Fundamentals of solid state engineering:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2006
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXXII, 882 S. Ill., graph. Darst. |
ISBN: | 0792376293 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021628834 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 060626s2006 xxuad|| |||| 00||| eng d | ||
020 | |a 0792376293 |9 0-7923-7629-3 | ||
035 | |a (OCoLC)62132602 | ||
035 | |a (DE-599)BVBBV021628834 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-1102 | ||
050 | 0 | |a TK7816 | |
082 | 0 | |a 621.381 |2 22 | |
084 | |a UP 3600 |0 (DE-625)146385: |2 rvk | ||
100 | 1 | |a Razeghi, Manijeh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of solid state engineering |c Manijeh Razeghi |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Springer |c 2006 | |
300 | |a XXXII, 882 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Solid state electronics | |
650 | 0 | 7 | |a Festkörperelektronik |0 (DE-588)4383044-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Festkörperelektronik |0 (DE-588)4383044-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014843766&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014843766 |
Datensatz im Suchindex
_version_ | 1804135425275592704 |
---|---|
adam_text | CONTENTS LIST OF SYMBOLS XIX FOREWORD XXIII PREFACE XXV 1. CRYSTALLINE
PROPERTIES OF SOLIDS 1 1.1. INTRODUCTION 2 1.2. CRYSTAL LATTICES AND THE
SEVEN CRYSTAL SYSTEMS 5 1.3. THE UNIT CELL CONCEPT 8 1.4. THE
WIGNER-SEITZ CELL 10 1.5. BRAVAIS LATTICES 11 1.6. POINT GROUPS 13
1.6.1. C S GROUP (PLANE REFLECTION) 13 1.6.2. C N GROUPS (ROTATION) 14
1.6.3. C NH AND C NV GROUPS 15 1.6.4. D N GROUPS 16 1.6.5. D NH AND D ND
GROUPS 17 1.6.6. C I GROUP 18 . 1.6.7. C 3I AND S 4 GROUPS 18 1.6.8. T
GROUP 19 1.6.9. T D GROUP 20 1.6.10. O GROUP 21 1.6.11. O H GROUP 21
1.6.12. LIST OF CRYSTALLOGRAPHIC POINT GROUPS 21 1.7. SPACE GROUPS 23
1.8. DIRECTIONS AND PLANES IN CRYSTALS: MILLER INDICES 23 1.9. REAL
CRYSTAL STRUCTURES 28 1.9.1. DIAMOND STRUCTURE 28 1.9.2. ZINC BLENDE
STRUCTURE 30 1.9.3. SODIUM CHLORIDE STRUCTURE 31 1.9.4. CESIUM CHLORIDE
STRUCTURE 31 1.9.5. HEXAGONAL CLOSE-PACKED STRUCTURE 32 1.9.6. WURTZITE
STRUCTURE 34 1.9.7. PACKING FACTOR 35 1.10. THE RECIPROCAL LATTICE 37
1.11. THE BRILLOUIN ZONE 40 1.12. SUMMARY 40 FURTHER READING 41 PROBLEMS
42 2. ELECTRONIC STRUCTURE OF ATOMS 45 2.1. INTRODUCTION 45 2.2.
SPECTROSCOPIC EMISSION LINES AND ATOMIC STRUCTURE OF HYDROGEN 46 2.3.
ATOMIC ORBITALS 52 2.4. STRUCTURES OF ATOMS WITH MANY ELECTRONS 55 2.5.
BONDS IN SOLIDS 59 2.5.1. GENERAL PRINCIPLES 59 2.5.2. IONIC BONDS 61
2.5.3. COVALENT BONDS 63 2.5.4. MIXED BONDS 65 2.5.5. METALLIC BONDS 66
2.5.6. SECONDARY BONDS 67 2.6. ATOMIC PROPERTY TRENDS IN THE PERIODIC
TABLE 70 2.6.1. THE PERIODIC TABLE 70 2.6.2. ATOMIC AND IONIC RADII 71
2.6.3. IONIZATION ENERGY 72 2.6.4. ELECTRON AFFINITY 72 2.6.5.
ELECTRONEGATIVITY 73 2.6.6. SUMMARY OF TRENDS 73 2.7. INTRODUCTION TO
ENERGY BANDS 73 2.8. SUMMARY 75 FURTHER READING 76 PROBLEMS 77 3.
INTRODUCTION TO QUANTUM MECHANICS 81 3.1. THE QUANTUM CONCEPTS 81 3.1.1.
BLACKBODY RADIATION 82 3.1.2. THE PHOTOELECTRIC EFFECT 84 3.1.3.
WAVE-PARTICLE DUALITY 87 3.1.4. THE DAVISSON-GERMER EXPERIMENT 88 3.2.
ELEMENTS OF QUANTUM MECHANICS 89 3.2.1. BASIC FORMALISM 89 3.2.2. THE
TIME INDEPENDENT SCHRODINGER EQUATION 93 3.2.3. THE HEISENBERG
UNCERTAINTY PRINCIPLE 95 3.2.4. FIRST SUMMARY 96 3.2.5. GENERAL
PROPERTIES OF WAVEFUNCTIONS AND THE SCHROEDINGER EQUATION 97 3.3. SIMPLE
QUANTUM MECHANICAL SYSTEMS 97 3.3.1. FREE PARTICLE 97 3.3.2. PARTICLE IN
A 1D BOX 99 3.3.3. PARTICLE IN A FINITE POTENTIAL WELL 102 3.4. SUMMARY
108 FURTHER READING 108 PROBLEMS 110 4. ELECTRONS AND ENERGY BAND
STRUCTURES IN CRYSTALS 115 4.1. INTRODUCTION 115 4.2. ELECTRONS IN A
CRYSTAL 116 4.2.1. BLOCH THEOREM 116 4.2.2. ONE-DIMENSIONAL
KRONIG-PENNEY MODEL 118 4.2.3. ENERGY BANDS 122 4.2.4. NEARLY FREE
ELECTRON APPROXIMATION 126 4.2.5. TIGHT BINDING APPROXIMATION 127 4.2.6.
DYNAMICS OF ELECTRONS IN A CRYSTAL 130 4.2.7. FERMI ENERGY 133 4.2.8.
ELECTRON DISTRIBUTION FUNCTION 135 4.3. DENSITY OF STATES (3D) 136
4.3.1. DIRECT CALCULATION 137 4.3.2. OTHER APPROACH 142 4.3.3. ELECTRONS
AND HOLES 146 4.4. BAND STRUCTURES IN REAL SEMICONDUCTORS 148 4.4.1.
FIRST BRILLOUIN ZONE OF AN FCC LATTICE 148 4.4.2. FIRST BRILLOUIN ZONE
OF A BCC LATTICE 150 4.4.3. FIRST BRILLOUIN ZONES OF A FEW
SEMICONDUCTORS 151 4.5. BAND STRUCTURES IN METALS 154 4.6. SUMMARY 156
REFERENCES 157 FURTHER READING 157 PROBLEMS ....158 5. PHONONS 161 5.1.
INTRODUCTION 161 5.2. INTERACTION OF ATOMS IN CRYSTALS: ORIGIN AND
FORMALISM 162 5.3. ONE-DIMENSIONAL MONOATOMIC HARMONIC CRYSTAL 165
5.3.1. TRAVELING WAVE FORMALISM 165 5.3.2. BOUNDARY CONDITIONS 167
5.3.3. PHONON DISPERSION RELATION 168 5.4. ONE-DIMENSIONAL DIATOMIC
HARMONIC CRYSTAL 170 5.4.1. FORMALISM 170 5.4.2. PHONON DISPERSION
RELATION 172 5.5. EXTENSION TO THREE-DIMENSIONAL CASE 179 5.5.1.
FORMALISM 179 5.5.2. SILICON 182 5.5.3. GALLIUM ARSENIDE 182 5.6.
