROCESSES AND APPLICATIONS
. 1
1.1 L´EVY PROCESSES AND INFINITE DIVISIBILITY . . . . . . . . . . . . .
. . . . . . . . 1
1.2 SOME EXAMPLES OF L´EVYPROCESSES . 5
1.3 L´EVY PROCESSES AND SOME APPLIED PROBABILITY MODELS . . . . . . . .
14
EXERCISES . 26
2T
H
E
L
´
EVY*IT*O DECOMPOSITION AND PATH STRUCTURE
. 33
2.1 THE L´EVY*IT*O DECOMPOSITION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 33
2.2 POISSONRANDOMMEASURES. 35
2.3 FUNCTIONALS OF POISSON RANDOM MEASURES . . . . . . . . . . . . . . .
. . . . 41
2.4 SQUARE INTEGRABLE MARTINGALES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
2.
5 PR
OOFOFTHEL´
EVY*IT*O DECOMPOSITION . . . . . . . . . . . . . . . . . . . . . . 51
2.6 L´EVY PROCESSES DISTINGUISHED BY THEIR PATH TYPE . . . . . . . . . .
. 53
2.7 INTERPRETATIONS OF THE L´EVY*IT*O DECOMPOSITION . . . . . . . . . .
. . . . 56
EXERCISES . 62
3 MORE DISTRIBUTIONAL AND PATH-RELATED PROPERTIES
. 67
3.1 THESTRONGMARKOVPROPERTY . 67
3.2 DUALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 73
3.3 EXPONENTIAL MOMENTS AND MARTINGALES . . . . . . . . . . . . . . . .
. . . . . 75
EXERCISES . 83
4 GENERAL STORAGE MODELS AND PATHS OF BOUNDED VARIATION
. 87
4.1 GENERAL STORAGE MODELS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 87
4.2 IDLE TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 88
4.3 CHANGE OF VARIABLE AND COMPENSATION FORMULAE . . . . . . . . . . . .
90
4.4 THE KELLA*WHITT MARTINGALE . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 97
4.5 STATIONARY DISTRIBUTION OF THE WORKLOAD . . . . . . . . . . . . . .
. . . . . . 100
4.6 SMALL-TIME BEHAVIOUR AND THE POLLACZEK*KHINTCHINE FORMULA . 102
EXERCISES .105
XII CONTENTS
5 SUBORDINATORS AT FIRST PASSAGE AND RENEWAL MEASURES
.111
5.1 KILLED SUBORDINATORS AND RENEWAL MEASURES . . . . . . . . . . . . .
. . . 111
5.2 OVERSHOOTS AND UNDERSHOOTS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 119
5.3 CREEPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 121
5.4 REGULAR VARIATION AND TAUBERIAN THEOREMS . . . . . . . . . . . . . .
. . . 126
5.5 DYNKIN*LAMPERTI ASYMPTOTICS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 130
EXERCISES .133
6 THE WIENER*HOPF FACTORISATION
.139
6.1 LOCAL TIME AT THE MAXIMUM . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 140
6.2 THE LADDER PROCESS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 147
6.3 EXCURSIONS.154
6.4 THE WIENER*HOPF FACTORISATION . . . . . . . . . . . . . . . . . . .
. . . . . . . . 157
6.5 EXAMPLES OF THE WIENER*HOPF FACTORISATION . . . . . . . . . . . . .
. . . . 168
6.6 BRIEF REMARKS ON THE TERM *WIENER*HOPF* . . . . . . . . . . . . . .
. . . 174
EXERCISES .174
7L
´
EVY PROCESSES AT FIRST PASSAGE AND INSURANCE RISK
.179
7.1 DRIFTING AND OSCILLATING . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 179
7.2 CRAM´ER*S ESTIMATE OF RUIN . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 185
7.3 A QUINTUPLELAWATFIRSTPASSAGE .189
7.4 THE JUMP MEASURE OF THE ASCENDING LADDER HEIGHT PROCESS . . 195
7.5 CREEPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 197
7.6 REGULAR VARIATION AND INFINITE DIVISIBILITY . . . . . . . . . . . .
. . . . . . 200
7.7 ASYMPTOTIC RUINOUS BEHAVIOUR WITH REGULAR VARIATION . . . . . . .
203
EXERCISES .206
8 EXIT PROBLEMS FOR SPECTRALLY NEGATIVE PROCESSES
.211
8.1 BASICPROPERTIESREVIEWED.211
8.2 THE ONE-SIDED AND TWO-SIDED EXIT PROBLEMS . . . . . . . . . . . . .
. . 214
8.3 THE SCALE FUNCTIONS
W
(
Q
)
AND
Z
(
Q
)
