Analysis of Toeplitz operators:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Springer monographs in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XIII, 665 S. graph. Darst. |
ISBN: | 9783540324348 3540324348 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021629359 | ||
003 | DE-604 | ||
005 | 20100226 | ||
007 | t | ||
008 | 060626s2006 gw d||| |||| 00||| eng d | ||
015 | |a 06,N09,0576 |2 dnb | ||
015 | |a 06,A20,0466 |2 dnb | ||
016 | 7 | |a 978251938 |2 DE-101 | |
020 | |a 9783540324348 |c Pp. : EUR 85.55 (freier Pr.), sfr 135.50 (freier Pr.) |9 978-3-540-32434-8 | ||
020 | |a 3540324348 |c Pp. : EUR 85.55 (freier Pr.), sfr 135.50 (freier Pr.) |9 3-540-32434-8 | ||
024 | 3 | |a 9783540324348 | |
028 | 5 | 2 | |a 11372004 |
035 | |a (OCoLC)68909234 | ||
035 | |a (DE-599)BVBBV021629359 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-824 |a DE-11 |a DE-29T |a DE-83 | ||
050 | 0 | |a QA329.2 | |
082 | 0 | |a 515/.7246 |2 22 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 30D55 |2 msc | ||
084 | |a 42A50 |2 msc | ||
084 | |a 65F99 |2 msc | ||
084 | |a 15A15 |2 msc | ||
084 | |a 510 |2 sdnb | ||
084 | |a 46E25 |2 msc | ||
084 | |a 47B35 |2 msc | ||
100 | 1 | |a Böttcher, Albrecht |d 1954- |e Verfasser |0 (DE-588)110234979 |4 aut | |
245 | 1 | 0 | |a Analysis of Toeplitz operators |c Albrecht Böttcher ; Bernd Silbermann |
250 | |a 2. ed. |b prepared jointly with Alexei Karlovich | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XIII, 665 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer monographs in mathematics | |
650 | 4 | |a Toeplitz operators | |
650 | 0 | 7 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Silbermann, Bernd |d 1941- |e Verfasser |0 (DE-588)124151035 |4 aut | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2768695&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014844284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014844284 |
Datensatz im Suchindex
_version_ | 1804135426027421696 |
---|---|
adam_text | -JOGS ALBRECHT BOTTCHER * BERND SILBERMANN ANALYSIS OFTOEPLITZ
OPERATORS SECOND EDITION PREPARED JOINTLY WITH ALEXEI KARLOVICH WITH 20
FIGURES 4Y SPRINGER CONTENTS AUXILIARY MATERIAL 1 1.1 OPERATOR IDEALS 1
1.2 OPERATOR DETERMINANTS 4 1.3 FREDHOLM OPERATORS 9 1.4 OPERATOR
MATRICES AND THEIR DETERMINANTS 11 1.5 BANACH ALGEBRAS 12 1.6
C*-ALGEBRAS 17 1.7 LOCAL PRINCIPLES 21 1.8 LP AND HP 27 1.9 BMO AND VMO
36 1.10 SMOOTHNESS CLASSES 38 1.11 NOTES AND COMMENTS 41 BASIC THEORY 45
2.1 MULTIPLICATION OPERATORS 45 2.2 TOEPLITZ OPERATORS 49 2.3 HANKEL
OPERATORS 52 2.4 INVERTIBILITY OF TOEPLITZ OPERATORS ON H 2 57 2.5
SPECTRAL INCLUSION THEOREMS 64 2.6 THE CONNECTION BETWEEN FREDHOLMNESS
AND INVERTIBILITY 71 2.7 COMPACTNESS OF HANKEL OPERATORS AND C + H