PHONONS 183 5.7. SOUND VELOCITY 186 5.8. SUMMARY 189 REFERENCES 189
FURTHER READING 189 PROBLEMS 191 THERMAL PROPERTIES OF CRYSTALS 193 6.1.
INTRODUCTION 193 6.2. PHONON DENSITY OF STATES (DEBYE MODEL) 193 6.2.1.
DEBYE MODEL 193 6.2.2. PHONON DENSITY OF STATES 196 6.3. HEAT CAPACITY
199 6.3.1. LATTICE CONTRIBUTION TO THE HEAT CAPACITY (DEBYE MODEL) 199
6.3.2. ELECTRONIC CONTRIBUTION TO THE HEAT CAPACITY 207 6.4. THERMAL
EXPANSION 209 6.5. THERMAL CONDUCTIVITY 214 6.6. SUMMARY 219 REFERENCES
219 FURTHER READING 220 PROBLEMS 221 EQUILIBRIUM CHARGE CARRIER
STATISTICS IN SEMICONDUCTORS 223 7.1. INTRODUCTION 223 7.2. DENSITY OF
STATES 224 7.3. EFFECTIVE DENSITY OF STATES (CONDUCTION BAND) 227 7.4.
EFFECTIVE DENSITY OF STATES (VALENCE BAND) 232 7.5. MASS ACTION LAW 234
7.6. DOPING: INTRINSIC VS. EXTRINSIC SEMICONDUCTOR 236 7.7. CHARGE
NEUTRALITY 242 7.8. FERMI ENERGY AS A FUNCTION OF TEMPERATURE 243 7.9.
CARRIER CONCENTRATION IN AN N-TYPE SEMICONDUCTOR 247 7.10. SUMMARY 251
REFERENCES 251 FURTHER READING 251 PROBLEMS 253 NON-EQUILIBRIUM
ELECTRICAL PROPERTIES OF SEMICONDUCTORS 255 8.1. INTRODUCTION 255 8.2.
ELECTRICAL CONDUCTIVITY 256 8.2.1. OHM S LAW IN SOLIDS 256 8.2.2. CASE
OF SEMICONDUCTORS 261 8.3. CARRIER MOBILITY IN SOLIDS 262 8.4. HALL
EFFECT 264 8.4.1. P-TYPE SEMICONDUCTOR 265 8.4.2. N-TYPE SEMICONDUCTOR
267 8.4.3. COMPENSATED SEMICONDUCTOR 269 8.4.4. HALL EFFECT WITH BOTH
TYPES OF CHARGE CARRIERS 269 8.5. CHARGE CARRIER DIFFUSION 270 8.5.1.
DIFFUSION CURRENTS 271 8.5.2. EINSTEIN RELATIONS 273 8.5.3. DIFFUSION
LENGTHS 274 8.6. CARRIER GENERATION AND RECOMBINATION MECHANISMS 279
8.6.1. CARRIER GENERATION 280 8.6.2. DIRECT BAND-TO-BAND RECOMBINATION
280 8.6.3. SHOCKLEY-READ-HALL RECOMBINATION 285 8.6.4. AUGER
BAND-TO-BAND RECOMBINATION 294 8.6.5. SURFACE RECOMBINATION 297 8.7.
QUASI-FERMI ENERGY 298 8.8. SUMMARY 300 FURTHER READING 300 PROBLEMS 302
9. SEMICONDUCTOR P-N AND METAL-SEMICONDUCTOR JUNCTIONS 305 9.1.
INTRODUCTION 305 9.2. IDEAL P-N JUNCTION AT EQUILIBRIUM 306 9.2.1. IDEAL
P-N JUNCTION 306 9.2.2. DEPLETION APPROXIMATION 307 9.2.3. BUILT-IN
ELECTRIC FIELD 312 9.2.4. BUILT-IN POTENTIAL 314 9.2.5. DEPLETION WIDTH
317 9.2.6. ENERGY BAND PROFILE AND FERMI ENERGY 319 9.3. NON-EQUILIBRIUM
PROPERTIES OF P-N JUNCTIONS 321 9.3.1. FORWARD BIAS: A QUALITATIVE
DESCRIPTION 322 9.3.2. REVERSE BIAS: A QUALITATIVE DESCRIPTION 325
9.3.3. A QUANTITATIVE DESCRIPTION 327 9.3.4. DEPLETION LAYER CAPACITANCE
330 9.3.5. IDEAL P-N JUNCTION DIODE EQUATION 332 9.3.6. MINORITY AND
MAJORITY CARRIER CURRENTS IN NEUTRAL REGIONS 341 9.4. DEVIATIONS FROM
THE IDEAL P-N DIODE CASE 343 9.4.1. REVERSE BIAS DEVIATIONS FROM THE
IDEAL CASE 344 9.4.2. FORWARD BIAS DEVIATIONS FROM THE IDEAL CASE 345
9.4.3. REVERSE BREAKDOWN 347 9.4.4. AVALANCHE BREAKDOWN 348 9.4.5. ZENER
BREAKDOWN 350 9.5. METAL-SEMICONDUCTOR JUNCTIONS 352 9.5.1. FORMALISM
352 9.5.2. SCHOTTKY AND OHMIC CONTACTS 354 9.6. SUMMARY 358 FURTHER
READING 358 PROBLEMS ....360 10. OPTICAL PROPERTIES OF SEMICONDUCTORS
363 10.1. INTRODUCTION 364 10.2. THE COMPLEX REFRACTIVE INDEX OF A SOLID
365 10.2.1. MAXWELL S EQUATIONS 365 10.2.2. REFLECTIVITY 368 10.2.3.
TRANSMISSION THROUGH A THIN SLAB 370 10.3. THE FREE CARRIER CONTRIBUTION
TO THE COMPLEX REFRACTIVE INDEX 372 10.3.1. THE DRUDE THEORY OF
CONDUCTIVITY 372 10.3.2. THE CLASSICAL AND QUANTUM CONDUCTIVITY 375
10.4. THE BOUND AND VALENCE ELECTRON CONTRIBUTIONS TO THE PERMITTIVITY
377 10.4.1. TIME DEPENDENT PERTURBATION THEORY 377 10.4.2. REAL
TRANSITIONS AND ABSORPTION OF LIGHT 381 10.4.3. THE PERMITTIVITY OF A
SEMICONDUCTOR 383 10.4.4. THE EFFECT OF BOUND ELECTRONS ON THE LOW
FREQUENCY OPTICAL PROPERTIES 385 10.5. THE OPTICAL ABSORPTION IN
SEMICONDUCTORS 386 10.5.1. ABSORPTION COEFFICIENT 386 10.5.2. EXCITONIC
EFFECTS 388 10.5.3. DIRECT AND INDIRECT BANDGAP ABSORPTION 391 10.6. THE
EFFECT OF PHONONS ON THE PERMITTIVITY 393 10.6.1. PHOTON POLAR MODE
COUPLING 393 10.6.2. APPLICATION TO IONIC INSULATORS 396 10.6.3. THE
PHONON-POLARITON 397 10.7. FREE ELECTRONS IN STATIC ELECTRIC FIELDS: THE
FRANZ- KELDYSH EFFECT 399 10.8. NEARLY FREE ELECTRONS IN A MAGNETIC
FIELD 403 10.9. NONLINEAR OPTICAL SUSCEPTIBILITY 410 10.10. SUMMARY 412
REFERENCES 413 FURTHER READING 414 PROBLEMS 415 SEMICONDUCTOR
HETEROSTRUCTURES AND LOW-DIMENSIONAL QUANTUM STRUCTURES 417 11.1.
INTRODUCTION 417 11.2. ENERGY BAND OFFSETS 419 11.2.1. TYPE I ALIGNMENT
419 11.2.2. TYPE II ALIGNMENTS 420 11.3. APPLICATION OF MODEL SOLID
THEORY 420 11.4. ANDERSON MODEL FOR HETEROJUNCTIONS 422 11.5. MULTIPLE
QUANTUM WELLS AND SUPERLATTICES 425 11.6. TWO-DIMENSIONAL STRUCTURES:
QUANTUM WELLS 427 11.6.1. ENERGY SPECTRUM , 427 11.6.2. DENSITY OF
STATES 431 11.6.3. THE INFLUENCE OF AN EFFECTIVE MASS 435 11.7.