.220
8.4 POTENTIAL MEASURES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 223
8.5 IDENTITIES FOR REFLECTED PROCESSES . . . . . . . . . . . . . . . . .
. . . . . . . . . 227
8.6 BRIEF REMARKS ON SPECTRALLY NEGATIVE GOUS . . . . . . . . . . . . .
. . . 231
EXERCISES .233
9 APPLICATIONS TO OPTIMAL STOPPING PROBLEMS
.239
9.1 SUFFICIENT CONDITIONS FOR OPTIMALITY . . . . . . . . . . . . . . . .
. . . . . . . . 240
9.2 THE MCKEAN OPTIMAL STOPPING PROBLEM . . . . . . . . . . . . . . . .
. . . 241
9.3 SMOOTHFITVERSUSCONTINUOUSFIT .245
9.4 THE NOVIKOV*SHIRYAEV OPTIMAL STOPPING PROBLEM . . . . . . . . . . .
249
9.5 THE SHEPP*SHIRYAEV OPTIMAL STOPPING PROBLEM . . . . . . . . . . . .
. 255
9.6 STOCHASTICGAMES.260
EXERCISES .269
CONTENTS XIII
10 CONTINUOUS-STATE BRANCHING PROCESSES
.271
10.1 THE LAMPERTI TRANSFORM . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 271
10.2 LONG-TERM BEHAVIOUR . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 274
10.3 CONDITIONED PROCESSES AND IMMIGRATION . . . . . . . . . . . . . . .
. . . . . 280
10.4 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 291
EXERCISES .293
EPILOGUE
.295
SOLUTIONS
.299
REFERENCES
.361
INDEX
.371 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kyprianou, Andreas E. |
author_facet | Kyprianou, Andreas E. |
author_role | aut |
author_sort | Kyprianou, Andreas E. |
author_variant | a e k ae aek |
building | Verbundindex |
bvnumber | BV021632920 |
classification_rvk | SK 820 |
classification_tum | MAT 607f |
ctrlnum | (OCoLC)181528463 (DE-599)BVBBV021632920 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01948nam a2200505 c 4500</leader><controlfield tag="001">BV021632920</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070713 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060627s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N05,1061</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977876845</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540313427</subfield><subfield code="c">Pb. : EUR 42.75 (freier Pr.), sfr 73.00 (freier Pr.)</subfield><subfield code="9">3-540-31342-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540313427</subfield><subfield code="9">978-3-540-31342-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540313427</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11338987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181528463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021632920</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 607f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60G50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kyprianou, Andreas E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introductory lectures on fluctuations of Lévy processes with applications</subfield><subfield code="c">Andreas E. Kyprianou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 373 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lévy processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluktuation</subfield><subfield code="0">(DE-588)4348165-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lévy-Prozess</subfield><subfield code="0">(DE-588)4463623-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lévy-Prozess</subfield><subfield code="0">(DE-588)4463623-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fluktuation</subfield><subfield code="0">(DE-588)4348165-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2754922&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014847792&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014847792</subfield></datafield></record></collection> |
id | DE-604.BV021632920 |
illustrated | Illustrated |
index_date | 2024-07-02T14:57:46Z |
indexdate | 2024-07-09T20:40:24Z |
institution | BVB |
isbn | 3540313427 9783540313427 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014847792 |
oclc_num | 181528463 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-824 DE-384 DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-824 DE-384 DE-634 DE-83 DE-11 DE-188 |
physical | XIII, 373 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Kyprianou, Andreas E. Verfasser aut Introductory lectures on fluctuations of Lévy processes with applications Andreas E. Kyprianou Berlin [u.a.] Springer 2006 XIII, 373 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Universitext Auch als Internetausgabe Lévy processes Stochastic processes Fluktuation (DE-588)4348165-6 gnd rswk-swf Lévy-Prozess (DE-588)4463623-4 gnd rswk-swf Lévy-Prozess (DE-588)4463623-4 s Fluktuation (DE-588)4348165-6 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2754922&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014847792&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kyprianou, Andreas E. Introductory lectures on fluctuations of Lévy processes with applications Lévy processes Stochastic processes Fluktuation (DE-588)4348165-6 gnd Lévy-Prozess (DE-588)4463623-4 gnd |
subject_GND | (DE-588)4348165-6 (DE-588)4463623-4 |
title | Introductory lectures on fluctuations of Lévy processes with applications |
title_auth | Introductory lectures on fluctuations of Lévy processes with applications |
title_exact_search | Introductory lectures on fluctuations of Lévy processes with applications |
title_exact_search_txtP | Introductory lectures on fluctuations of Lévy processes with applications |
title_full | Introductory lectures on fluctuations of Lévy processes with applications Andreas E. Kyprianou |
title_fullStr | Introductory lectures on fluctuations of Lévy processes with applications Andreas E. Kyprianou |
title_full_unstemmed | Introductory lectures on fluctuations of Lévy processes with applications Andreas E. Kyprianou |
title_short | Introductory lectures on fluctuations of Lévy processes with applications |
title_sort | introductory lectures on fluctuations of levy processes with applications |
topic | Lévy processes Stochastic processes Fluktuation (DE-588)4348165-6 gnd Lévy-Prozess (DE-588)4463623-4 gnd |
topic_facet | Lévy processes Stochastic processes Fluktuation Lévy-Prozess |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2754922&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014847792&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kyprianouandrease introductorylecturesonfluctuationsoflevyprocesseswithapplications |