SYMBOLS .... 77 2.8 LOCAL METHODS FOR SCALAR TOEPLITZ OPERATORS 85 2.9
MATRIX SYMBOLS 99 2.10 NOTES AND COMMENTS 103 SYMBOL ANALYSIS ILL 3.1
LOCAL SECTORIALITY ILL 3.2 ASYMPTOTIC MULTIPLICATIVITY 119 3.3 PIECEWISE
QUASICONTINUOUS FUNCTIONS 128 3.4 HARMONIC APPROXIMATION: ALGEBRAIZATION
140 3.5 HARMONIC APPROXIMATION: ESSENTIALIZATION 149 XII CONTENTS 3.6
HARMONIC APPROXIMATION: LOCALIZATION 152 3.7 HARMONIC APPROXIMATION:
LOCAL SPECTRA 157 3.8 LOCAL SECTORIALITY CONTINUED 166 3.9 NOTES AND
COMMENTS 169 TOEPLITZ OPERATORS ON H 2 171 4.1 PREDHOLMNESS 171 4.2
STABLE CONVERGENCE 178 4.3 INDEX COMPUTATION 187 4.4 TRANSFMITE
LOCALIZATION 191 4.5 LOCAL TOEPLITZ OPERATORS 211 4.6 SYMBOLS WITH
SPECIFIC LOCAL RANGE 217 4.7 TOEPLITZ ALGEBRAS 226 4.8 THE ROLE OF THE
HARMONIC EXTENSION 240 4.9 NOTES AND COMMENTS 244 TOEPLITZ OPERATORS ON
H P 249 5.1 GENERAL THEOREMS 249 5.2 KHVEDELIDZE WEIGHTS 253 5.3 LOCALLY
P, G-SECTORIAL SYMBOLS 254 5.4 LOCALIZATION 264 5.5 PC SYMBOLS 267 5.6 P
2 C SYMBOLS 277 5.7 FISHER-HARTWIG SYMBOLS 281 5.8 NOTES AND COMMENTS
283 TOEPLITZ OPERATORS ON P 287 6.1 MULTIPLIERS ON WEIGHTED P SPACES
287 6.2 CONTINUOUS SYMBOLS 293 6.3 PIECEWISE CONTINUOUS SYMBOLS 297 6.4
ANALYTIC SYMBOLS 308 6.5 NOTES AND COMMENTS 320 FINITE SECTION METHOD
323 7.1 BASIC FACTS 323 7.2 C + H SYMBOLS 335 7.3 LOCALLY SECTORIAL
SYMBOLS 344 7.4 PC SYMBOLS: T? THEORY 347 7.5 PC SYMBOLS: HP THEORY 353
7.6 OPERATORS FROM ALG (/F2) T(PC) 357 7.7 FISHER-HARTWIG SYMBOLS: H 2
(G) THEORY 374 7.8 FISHER-HARTWIG SYMBOLS: I^ THEORY 378 7.9
INVERTIBILITY VERSUS FINITE SECTION METHOD 389 7.10 PSEUDOSPECTRA 394
7.11 NOTES AND COMMENTS 400 8 TOEPLITZ OPERATORS OV 8.1 FUNCTION CLASSES
OI 8.2 ELEMENTARY PROPER 8.3 CONTINUOUS SYMBO 8.4 THE INVERTIBILITY P
8.5 BILOCAL FREDHOLM 1 8.6 PQC PQC SYM 8.7 FINITE SECTION MET: 8.8
FINITE SECTION MET: 8.9 HIGHER DIMENSIONS 8.10 NOTES AND COMMEI 9
WIENER-HOPF INTEGRAL 9.1 BASIC PROPERTIES .. 9.2 CONTINUOUS SYMBO 9.3
PIECEWISE CONTINUE 9.4 AP AND SAP SYM 9.5 SOME PHENOMENA 9.6 OTHER
OSCILLATING J 9.7 FINITE SECTION MET 9.8 OPERATORS OVER THE 9.9 NOTES
AND COMMEI 10 TOEPLITZ DETERMINANTS 10.1 THE FIRST SZEGO LI: 10.2 KREIN
ALGEBRAS ... 10.3 WIENER-HOPF FACTO 10.4 THE STRONG SZEGO ] 10.5 HIGHER
ORDER ASYN 10.6 SEMIRATIONAL SYMB 10.7 NONVANISHING INDE: 10.8
SELFADJOINT SYMBOL 10.9 THE PURE FISHER-H 10.10 SEPARATION THEOREJ 10.11
FISHER-HARTWIG SYI 10.12 MORE ON UNBOUND* 10.13 WIENER-HOPF DETEI 10.14
EIGENVALUES 10.15 NOTES AND COMMA REFERENCES NOTATION INDEX CONTENTS
XIII 8 TOEPLITZ OPERATORS OVER THE QUARTER-PLANE 409 8.1 FUNCTION
CLASSES ON THE TORUS 409 8.2 ELEMENTARY PROPERTIES OF QUARTER-PLANE
OPERATORS 417 8.3 CONTINUOUS SYMBOLS 421 8.4 THE INVERTIBILITY PROBLEM
428 8.5 BILOCAL PREDHOLM THEORY 438 8.6 PQC PQC SYMBOLS 448 8.7 FINITE