ONE-DIMENSIONAL STRUCTURES: QUANTUM WIRES ..436 11.7.1. DENSITY OF
STATES 436 11.7.2. INFINITELY DEEP RECTANGULAR WIRES 439 11.8.
ZERO-DIMENSIONAL STRUCTURES: QUANTUM DOTS 441 11.8.1. DENSITY OF STATES
441 11.8.2. INFINITE SPHERICAL QUANTUM DOT 442 11.9. OPTICAL PROPERTIES
OF LOW-DIMENSIONAL STRUCTURES .....444 11.9.1. INTERBAND ABSORPTION
COEFFICIENTS OF QUANTUM WELLS..445 11.9.2. ABSORPTION COEFFICIENT OF
QUANTUM WIRES 448 11.9.3. ABSORPTION COEFFICIENT OF QUANTUM DOTS 449
11.10. EXAMPLES OF LOW-DIMENSIONAL STRUCTURES 450 11.10.1. QUANTUM WIRES
452 11.10.2. QUANTUM DOTS 455 11.10.3. EFFECT OF ELECTRIC AND MAGNETIC
FIELDS 456 11.11. SUMMARY ..462 REFERENCES 462 FURTHER READING 463
PROBLEMS..... 465 COMPOUND SEMICONDUCTORS AND CRYSTAL GROWTH
TECHNIQUES...469 12.1. INTRODUCTION 469 12.2. III-V SEMICONDUCTOR ALLOYS
470 12.2.1. III-V BINARY COMPOUNDS 470 12.2.2. III-V TERNARY COMPOUNDS
472 12.2.3. III-V QUATERNARY COMPOUNDS 473 12.3. II-VI COMPOUND
SEMICONDUCTORS 477 12.4. BULK SINGLE CRYSTAL GROWTH TECHNIQUES 478
12.4.1. CZOCHRALSKI GROWTH METHOD ....479 12.4.2. BRIDGMAN GROWTH METHOD
482 12.4.3. FLOAT-ZONE CRYSTAL GROWTH METHOD 484 12.4.4. LELY GROWTH
METHOD 486 12.4.5. CRYSTAL WAFER FABRICATION 488 12.5. EPITAXIAL GROWTH
TECHNIQUES 489 12.5.1. LIQUID PHASE EPITAXY 489 12.5.2. VAPOR PHASE
EPITAXY 490 12.5.3. METALORGANIC CHEMICAL VAPOR DEPOSITION 494 12.5.4.
MOLECULAR BEAM EPITAXY 500 12.5.5. OTHER EPITAXIAL GROWTH TECHNIQUES 506
12.5.6. EX-SITU CHARACTERIZATION OF EPITAXIAL THIN FILMS 507 12.6.
THERMODYNAMICS AND KINETICS OF GROWTH 507 12.6.1. THERMODYNAMICS 507
12.6.2. FEASIBILITY OF CHEMICAL REACTIONS 508 12.6.3. PHASE DIAGRAMS 510
12.6.4. KINETICS 511 12.7. GROWTH MODES 513 12.8. SUMMARY 514 REFERENCES
515 FURTHER READING 515 PROBLEMS 517 13. SEMICONDUCTOR CHARACTERIZATION
TECHNIQUES 521 13.1. INTRODUCTION 521 13.2. STRUCTURAL CHARACTERIZATION
TECHNIQUES 522 13.2.1. X-RAY DIFFRACTION 522 13.2.2. ELECTRON MICROSCOPY
524 13.2.3. ENERGY DISPERSIVE ANALYSIS USING X-RAYS (EDX) 529 13.2.4.
AUGER ELECTRON SPECTROSCOPY (AES) 529 13.2.5. X-RAY PHOTOELECTRON
SPECTROSCOPY (XPS) 530 13.2.6. SECONDARY ION MASS SPECTROSCOPY (SIMS)
531 13.2.7. RUTHERFORD BACKSCATTERING (RBS) 533 13.2.8. SCANNING PROBE
MICROSCOPY (SPM)... 533 13.3. OPTICAL CHARACTERIZATION TECHNIQUES 535
13.3.1. PHOTOLUMINESCENCE SPECTROSCOPY 535 13.3.2. CATHODOLUMINESCENCE
SPECTROSCOPY 537 13.3.3. REFLECTANCE MEASUREMENT 537 13.3.4. ABSORBANCE
MEASUREMENT 537 13.3.5. ELLIPSOMETRY 538 13.3.6. RAMAN SPECTROSCOPY 539
13.3.7. FOURIER TRANSFORM SPECTROSCOPY 540 13.4. ELECTRICAL
CHARACTERIZATION TECHNIQUES 542 13.4.1. RESISTIVITY 542 13.4.2. HALL
EFFECT 543 13.4.3. CAPACITANCE TECHNIQUES 543 13.4.4. ELECTROCHEMICAL
CAPACITANCE-VOLTAGE PROFILING 544 13.5. SUMMARY 545 REFERENCES 546
FURTHER READING 546 PROBLEMS 547 DEFECTS 551 14.1. INTRODUCTION 551
14.2. POINT DEFECTS 553 14.2.1. INTRINSIC POINT DEFECTS 554 14.2.2.
EXTRINSIC POINT DEFECTS 556 14.3. LINE DEFECTS 558 14.4. PLANAR DEFECTS
562 14.5. VOLUME DEFECTS 567 14.6. DEFECT CHARACTERIZATION 568 14.7.
DEFECTS GENERATED DURING SEMICONDUCTOR CRYSTAL GROWTH.. 568 14.8.
SUMMARY 569 REFERENCES 569 FURTHER READING 569 PROBLEMS 571
SEMICONDUCTOR DEVICE TECHNOLOGY 573 15.1. INTRODUCTION 573 15.2.
OXIDATION 574 15.2.1. OXIDATION PROCESS 574 15.2.2. MODELING OF
OXIDATION 576 15.2.3. FACTORS INFLUENCING OXIDATION RATE 582 15.2.4.
OXIDE THICKNESS CHARACTERIZATION 584 15.3. DIFFUSION OF DOPANTS 588
15.3.1. DIFFUSION PROCESS 589 15.3.2. CONSTANT-SOURCE DIFFUSION:
PREDEPOSITION 594 15.3.3. LIMITED-SOURCE DIFFUSION: DRIVE-IN 596 15.3.4.
JUNCTION FORMATION 597 15.4. ION IMPLANTATION OF DOPANTS 600 15.4.1. ION
GENERATION 601 15.4.2. PARAMETERS OF ION IMPLANTATION 602 15.4.3. ION
RANGE DISTRIBUTION 603 15.5. CHARACTERIZATION OF DIFFUSED AND IMPLANTED
LAYERS 606 15.5.1. SHEET RESISTIVITY 606 15.5.2. JUNCTION DEPTH 609
15.5.3. IMPURITY CONCENTRATION 610 15.6. SUMMARY 611 REFERENCES 612
FURTHER READING 612 PROBLEMS .613 SEMICONDUCTOR DEVICE PROCESSING 615
16.1. INTRODUCTION 616 16.2. PHOTOLITHOGRAPHY 616 16.2.1. WAFER
PREPARATION 616 16.2.2. POSITIVE AND NEGATIVE PHOTORESISTS 617 16.2.3.
MASK ALIGNMENT AND FABRICATION..... 621 16.2.4. EXPOSURE 623 16.2.5.
DEVELOPMENT 624 16.2.6. DIRECT PATTERNING AND LIFT-OFF TECHNIQUES 625
16.2.7. ALTERNATIVE LITHOGRAPHIC TECHNIQUES 627 16.3. ELECTRON-BEAM
LITHOGRAPHY 630 16.3.1. ELECTRON-BEAM LITHOGRAPHY SYSTEM 630 16.3.2.
ELECTRON-BEAM LITHOGRAPHY PROCESS 632 16.3.3. PARAMETERS OF
ELECTRON-BEAM LITHOGRAPHY 634 16.3.4. MULTILAYER RESIST SYSTEMS 636
16.3.5. EXAMPLES OF STRUCTURES 638 16.4. ETCHING .....639 16.4.1. WET
CHEMICAL ETCHING 640 16.4.2. PLASMA ETCHING 642 16.4.3. REACTIVE ION
ETCHING 646 16.4.4. SPUTTER ETCHING 647 16.4.5. ION MILLING 647 16.5.
METALLIZATION 649 16.5.1. METAL INTERCONNECTIONS ....649 16.5.2. VACUUM
EVAPORATION 650 16.5.3. SPUTTERING DEPOSITION 653 16.6. PACKAGING OF
DEVICES 654 16.6.1. DICING 654 16.6.2. WIRE BONDING 656 16.6.3.
PACKAGING 658 16.7. SUMMARY 660 REFERENCES 661 FURTHER READING 661
PROBLEMS 663 TRANSISTORS 665 17.1. INTRODUCTION 665 17.2. OVERVIEW OF
AMPLIFICATION AND SWITCHING 666 17.3. BIPOLAR JUNCTION TRANSISTORS 668
17.3.1. PRINCIPLES OF OPERATION FOR BIPOLAR JUNCTION TRANSISTORS 669
17.3.2. AMPLIFICATION PROCESS USING BJTS 670 17.3.3. ELECTRICAL CHARGE
DISTRIBUTION AND TRANSPORT IN BJTS..671 17.3.4. CURRENT GAIN 675 17.3.5.
TYPICAL BJT CONFIGURATIONS 678 17.3.6. DEVIATIONS FROM THE IDEAL BJT
CASE 681 17.4. HETEROJUNCTION BIPOLAR TRANSISTORS 682 17.4.1.
ALGAAS/GAAS HBT 683 17.4.2. GAINP/GAAS HBT 685 17.5. FIELD EFFECT
TRANSISTORS 688 17.5.1. JFETS 688 17.5.2. JFET GATE CONTROL 689 17.5.3.
JFET CURRENT-VOLTAGE CHARACTERISTICS 690 17.5.4. MOSFETS 692 17.5.5.
DEVIATIONS FROM THE IDEAL MOSFET CASE 694 17.6. APPLICATION SPECIFIC
TRANSISTORS 695 17.7. SUMMARY 696 REFERENCES 696 PROBLEMS 698 18.
SEMICONDUCTOR LASERS 701 18.1. INTRODUCTION 701 18.2. TYPES OF LASERS
702 18.3. GENERAL LASER THEORY 703 18.3.1. STIMULATED EMISSION 704
18.3.2. RESONANT CAVITY 707 18.3.3. WAVEGUIDES 708 18.3.4. LASER
PROPAGATION AND BEAM DIVERGENCE 717 18.3.5. WAVEGUIDE DESIGN
CONSIDERATIONS 719 18.4. RUBY LASER 720 18.5. SEMICONDUCTOR LASERS 723
18.5.1. POPULATION INVERSION 724 18.5.2. THRESHOLD CONDITION AND OUTPUT
POWER 726 18.5.3. LINEWIDTH OF SEMICONDUCTOR LASER DIODES 729 18.5.4.
HOMOJUNCTION LASERS 730 18.5.5. HETEROJ UNCTION LASERS 730 18.5.6.
DEVICE FABRICATION 733 18.5.7. SEPARATE CONFINEMENT AND QUANTUM WELL
LASERS 737 18.5.8. LASER PACKAGING 740 18.5.9. DISTRIBUTED FEEDBACK
LASERS 741 18.5.10. MATERIAL CHOICES FOR COMMON INTERBAND LASERS 742
18.5.11. INTERBAND LASERS 743 18.5.12. QUANTUM CASCADE LASERS 747
18.5.13. TYPE II LASERS 750 18.5.14. VERTICAL CAVITY SURFACE EMITTING
LASERS 753 18.5.15. LOW-DIMENSIONAL LASERS 755 18.5.16. RAMAN LASERS 757
18.6. SUMMARY 758 REFERENCES 759 FURTHER READING 761 PROBLEMS 763 19.
PHOTODETECTORS - GENERAL CONCEPTS 765 19.1. INTRODUCTION 765 19.2.
ELECTROMAGNETIC RADIATION 767 19.3. PHOTODETECTOR PARAMETERS 769 19.3.1.
RESPONSIVITY 770 19.3.2. NOISE IN PHOTODETECTORS 770 19.3.3. NOISE
MECHANISMS 773 19.3.4. DETECTIVITY 776 19.3.5. DETECTIVITY LIMITS AND
BLIP 777 19.3.6. FREQUENCY RESPONSE 778 19.4. THERMAL DETECTORS 779
19.5. SUMMARY 782 REFERENCES 783 FURTHER READING 783 PROBLEMS 784 20.
PHOTON DETECTORS 787 20.1. INTRODUCTION 787 20.2. TYPES OF PHOTON
DETECTORS 789 20.2.1. PHOTOCONDUCTIVE DETECTORS 789 20.2.2. PHOTOVOLTAIC
DETECTORS 792 20.3. EXAMPLES OF PHOTON DETECTORS 795 20.3.1. P-I-N
PHOTODIODES 796 20.3.2. AVALANCHE PHOTODIODES 797 20.3.3. SCHOTTKY
BARRIER PHOTODIODES 799 20.3.4. METAL-SEMICONDUCTOR-METAL PHOTODIODES
801 20.3.5. TYPE II SUPERLATTICE PHOTODETECTORS 802 20.3.6.
PHOTOELECTROMAGNETIC DETECTORS 804 20.3.7. QUANTUM WELL INTERSUBBAND
PHOTODETECTORS 805 20.3.8. QUANTUM DOT INFRARED PHOTODETECTORS 806 20.4.
FOCAL PLANE ARRAYS 807 20.5. SUMMARY 808 REFERENCES 808 FURTHER READING
809 PROBLEMS 810 APPENDIX 813 A.L. PHYSICAL CONSTANTS 815 A.2.
INTERNATIONAL SYSTEM OF UNITS 817 A.3. PHYSICAL PROPERTIES OF ELEMENTS
IN THE PERIODIC TABLE 819 A.4. PHYSICAL PROPERTIES OF IMPORTANT
SEMICONDUCTORS 833 A.5. THE TAYLOR EXPANSION 837 A.6. FOURIER SERIES AND
THE FOURIER TRANSFORM 839 A.7. THE PSEUDOPOTENTIAL APPROACH 843 A.8. THE
KANE EFFECTIVE MASS METHOD 847 A.9. THE MONTE-CARLO METHOD 853 A.10. THE
THERMIONIC EMISSION 859 A. 11. PHYSICAL PROPERTIES AND SAFETY
INFORMATION OF METALORGANICS 863 INDEX 875
|
adam_txt |
CONTENTS LIST OF SYMBOLS XIX FOREWORD XXIII PREFACE XXV 1. CRYSTALLINE
PROPERTIES OF SOLIDS 1 1.1. INTRODUCTION 2 1.2. CRYSTAL LATTICES AND THE
SEVEN CRYSTAL SYSTEMS 5 1.3. THE UNIT CELL CONCEPT 8 1.4. THE
WIGNER-SEITZ CELL 10 1.5. BRAVAIS LATTICES 11 1.6. POINT GROUPS 13
1.6.1. C S GROUP (PLANE REFLECTION) 13 1.6.2. C N GROUPS (ROTATION) 14
1.6.3. C NH AND C NV GROUPS 15 1.6.4. D N GROUPS 16 1.6.5. D NH AND D ND
GROUPS 17 1.6.6. C I GROUP 18 . 1.6.7. C 3I AND S 4 GROUPS 18 1.6.8. T
GROUP 19 1.6.9. T D GROUP 20 1.6.10. O GROUP 21 1.6.11. O H GROUP 21
1.6.12. LIST OF CRYSTALLOGRAPHIC POINT GROUPS 21 1.7. SPACE GROUPS 23
1.8. DIRECTIONS AND PLANES IN CRYSTALS: MILLER INDICES 23 1.9. REAL
CRYSTAL STRUCTURES 28 1.9.1. DIAMOND STRUCTURE 28 1.9.2. ZINC BLENDE
STRUCTURE 30 1.9.3. SODIUM CHLORIDE STRUCTURE 31 1.9.4. CESIUM CHLORIDE
STRUCTURE 31 1.9.5. HEXAGONAL CLOSE-PACKED STRUCTURE 32 1.9.6. WURTZITE
STRUCTURE 34 1.9.7. PACKING FACTOR 35 1.10. THE RECIPROCAL LATTICE 37
1.11. THE BRILLOUIN ZONE 40 1.12. SUMMARY 40 FURTHER READING 41 PROBLEMS
42 2. ELECTRONIC STRUCTURE OF ATOMS 45 2.1. INTRODUCTION 45 2.2.