SECTION METHOD: KOZAK S THEORY 454 8.8 FINITE SECTION METHOD: BILOCAL
THEORY 461 8.9 HIGHER DIMENSIONS 470 8.10 NOTES AND COMMENTS 475 9
WIENER-HOPF INTEGRAL OPERATORS 481 9.1 BASIC PROPERTIES 481 9.2
CONTINUOUS SYMBOLS 486 9.3 PIECEWISE CONTINUOUS SYMBOLS 488 9.4 AP AND
SAP SYMBOLS 492 9.5 SOME PHENOMENA CAUSED BY SAP SYMBOLS 497 9.6 OTHER
OSCILLATING SYMBOLS 501 9.7 FINITE SECTION METHOD 504 9.8 OPERATORS OVER
THE QUARTER PLANE 513 9.9 NOTES AND COMMENTS 520 10 TOEPLITZ
DETERMINANTS 525 10.1 THE FIRST SZEGO LIMIT THEOREM 525 10.2 KREIN
ALGEBRAS 529 10.3 WIENER-HOPF FACTORIZATION 533 10.4 THE STRONG SZEGO
LIMIT THEOREM 537 10.5 HIGHER ORDER ASYMPTOTICS 543 10.6 SEMIRATIONAL
SYMBOLS 554 10.7 NONVANISHING INDEX 558 10.8 SELFADJOINT SYMBOLS 566
10.9 THE PURE FISHER-HARTWIG SINGULARITY 570 10.10 SEPARATION THEOREMS
572 10.11 FISHER-HARTWIG SYMBOLS 582 10.12 MORE ON UNBOUNDED SYMBOLS 592
10.13 WIENER-HOPF DETERMINANTS 595 10.14 EIGENVALUES 605 10.15 NOTES AND
COMMENTS 611 REFERENCES 621 NOTATION 653 INDEX 661
|
adam_txt |
-JOGS' ALBRECHT BOTTCHER * BERND SILBERMANN ANALYSIS OFTOEPLITZ
OPERATORS SECOND EDITION PREPARED JOINTLY WITH ALEXEI KARLOVICH WITH 20
FIGURES 4Y SPRINGER CONTENTS AUXILIARY MATERIAL 1 1.1 OPERATOR IDEALS 1
1.2 OPERATOR DETERMINANTS 4 1.3 FREDHOLM OPERATORS 9 1.4 OPERATOR
MATRICES AND THEIR DETERMINANTS 11 1.5 BANACH ALGEBRAS 12 1.6
C*-ALGEBRAS 17 1.7 LOCAL PRINCIPLES 21 1.8 LP AND HP 27 1.9 BMO AND VMO
36 1.10 SMOOTHNESS CLASSES 38 1.11 NOTES AND COMMENTS 41 BASIC THEORY 45
2.1 MULTIPLICATION OPERATORS 45 2.2 TOEPLITZ OPERATORS 49 2.3 HANKEL
OPERATORS 52 2.4 INVERTIBILITY OF TOEPLITZ OPERATORS ON H 2 57 2.5
SPECTRAL INCLUSION THEOREMS 64 2.6 THE CONNECTION BETWEEN FREDHOLMNESS
AND INVERTIBILITY 71 2.7 COMPACTNESS OF HANKEL OPERATORS AND C + H
SYMBOLS . 77 2.8 LOCAL METHODS FOR SCALAR TOEPLITZ OPERATORS 85 2.9
MATRIX SYMBOLS 99 2.10 NOTES AND COMMENTS 103 SYMBOL ANALYSIS ILL 3.1
LOCAL SECTORIALITY ILL 3.2 ASYMPTOTIC MULTIPLICATIVITY 119 3.3 PIECEWISE
QUASICONTINUOUS FUNCTIONS 128 3.4 HARMONIC APPROXIMATION: ALGEBRAIZATION
140 3.5 HARMONIC APPROXIMATION: ESSENTIALIZATION 149 XII CONTENTS 3.6
HARMONIC APPROXIMATION: LOCALIZATION 152 3.7 HARMONIC APPROXIMATION:
LOCAL SPECTRA 157 3.8 LOCAL SECTORIALITY CONTINUED 166 3.9 NOTES AND
COMMENTS 169 TOEPLITZ OPERATORS ON H 2 171 4.1 PREDHOLMNESS 171 4.2
STABLE CONVERGENCE 178 4.3 INDEX COMPUTATION 187 4.4 TRANSFMITE
LOCALIZATION 191 4.5 LOCAL TOEPLITZ OPERATORS 211 4.6 SYMBOLS WITH
SPECIFIC LOCAL RANGE 217 4.7 TOEPLITZ ALGEBRAS 226 4.8 THE ROLE OF THE
HARMONIC EXTENSION 240 4.9 NOTES AND COMMENTS 244 TOEPLITZ OPERATORS ON
H P 249 5.1 GENERAL THEOREMS 249 5.2 KHVEDELIDZE WEIGHTS 253 5.3 LOCALLY
P, G-SECTORIAL SYMBOLS 254 5.4 LOCALIZATION 264 5.5 PC SYMBOLS 267 5.6 P