SPECTROSCOPIC EMISSION LINES AND ATOMIC STRUCTURE OF HYDROGEN 46 2.3.
ATOMIC ORBITALS 52 2.4. STRUCTURES OF ATOMS WITH MANY ELECTRONS 55 2.5.
BONDS IN SOLIDS 59 2.5.1. GENERAL PRINCIPLES 59 2.5.2. IONIC BONDS 61
2.5.3. COVALENT BONDS 63 2.5.4. MIXED BONDS 65 2.5.5. METALLIC BONDS 66
2.5.6. SECONDARY BONDS 67 2.6. ATOMIC PROPERTY TRENDS IN THE PERIODIC
TABLE 70 2.6.1. THE PERIODIC TABLE 70 2.6.2. ATOMIC AND IONIC RADII 71
2.6.3. IONIZATION ENERGY 72 2.6.4. ELECTRON AFFINITY 72 2.6.5.
ELECTRONEGATIVITY 73 2.6.6. SUMMARY OF TRENDS 73 2.7. INTRODUCTION TO
ENERGY BANDS 73 2.8. SUMMARY 75 FURTHER READING 76 PROBLEMS 77 3.
INTRODUCTION TO QUANTUM MECHANICS 81 3.1. THE QUANTUM CONCEPTS 81 3.1.1.
BLACKBODY RADIATION 82 3.1.2. THE PHOTOELECTRIC EFFECT 84 3.1.3.
WAVE-PARTICLE DUALITY 87 3.1.4. THE DAVISSON-GERMER EXPERIMENT 88 3.2.
ELEMENTS OF QUANTUM MECHANICS 89 3.2.1. BASIC FORMALISM 89 3.2.2. THE
TIME INDEPENDENT SCHRODINGER EQUATION 93 3.2.3. THE HEISENBERG
UNCERTAINTY PRINCIPLE 95 3.2.4. FIRST SUMMARY 96 3.2.5. GENERAL
PROPERTIES OF WAVEFUNCTIONS AND THE SCHROEDINGER EQUATION 97 3.3. SIMPLE
QUANTUM MECHANICAL SYSTEMS 97 3.3.1. FREE PARTICLE 97 3.3.2. PARTICLE IN
A 1D BOX 99 3.3.3. PARTICLE IN A FINITE POTENTIAL WELL 102 3.4. SUMMARY
108 FURTHER READING 108 PROBLEMS 110 4. ELECTRONS AND ENERGY BAND
STRUCTURES IN CRYSTALS 115 4.1. INTRODUCTION 115 4.2. ELECTRONS IN A
CRYSTAL 116 4.2.1. BLOCH THEOREM 116 4.2.2. ONE-DIMENSIONAL
KRONIG-PENNEY MODEL 118 4.2.3. ENERGY BANDS 122 4.2.4. NEARLY FREE
ELECTRON APPROXIMATION 126 4.2.5. TIGHT BINDING APPROXIMATION 127 4.2.6.
DYNAMICS OF ELECTRONS IN A CRYSTAL 130 4.2.7. FERMI ENERGY 133 4.2.8.
ELECTRON DISTRIBUTION FUNCTION 135 4.3. DENSITY OF STATES (3D) 136
4.3.1. DIRECT CALCULATION 137 4.3.2. OTHER APPROACH 142 4.3.3. ELECTRONS
AND HOLES 146 4.4. BAND STRUCTURES IN REAL SEMICONDUCTORS 148 4.4.1.
FIRST BRILLOUIN ZONE OF AN FCC LATTICE 148 4.4.2. FIRST BRILLOUIN ZONE
OF A BCC LATTICE 150 4.4.3. FIRST BRILLOUIN ZONES OF A FEW
SEMICONDUCTORS 151 4.5. BAND STRUCTURES IN METALS 154 4.6. SUMMARY 156
REFERENCES 157 FURTHER READING 157 PROBLEMS .158 5. PHONONS 161 5.1.
INTRODUCTION 161 5.2. INTERACTION OF ATOMS IN CRYSTALS: ORIGIN AND
FORMALISM 162 5.3. ONE-DIMENSIONAL MONOATOMIC HARMONIC CRYSTAL 165
5.3.1. TRAVELING WAVE FORMALISM 165 5.3.2. BOUNDARY CONDITIONS 167
5.3.3. PHONON DISPERSION RELATION 168 5.4. ONE-DIMENSIONAL DIATOMIC
HARMONIC CRYSTAL 170 5.4.1. FORMALISM 170 5.4.2. PHONON DISPERSION
RELATION 172 5.5. EXTENSION TO THREE-DIMENSIONAL CASE 179 5.5.1.
FORMALISM 179 5.5.2. SILICON 182 5.5.3. GALLIUM ARSENIDE 182 5.6.
PHONONS 183 5.7. SOUND VELOCITY 186 5.8. SUMMARY 189 REFERENCES 189
FURTHER READING 189 PROBLEMS 191 THERMAL PROPERTIES OF CRYSTALS 193 6.1.
INTRODUCTION 193 6.2. PHONON DENSITY OF STATES (DEBYE MODEL) 193 6.2.1.
DEBYE MODEL 193 6.2.2. PHONON DENSITY OF STATES 196 6.3. HEAT CAPACITY
199 6.3.1. LATTICE CONTRIBUTION TO THE HEAT CAPACITY (DEBYE MODEL) 199
6.3.2. ELECTRONIC CONTRIBUTION TO THE HEAT CAPACITY 207 6.4. THERMAL
EXPANSION 209 6.5. THERMAL CONDUCTIVITY 214 6.6. SUMMARY 219 REFERENCES
219 FURTHER READING 220 PROBLEMS 221 EQUILIBRIUM CHARGE CARRIER
STATISTICS IN SEMICONDUCTORS 223 7.1. INTRODUCTION 223 7.2. DENSITY OF
STATES 224 7.3. EFFECTIVE DENSITY OF STATES (CONDUCTION BAND) 227 7.4.
EFFECTIVE DENSITY OF STATES (VALENCE BAND) 232 7.5. MASS ACTION LAW 234
7.6. DOPING: INTRINSIC VS. EXTRINSIC SEMICONDUCTOR 236 7.7. CHARGE
NEUTRALITY 242 7.8. FERMI ENERGY AS A FUNCTION OF TEMPERATURE 243 7.9.
CARRIER CONCENTRATION IN AN N-TYPE SEMICONDUCTOR 247 7.10. SUMMARY 251
REFERENCES 251 FURTHER READING 251 PROBLEMS 253 NON-EQUILIBRIUM
ELECTRICAL PROPERTIES OF SEMICONDUCTORS 255 8.1. INTRODUCTION 255 8.2.