2 C SYMBOLS 277 5.7 FISHER-HARTWIG SYMBOLS 281 5.8 NOTES AND COMMENTS
283 TOEPLITZ OPERATORS ON P 287 6.1 MULTIPLIERS ON WEIGHTED P SPACES
287 6.2 CONTINUOUS SYMBOLS 293 6.3 PIECEWISE CONTINUOUS SYMBOLS 297 6.4
ANALYTIC SYMBOLS 308 6.5 NOTES AND COMMENTS 320 FINITE SECTION METHOD
323 7.1 BASIC FACTS 323 7.2 C + H SYMBOLS 335 7.3 LOCALLY SECTORIAL
SYMBOLS 344 7.4 PC SYMBOLS: T? THEORY 347 7.5 PC SYMBOLS: HP THEORY 353
7.6 OPERATORS FROM ALG (/F2) T(PC) 357 7.7 FISHER-HARTWIG SYMBOLS: H 2
(G) THEORY 374 7.8 FISHER-HARTWIG SYMBOLS: I^ THEORY 378 7.9
INVERTIBILITY VERSUS FINITE SECTION METHOD 389 7.10 PSEUDOSPECTRA 394
7.11 NOTES AND COMMENTS 400 8 TOEPLITZ OPERATORS OV 8.1 FUNCTION CLASSES
OI 8.2 ELEMENTARY PROPER 8.3 CONTINUOUS SYMBO 8.4 THE INVERTIBILITY P
8.5 BILOCAL FREDHOLM 1 8.6 PQC PQC SYM 8.7 FINITE SECTION MET: 8.8
FINITE SECTION MET: 8.9 HIGHER DIMENSIONS 8.10 NOTES AND COMMEI 9
WIENER-HOPF INTEGRAL 9.1 BASIC PROPERTIES . 9.2 CONTINUOUS SYMBO 9.3
PIECEWISE CONTINUE 9.4 AP AND SAP SYM 9.5 SOME PHENOMENA 9.6 OTHER
OSCILLATING J 9.7 FINITE SECTION MET 9.8 OPERATORS OVER THE 9.9 NOTES
AND COMMEI 10 TOEPLITZ DETERMINANTS 10.1 THE FIRST SZEGO LI: 10.2 KREIN
ALGEBRAS . 10.3 WIENER-HOPF FACTO 10.4 THE STRONG SZEGO ] 10.5 HIGHER
ORDER ASYN 10.6 SEMIRATIONAL SYMB 10.7 NONVANISHING INDE: 10.8
SELFADJOINT SYMBOL 10.9 THE PURE FISHER-H 10.10 SEPARATION THEOREJ 10.11
FISHER-HARTWIG SYI 10.12 MORE ON UNBOUND* 10.13 WIENER-HOPF DETEI 10.14
EIGENVALUES 10.15 NOTES AND COMMA REFERENCES NOTATION INDEX CONTENTS
XIII 8 TOEPLITZ OPERATORS OVER THE QUARTER-PLANE 409 8.1 FUNCTION
CLASSES ON THE TORUS 409 8.2 ELEMENTARY PROPERTIES OF QUARTER-PLANE
OPERATORS 417 8.3 CONTINUOUS SYMBOLS 421 8.4 THE INVERTIBILITY PROBLEM
428 8.5 BILOCAL PREDHOLM THEORY 438 8.6 PQC PQC SYMBOLS 448 8.7 FINITE
SECTION METHOD: KOZAK'S THEORY 454 8.8 FINITE SECTION METHOD: BILOCAL
THEORY 461 8.9 HIGHER DIMENSIONS 470 8.10 NOTES AND COMMENTS 475 9
WIENER-HOPF INTEGRAL OPERATORS 481 9.1 BASIC PROPERTIES 481 9.2
CONTINUOUS SYMBOLS 486 9.3 PIECEWISE CONTINUOUS SYMBOLS 488 9.4 AP AND
SAP SYMBOLS 492 9.5 SOME PHENOMENA CAUSED BY SAP SYMBOLS 497 9.6 OTHER
OSCILLATING SYMBOLS 501 9.7 FINITE SECTION METHOD 504 9.8 OPERATORS OVER
THE QUARTER PLANE 513 9.9 NOTES AND COMMENTS 520 10 TOEPLITZ
DETERMINANTS 525 10.1 THE FIRST SZEGO LIMIT THEOREM 525 10.2 KREIN
ALGEBRAS 529 10.3 WIENER-HOPF FACTORIZATION 533 10.4 THE STRONG SZEGO
LIMIT THEOREM 537 10.5 HIGHER ORDER ASYMPTOTICS 543 10.6 SEMIRATIONAL
SYMBOLS 554 10.7 NONVANISHING INDEX 558 10.8 SELFADJOINT SYMBOLS 566
10.9 THE PURE FISHER-HARTWIG SINGULARITY 570 10.10 SEPARATION THEOREMS
572 10.11 FISHER-HARTWIG SYMBOLS 582 10.12 MORE ON UNBOUNDED SYMBOLS 592
10.13 WIENER-HOPF DETERMINANTS 595 10.14 EIGENVALUES 605 10.15 NOTES AND