ELECTRICAL CONDUCTIVITY 256 8.2.1. OHM'S LAW IN SOLIDS 256 8.2.2. CASE
OF SEMICONDUCTORS 261 8.3. CARRIER MOBILITY IN SOLIDS 262 8.4. HALL
EFFECT 264 8.4.1. P-TYPE SEMICONDUCTOR 265 8.4.2. N-TYPE SEMICONDUCTOR
267 8.4.3. COMPENSATED SEMICONDUCTOR 269 8.4.4. HALL EFFECT WITH BOTH
TYPES OF CHARGE CARRIERS 269 8.5. CHARGE CARRIER DIFFUSION 270 8.5.1.
DIFFUSION CURRENTS 271 8.5.2. EINSTEIN RELATIONS 273 8.5.3. DIFFUSION
LENGTHS 274 8.6. CARRIER GENERATION AND RECOMBINATION MECHANISMS 279
8.6.1. CARRIER GENERATION 280 8.6.2. DIRECT BAND-TO-BAND RECOMBINATION
280 8.6.3. SHOCKLEY-READ-HALL RECOMBINATION 285 8.6.4. AUGER
BAND-TO-BAND RECOMBINATION 294 8.6.5. SURFACE RECOMBINATION 297 8.7.
QUASI-FERMI ENERGY 298 8.8. SUMMARY 300 FURTHER READING 300 PROBLEMS 302
9. SEMICONDUCTOR P-N AND METAL-SEMICONDUCTOR JUNCTIONS 305 9.1.
INTRODUCTION 305 9.2. IDEAL P-N JUNCTION AT EQUILIBRIUM 306 9.2.1. IDEAL
P-N JUNCTION 306 9.2.2. DEPLETION APPROXIMATION 307 9.2.3. BUILT-IN
ELECTRIC FIELD 312 9.2.4. BUILT-IN POTENTIAL 314 9.2.5. DEPLETION WIDTH
317 9.2.6. ENERGY BAND PROFILE AND FERMI ENERGY 319 9.3. NON-EQUILIBRIUM
PROPERTIES OF P-N JUNCTIONS 321 9.3.1. FORWARD BIAS: A QUALITATIVE
DESCRIPTION 322 9.3.2. REVERSE BIAS: A QUALITATIVE DESCRIPTION 325
9.3.3. A QUANTITATIVE DESCRIPTION 327 9.3.4. DEPLETION LAYER CAPACITANCE
330 9.3.5. IDEAL P-N JUNCTION DIODE EQUATION 332 9.3.6. MINORITY AND
MAJORITY CARRIER CURRENTS IN NEUTRAL REGIONS 341 9.4. DEVIATIONS FROM
THE IDEAL P-N DIODE CASE 343 9.4.1. REVERSE BIAS DEVIATIONS FROM THE
IDEAL CASE 344 9.4.2. FORWARD BIAS DEVIATIONS FROM THE IDEAL CASE 345
9.4.3. REVERSE BREAKDOWN 347 9.4.4. AVALANCHE BREAKDOWN 348 9.4.5. ZENER
BREAKDOWN 350 9.5. METAL-SEMICONDUCTOR JUNCTIONS 352 9.5.1. FORMALISM
352 9.5.2. SCHOTTKY AND OHMIC CONTACTS 354 9.6. SUMMARY 358 FURTHER
READING 358 PROBLEMS .360 10. OPTICAL PROPERTIES OF SEMICONDUCTORS
363 10.1. INTRODUCTION 364 10.2. THE COMPLEX REFRACTIVE INDEX OF A SOLID
365 10.2.1. MAXWELL'S EQUATIONS 365 10.2.2. REFLECTIVITY 368 10.2.3.
TRANSMISSION THROUGH A THIN SLAB 370 10.3. THE FREE CARRIER CONTRIBUTION
TO THE COMPLEX REFRACTIVE INDEX 372 10.3.1. THE DRUDE THEORY OF
CONDUCTIVITY 372 10.3.2. THE CLASSICAL AND QUANTUM CONDUCTIVITY 375
10.4. THE BOUND AND VALENCE ELECTRON CONTRIBUTIONS TO THE PERMITTIVITY
377 10.4.1. TIME DEPENDENT PERTURBATION THEORY 377 10.4.2. REAL
TRANSITIONS AND ABSORPTION OF LIGHT 381 10.4.3. THE PERMITTIVITY OF A
SEMICONDUCTOR 383 10.4.4. THE EFFECT OF BOUND ELECTRONS ON THE LOW
FREQUENCY OPTICAL PROPERTIES 385 10.5. THE OPTICAL ABSORPTION IN
SEMICONDUCTORS 386 10.5.1. ABSORPTION COEFFICIENT 386 10.5.2. EXCITONIC
EFFECTS 388 10.5.3. DIRECT AND INDIRECT BANDGAP ABSORPTION 391 10.6. THE
EFFECT OF PHONONS ON THE PERMITTIVITY 393 10.6.1. PHOTON POLAR MODE
COUPLING 393 10.6.2. APPLICATION TO IONIC INSULATORS 396 10.6.3. THE
PHONON-POLARITON 397 10.7. FREE ELECTRONS IN STATIC ELECTRIC FIELDS: THE
FRANZ- KELDYSH EFFECT 399 10.8. NEARLY FREE ELECTRONS IN A MAGNETIC
FIELD 403 10.9. NONLINEAR OPTICAL SUSCEPTIBILITY 410 10.10. SUMMARY 412
REFERENCES 413 FURTHER READING 414 PROBLEMS 415 SEMICONDUCTOR
HETEROSTRUCTURES AND LOW-DIMENSIONAL QUANTUM STRUCTURES 417 11.1.
INTRODUCTION 417 11.2. ENERGY BAND OFFSETS 419 11.2.1. TYPE I ALIGNMENT
419 11.2.2. TYPE II ALIGNMENTS 420 11.3. APPLICATION OF MODEL SOLID
THEORY 420 11.4. ANDERSON MODEL FOR HETEROJUNCTIONS 422 11.5. MULTIPLE
QUANTUM WELLS AND SUPERLATTICES 425 11.6. TWO-DIMENSIONAL STRUCTURES:
QUANTUM WELLS 427 11.6.1. ENERGY SPECTRUM , 427 11.6.2. DENSITY OF
STATES 431 11.6.3. THE INFLUENCE OF AN EFFECTIVE MASS 435 11.7.
ONE-DIMENSIONAL STRUCTURES: QUANTUM WIRES .436 11.7.1. DENSITY OF
STATES 436 11.7.2. INFINITELY DEEP RECTANGULAR WIRES 439 11.8.
ZERO-DIMENSIONAL STRUCTURES: QUANTUM DOTS 441 11.8.1. DENSITY OF STATES
441 11.8.2. INFINITE SPHERICAL QUANTUM DOT 442 11.9. OPTICAL PROPERTIES
OF LOW-DIMENSIONAL STRUCTURES .444 11.9.1. INTERBAND ABSORPTION
COEFFICIENTS OF QUANTUM WELLS.445 11.9.2. ABSORPTION COEFFICIENT OF
QUANTUM WIRES 448 11.9.3. ABSORPTION COEFFICIENT OF QUANTUM DOTS 449
11.10. EXAMPLES OF LOW-DIMENSIONAL STRUCTURES 450 11.10.1. QUANTUM WIRES
452 11.10.2. QUANTUM DOTS 455 11.10.3. EFFECT OF ELECTRIC AND MAGNETIC
FIELDS 456 11.11. SUMMARY .462 REFERENCES 462 FURTHER READING 463
PROBLEMS. 465 COMPOUND SEMICONDUCTORS AND CRYSTAL GROWTH
TECHNIQUES.469 12.1. INTRODUCTION 469 12.2. III-V SEMICONDUCTOR ALLOYS
470 12.2.1. III-V BINARY COMPOUNDS 470 12.2.2. III-V TERNARY COMPOUNDS
472 12.2.3. III-V QUATERNARY COMPOUNDS 473 12.3. II-VI COMPOUND
SEMICONDUCTORS 477 12.4. BULK SINGLE CRYSTAL GROWTH TECHNIQUES 478
12.4.1. CZOCHRALSKI GROWTH METHOD .479 12.4.2. BRIDGMAN GROWTH METHOD
482 12.4.3. FLOAT-ZONE CRYSTAL GROWTH METHOD 484 12.4.4. LELY GROWTH
METHOD 486 12.4.5. CRYSTAL WAFER FABRICATION 488 12.5. EPITAXIAL GROWTH
TECHNIQUES 489 12.5.1. LIQUID PHASE EPITAXY 489 12.5.2. VAPOR PHASE
EPITAXY 490 12.5.3. METALORGANIC CHEMICAL VAPOR DEPOSITION 494 12.5.4.
MOLECULAR BEAM EPITAXY 500 12.5.5. OTHER EPITAXIAL GROWTH TECHNIQUES 506
12.5.6. EX-SITU CHARACTERIZATION OF EPITAXIAL THIN FILMS 507 12.6.
THERMODYNAMICS AND KINETICS OF GROWTH 507 12.6.1. THERMODYNAMICS 507
12.6.2. FEASIBILITY OF CHEMICAL REACTIONS 508 12.6.3. PHASE DIAGRAMS 510
12.6.4. KINETICS 511 12.7. GROWTH MODES 513 12.8. SUMMARY 514 REFERENCES
515 FURTHER READING 515 PROBLEMS 517 13. SEMICONDUCTOR CHARACTERIZATION
TECHNIQUES 521 13.1. INTRODUCTION 521 13.2. STRUCTURAL CHARACTERIZATION
TECHNIQUES 522 13.2.1. X-RAY DIFFRACTION 522 13.2.2. ELECTRON MICROSCOPY
524 13.2.3. ENERGY DISPERSIVE ANALYSIS USING X-RAYS (EDX) 529 13.2.4.
AUGER ELECTRON SPECTROSCOPY (AES) 529 13.2.5. X-RAY PHOTOELECTRON
SPECTROSCOPY (XPS) 530 13.2.6. SECONDARY ION MASS SPECTROSCOPY (SIMS)
531 13.2.7. RUTHERFORD BACKSCATTERING (RBS) 533 13.2.8. SCANNING PROBE
MICROSCOPY (SPM). 533 13.3. OPTICAL CHARACTERIZATION TECHNIQUES 535
13.3.1. PHOTOLUMINESCENCE SPECTROSCOPY 535 13.3.2. CATHODOLUMINESCENCE
SPECTROSCOPY 537 13.3.3. REFLECTANCE MEASUREMENT 537 13.3.4. ABSORBANCE
MEASUREMENT 537 13.3.5. ELLIPSOMETRY 538 13.3.6. RAMAN SPECTROSCOPY 539
13.3.7. FOURIER TRANSFORM SPECTROSCOPY 540 13.4. ELECTRICAL
CHARACTERIZATION TECHNIQUES 542 13.4.1. RESISTIVITY 542 13.4.2. HALL
EFFECT 543 13.4.3. CAPACITANCE TECHNIQUES 543 13.4.4. ELECTROCHEMICAL
CAPACITANCE-VOLTAGE PROFILING 544 13.5. SUMMARY 545 REFERENCES 546
FURTHER READING 546 PROBLEMS 547 DEFECTS 551 14.1. INTRODUCTION 551
14.2. POINT DEFECTS 553 14.2.1. INTRINSIC POINT DEFECTS 554 14.2.2.
EXTRINSIC POINT DEFECTS 556 14.3. LINE DEFECTS 558 14.4. PLANAR DEFECTS
562 14.5. VOLUME DEFECTS 567 14.6. DEFECT CHARACTERIZATION 568 14.7.
DEFECTS GENERATED DURING SEMICONDUCTOR CRYSTAL GROWTH. 568 14.8.
SUMMARY 569 REFERENCES 569 FURTHER READING 569 PROBLEMS 571
SEMICONDUCTOR DEVICE TECHNOLOGY 573 15.1. INTRODUCTION 573 15.2.
OXIDATION 574 15.2.1. OXIDATION PROCESS 574 15.2.2. MODELING OF
OXIDATION 576 15.2.3. FACTORS INFLUENCING OXIDATION RATE 582 15.2.4.
OXIDE THICKNESS CHARACTERIZATION 584 15.3. DIFFUSION OF DOPANTS 588
15.3.1. DIFFUSION PROCESS 589 15.3.2. CONSTANT-SOURCE DIFFUSION:
PREDEPOSITION 594 15.3.3. LIMITED-SOURCE DIFFUSION: DRIVE-IN 596 15.3.4.
JUNCTION FORMATION 597 15.4. ION IMPLANTATION OF DOPANTS 600 15.4.1. ION
GENERATION 601 15.4.2. PARAMETERS OF ION IMPLANTATION 602 15.4.3. ION
RANGE DISTRIBUTION 603 15.5. CHARACTERIZATION OF DIFFUSED AND IMPLANTED
LAYERS 606 15.5.1. SHEET RESISTIVITY 606 15.5.2. JUNCTION DEPTH 609
15.5.3. IMPURITY CONCENTRATION 610 15.6. SUMMARY 611 REFERENCES 612
FURTHER READING 612 PROBLEMS .613 SEMICONDUCTOR DEVICE PROCESSING 615
16.1. INTRODUCTION 616 16.2. PHOTOLITHOGRAPHY 616 16.2.1. WAFER
PREPARATION 616 16.2.2. POSITIVE AND NEGATIVE PHOTORESISTS 617 16.2.3.
MASK ALIGNMENT AND FABRICATION. 621 16.2.4. EXPOSURE 623 16.2.5.
DEVELOPMENT 624 16.2.6. DIRECT PATTERNING AND LIFT-OFF TECHNIQUES 625
16.2.7. ALTERNATIVE LITHOGRAPHIC TECHNIQUES 627 16.3. ELECTRON-BEAM
LITHOGRAPHY 630 16.3.1. ELECTRON-BEAM LITHOGRAPHY SYSTEM 630 16.3.2.
ELECTRON-BEAM LITHOGRAPHY PROCESS 632 16.3.3. PARAMETERS OF
ELECTRON-BEAM LITHOGRAPHY 634 16.3.4. MULTILAYER RESIST SYSTEMS 636
16.3.5. EXAMPLES OF STRUCTURES 638 16.4. ETCHING .639 16.4.1. WET
CHEMICAL ETCHING 640 16.4.2. PLASMA ETCHING 642 16.4.3. REACTIVE ION
ETCHING 646 16.4.4. SPUTTER ETCHING 647 16.4.5. ION MILLING 647 16.5.
METALLIZATION 649 16.5.1. METAL INTERCONNECTIONS .649 16.5.2. VACUUM
EVAPORATION 650 16.5.3. SPUTTERING DEPOSITION 653 16.6. PACKAGING OF
DEVICES 654 16.6.1. DICING 654 16.6.2. WIRE BONDING 656 16.6.3.
PACKAGING 658 16.7. SUMMARY 660 REFERENCES 661 FURTHER READING 661
PROBLEMS 663 TRANSISTORS 665 17.1. INTRODUCTION 665 17.2. OVERVIEW OF
AMPLIFICATION AND SWITCHING 666 17.3. BIPOLAR JUNCTION TRANSISTORS 668
17.3.1. PRINCIPLES OF OPERATION FOR BIPOLAR JUNCTION TRANSISTORS 669
17.3.2. AMPLIFICATION PROCESS USING BJTS 670 17.3.3. ELECTRICAL CHARGE
DISTRIBUTION AND TRANSPORT IN BJTS.671 17.3.4. CURRENT GAIN 675 17.3.5.
TYPICAL BJT CONFIGURATIONS 678 17.3.6. DEVIATIONS FROM THE IDEAL BJT
CASE 681 17.4. HETEROJUNCTION BIPOLAR TRANSISTORS 682 17.4.1.