COMMENTS 611 REFERENCES 621 NOTATION 653 INDEX 661 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Böttcher, Albrecht 1954- Silbermann, Bernd 1941- |
author_GND | (DE-588)110234979 (DE-588)124151035 |
author_facet | Böttcher, Albrecht 1954- Silbermann, Bernd 1941- |
author_role | aut aut |
author_sort | Böttcher, Albrecht 1954- |
author_variant | a b ab b s bs |
building | Verbundindex |
bvnumber | BV021629359 |
callnumber-first | Q - Science |
callnumber-label | QA329 |
callnumber-raw | QA329.2 |
callnumber-search | QA329.2 |
callnumber-sort | QA 3329.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 620 SK 820 |
ctrlnum | (OCoLC)68909234 (DE-599)BVBBV021629359 |
dewey-full | 515/.7246 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7246 |
dewey-search | 515/.7246 |
dewey-sort | 3515 47246 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02196nam a2200577 c 4500</leader><controlfield tag="001">BV021629359</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100226 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060626s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N09,0576</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,A20,0466</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">978251938</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540324348</subfield><subfield code="c">Pp. : EUR 85.55 (freier Pr.), sfr 135.50 (freier Pr.)</subfield><subfield code="9">978-3-540-32434-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540324348</subfield><subfield code="c">Pp. : EUR 85.55 (freier Pr.), sfr 135.50 (freier Pr.)</subfield><subfield code="9">3-540-32434-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540324348</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11372004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)68909234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021629359</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA329.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.7246</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30D55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42A50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65F99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15A15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46E25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47B35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Böttcher, Albrecht</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110234979</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Toeplitz operators</subfield><subfield code="c">Albrecht Böttcher ; Bernd Silbermann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed. </subfield><subfield code="b">prepared jointly with Alexei Karlovich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 665 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer monographs in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toeplitz operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silbermann, Bernd</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124151035</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2768695&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014844284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014844284</subfield></datafield></record></collection> |
id | DE-604.BV021629359 |
illustrated | Illustrated |
index_date | 2024-07-02T14:56:29Z |
indexdate | 2024-07-09T20:40:19Z |
institution | BVB |
isbn | 9783540324348 3540324348 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014844284 |
oclc_num | 68909234 |
open_access_boolean | |
owner | DE-703 DE-824 DE-11 DE-29T DE-83 |
owner_facet | DE-703 DE-824 DE-11 DE-29T DE-83 |
physical | XIII, 665 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series2 | Springer monographs in mathematics |
spelling | Böttcher, Albrecht 1954- Verfasser (DE-588)110234979 aut Analysis of Toeplitz operators Albrecht Böttcher ; Bernd Silbermann 2. ed. prepared jointly with Alexei Karlovich Berlin [u.a.] Springer 2006 XIII, 665 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer monographs in mathematics Toeplitz operators Toeplitz-Operator (DE-588)4191521-5 gnd rswk-swf Toeplitz-Operator (DE-588)4191521-5 s DE-604 Silbermann, Bernd 1941- Verfasser (DE-588)124151035 aut text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2768695&prov=M&dok_var=1&dok_ext=htm Inhaltstext GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014844284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Böttcher, Albrecht 1954- Silbermann, Bernd 1941- Analysis of Toeplitz operators Toeplitz operators Toeplitz-Operator (DE-588)4191521-5 gnd |
subject_GND | (DE-588)4191521-5 |
title | Analysis of Toeplitz operators |
title_auth | Analysis of Toeplitz operators |
title_exact_search | Analysis of Toeplitz operators |
title_exact_search_txtP | Analysis of Toeplitz operators |
title_full | Analysis of Toeplitz operators Albrecht Böttcher ; Bernd Silbermann |
title_fullStr | Analysis of Toeplitz operators Albrecht Böttcher ; Bernd Silbermann |
title_full_unstemmed | Analysis of Toeplitz operators Albrecht Böttcher ; Bernd Silbermann |
title_short | Analysis of Toeplitz operators |
title_sort | analysis of toeplitz operators |
topic | Toeplitz operators Toeplitz-Operator (DE-588)4191521-5 gnd |
topic_facet | Toeplitz operators Toeplitz-Operator |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2768695&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014844284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bottcheralbrecht analysisoftoeplitzoperators AT silbermannbernd analysisoftoeplitzoperators |