ALGAAS/GAAS HBT 683 17.4.2. GAINP/GAAS HBT 685 17.5. FIELD EFFECT
TRANSISTORS 688 17.5.1. JFETS 688 17.5.2. JFET GATE CONTROL 689 17.5.3.
JFET CURRENT-VOLTAGE CHARACTERISTICS 690 17.5.4. MOSFETS 692 17.5.5.
DEVIATIONS FROM THE IDEAL MOSFET CASE 694 17.6. APPLICATION SPECIFIC
TRANSISTORS 695 17.7. SUMMARY 696 REFERENCES 696 PROBLEMS 698 18.
SEMICONDUCTOR LASERS 701 18.1. INTRODUCTION 701 18.2. TYPES OF LASERS
702 18.3. GENERAL LASER THEORY 703 18.3.1. STIMULATED EMISSION 704
18.3.2. RESONANT CAVITY 707 18.3.3. WAVEGUIDES 708 18.3.4. LASER
PROPAGATION AND BEAM DIVERGENCE 717 18.3.5. WAVEGUIDE DESIGN
CONSIDERATIONS 719 18.4. RUBY LASER 720 18.5. SEMICONDUCTOR LASERS 723
18.5.1. POPULATION INVERSION 724 18.5.2. THRESHOLD CONDITION AND OUTPUT
POWER 726 18.5.3. LINEWIDTH OF SEMICONDUCTOR LASER DIODES 729 18.5.4.
HOMOJUNCTION LASERS 730 18.5.5. HETEROJ UNCTION LASERS 730 18.5.6.
DEVICE FABRICATION 733 18.5.7. SEPARATE CONFINEMENT AND QUANTUM WELL
LASERS 737 18.5.8. LASER PACKAGING 740 18.5.9. DISTRIBUTED FEEDBACK
LASERS 741 18.5.10. MATERIAL CHOICES FOR COMMON INTERBAND LASERS 742
18.5.11. INTERBAND LASERS 743 18.5.12. QUANTUM CASCADE LASERS 747
18.5.13. TYPE II LASERS 750 18.5.14. VERTICAL CAVITY SURFACE EMITTING
LASERS 753 18.5.15. LOW-DIMENSIONAL LASERS 755 18.5.16. RAMAN LASERS 757
18.6. SUMMARY 758 REFERENCES 759 FURTHER READING 761 PROBLEMS 763 19.
PHOTODETECTORS - GENERAL CONCEPTS 765 19.1. INTRODUCTION 765 19.2.
ELECTROMAGNETIC RADIATION 767 19.3. PHOTODETECTOR PARAMETERS 769 19.3.1.
RESPONSIVITY 770 19.3.2. NOISE IN PHOTODETECTORS 770 19.3.3. NOISE
MECHANISMS 773 19.3.4. DETECTIVITY 776 19.3.5. DETECTIVITY LIMITS AND
BLIP 777 19.3.6. FREQUENCY RESPONSE 778 19.4. THERMAL DETECTORS 779
19.5. SUMMARY 782 REFERENCES 783 FURTHER READING 783 PROBLEMS 784 20.
PHOTON DETECTORS 787 20.1. INTRODUCTION 787 20.2. TYPES OF PHOTON
DETECTORS 789 20.2.1. PHOTOCONDUCTIVE DETECTORS 789 20.2.2. PHOTOVOLTAIC
DETECTORS 792 20.3. EXAMPLES OF PHOTON DETECTORS 795 20.3.1. P-I-N
PHOTODIODES 796 20.3.2. AVALANCHE PHOTODIODES 797 20.3.3. SCHOTTKY
BARRIER PHOTODIODES 799 20.3.4. METAL-SEMICONDUCTOR-METAL PHOTODIODES
801 20.3.5. TYPE II SUPERLATTICE PHOTODETECTORS 802 20.3.6.
PHOTOELECTROMAGNETIC DETECTORS 804 20.3.7. QUANTUM WELL INTERSUBBAND
PHOTODETECTORS 805 20.3.8. QUANTUM DOT INFRARED PHOTODETECTORS 806 20.4.
FOCAL PLANE ARRAYS 807 20.5. SUMMARY 808 REFERENCES 808 FURTHER READING
809 PROBLEMS 810 APPENDIX 813 A.L. PHYSICAL CONSTANTS 815 A.2.
INTERNATIONAL SYSTEM OF UNITS 817 A.3. PHYSICAL PROPERTIES OF ELEMENTS
IN THE PERIODIC TABLE 819 A.4. PHYSICAL PROPERTIES OF IMPORTANT
SEMICONDUCTORS 833 A.5. THE TAYLOR EXPANSION 837 A.6. FOURIER SERIES AND
THE FOURIER TRANSFORM 839 A.7. THE PSEUDOPOTENTIAL APPROACH 843 A.8. THE
KANE EFFECTIVE MASS METHOD 847 A.9. THE MONTE-CARLO METHOD 853 A.10. THE
THERMIONIC EMISSION 859 A. 11. PHYSICAL PROPERTIES AND SAFETY
INFORMATION OF METALORGANICS 863 INDEX 875 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Razeghi, Manijeh |
author_facet | Razeghi, Manijeh |
author_role | aut |
author_sort | Razeghi, Manijeh |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV021628834 |
callnumber-first | T - Technology |
callnumber-label | TK7816 |
callnumber-raw | TK7816 |
callnumber-search | TK7816 |
callnumber-sort | TK 47816 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | UP 3600 |
ctrlnum | (OCoLC)62132602 (DE-599)BVBBV021628834 |
dewey-full | 621.381 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.381 |
dewey-search | 621.381 |
dewey-sort | 3621.381 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01365nam a2200385zc 4500</leader><controlfield tag="001">BV021628834</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060626s2006 xxuad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792376293</subfield><subfield code="9">0-7923-7629-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62132602</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021628834</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1102</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7816</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.381</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3600</subfield><subfield code="0">(DE-625)146385:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Razeghi, Manijeh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of solid state engineering</subfield><subfield code="c">Manijeh Razeghi</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXII, 882 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid state electronics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperelektronik</subfield><subfield code="0">(DE-588)4383044-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Festkörperelektronik</subfield><subfield code="0">(DE-588)4383044-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014843766&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014843766</subfield></datafield></record></collection> |
id | DE-604.BV021628834 |
illustrated | Illustrated |
index_date | 2024-07-02T14:56:18Z |
indexdate | 2024-07-09T20:40:18Z |
institution | BVB |
isbn | 0792376293 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014843766 |
oclc_num | 62132602 |
open_access_boolean | |
owner | DE-1102 |
owner_facet | DE-1102 |
physical | XXXII, 882 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
spelling | Razeghi, Manijeh Verfasser aut Fundamentals of solid state engineering Manijeh Razeghi 2. ed. New York, NY Springer 2006 XXXII, 882 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Solid state electronics Festkörperelektronik (DE-588)4383044-4 gnd rswk-swf Festkörperelektronik (DE-588)4383044-4 s DE-604 OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014843766&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Razeghi, Manijeh Fundamentals of solid state engineering Solid state electronics Festkörperelektronik (DE-588)4383044-4 gnd |
subject_GND | (DE-588)4383044-4 |
title | Fundamentals of solid state engineering |
title_auth | Fundamentals of solid state engineering |
title_exact_search | Fundamentals of solid state engineering |
title_exact_search_txtP | Fundamentals of solid state engineering |
title_full | Fundamentals of solid state engineering Manijeh Razeghi |
title_fullStr | Fundamentals of solid state engineering Manijeh Razeghi |
title_full_unstemmed | Fundamentals of solid state engineering Manijeh Razeghi |
title_short | Fundamentals of solid state engineering |
title_sort | fundamentals of solid state engineering |
topic | Solid state electronics Festkörperelektronik (DE-588)4383044-4 gnd |
topic_facet | Solid state electronics Festkörperelektronik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014843766&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT razeghimanijeh fundamentalsofsolidstateengineering |