Product design for the environment: a life cycle approach
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL [u.a.]
CRC, Taylor & Francis
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXII, 481 S. graph. Darst. |
ISBN: | 9780849327223 0849327229 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021626472 | ||
003 | DE-604 | ||
005 | 20151019 | ||
007 | t | ||
008 | 060622s2006 xxud||| |||| 00||| eng d | ||
010 | |a 2005045695 | ||
020 | |a 9780849327223 |9 978-0-8493-2722-3 | ||
020 | |a 0849327229 |c alk. paper |9 0-8493-2722-9 | ||
035 | |a (OCoLC)636385329 | ||
035 | |a (DE-599)BVBBV021626472 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G | ||
050 | 0 | |a TS171.4 | |
082 | 0 | |a 745.2 |2 22 | |
084 | |a UMW 035f |2 stub | ||
084 | |a TEC 623f |2 stub | ||
100 | 1 | |a Giudice, Fabio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Product design for the environment |b a life cycle approach |c Fabio Giudice ; Guido La Rosa ; Antonino Risitano |
264 | 1 | |a Boca Raton, FL [u.a.] |b CRC, Taylor & Francis |c 2006 | |
300 | |a XXXII, 481 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Umwelt | |
650 | 4 | |a Design, Industrial |x Environmental aspects | |
650 | 4 | |a Environmental engineering | |
650 | 0 | 7 | |a Produktentwicklung |0 (DE-588)4139402-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Umweltverträgliches Produkt |0 (DE-588)4061629-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Umweltverträgliches Produkt |0 (DE-588)4061629-0 |D s |
689 | 0 | 1 | |a Produktentwicklung |0 (DE-588)4139402-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a La Rosa, Guido |e Verfasser |4 aut | |
700 | 1 | |a Risitano, Antonino |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014841440&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014841440 |
Datensatz im Suchindex
_version_ | 1804135421482893312 |
---|---|
adam_text | Titel: Product design for the environment
Autor: Giudice, Fabio
Jahr: 2006
Contents
List of Figures xix
List of Tables xxv
Preface xxvii
Acknowledgments xxxi
Author Biographies xxxiii
1. From Sustainable Development
to Design for Environment 1
1.1 Sustainable Development 1
1.1.1 Key Factors in Sustainable Development
and the Role of Environmental Protection 2
1.1.2 Role of Science and Technology 4
1.2 Industrial Ecology 5
1.2.1 Scope and Evolution
of the Ecological Metaphor 6
1.2.2 Definition of Industrial Ecology 8
1.2.3 Objectives and Approaches
of Industrial Ecology 10
1.2.4 Typologies of Cycles in Nature and
Translation into Industrial Ecosystems 10
1.2.5 Efficiency of Industrial Ecosystems
and Determining Factors 12
1.3 Design in the Context of the Environmental
Question 13
1.4 Design for Environment 15
1.4.1 DFE: Definition and Approach 15
1.4.2 Approaches to
Optimal Environmental Performance 17
1.4.3 Area of Intervention of DFE 19
1.4.4 Implementation of DFE and
General Guidelines 20
1.4.5 Orientation of DFE Evolution 21
1.5 Concepts, Tools, and Approaches to
the Environmental Question: Overview 22
1.6 Standards and Regulations
Oriented toward Environmental Quality of Products 24
1.6.1 Environmental Standards
and Product Certification 25
1.6.2 Extension of Manufacturer Responsibility 26
1.6.2.1 The European Example 27
1.7 Summary 28
1.8 References 29
Part I—Life Cycle Approach
2. Life Cycle Approach and
the Product-System Concept and Modeling 37
2.1 Life Cycle Concept and Theory 37
2.1.1 Life Cycle Theory: General Concepts 37
2.1.2 Life Cycle Theory in the Management
of Product Development 39
2.2 Life Cycle and the Product-System Concept 40
2.3 Product-System and Environmental Impact 43
2.3.1 Environmental Aspects of the
Consumption of Energy Resources 46
2.3.2 Emission Phenomena and Environmental
Effects 47
2.4 Life Cycle Modeling 48
2.4.1 Approach to Environmental
Performance 49
2.4.2 Modeling by Elementary Function or Activity 49
2.4.3 Typologies of Activity Models 51
2.5 Product Life Cycle: Reference Model 52
2.5.1 Main Phases of the Life Cycle 52
2.5.1.1 Preproduction 53
2.5.1.2 Production 54
2.5.1.3 Distribution 55
2.5.1.4 Use 55
2.5.1.5 Retirement and Disposal 56
2.5.2 Flows of Material Resources
and Recovery Levels 56
2.6 Summary 58
2.7 References 58
3. Life Cycle Design and Management 61
3.1 Life Cycle Approach in Product Design 61
3.1.1 Life Cycle Design 63
3.2 Life Cycle Design Oriented toward
Environmental Performance of Products 65
3.2.1 Characteristics, Objectives, and Approach 67
3.2.2 Guidelines for Design 70
3.2.3 Tools to Evaluate Environmental
Performance of Products 71
3.2.4 Life Cycle Simulation 75
3.3 Life Cycle Management 76
3.4 Summary 77
3.5 References 78
4. Life Cycle Assessment 83
4.1 Environmental Analysis and Evaluation
of the Life Cycle 83
4.1.1 Origins and Evolution 84
4.1.2 Introduction of Life Cycle Assessment
and Concept Development 86
4.2 Premises, Properties, and Framework of Life
Cycle Assessment 87
4.2.1 Definition of Life Cycle and Product-System 88
4.2.2 Methodological Framework of LCA 89
4.2.3 Phases of LCA in ISO Standards 92
4.2.3.1 ISO 14040:1997—Principles
and Framework 92
4.2.3.2 ISO 14041:1998—Life Cycle
Inventory (LCI) 94
4.2.3.3 ISO 14042: 2000—Life Cycle Impact
Assessment (LCIA) 95
4.2.3.4 ISO 14043: 2000—Life Cycle
Interpretation 95
4.3 Fields of Application and Limitations
of Life Cycle Assessment 96
4.4 Overview of Practical Approaches and Tools
for Life Cycle Assessment 97
4.4.1 Full LCA 98
4.4.2 Streamlined LCA 98
4.4.3 Alternative Approaches 101
4.4.3.1 Activity-based LCA 101
4.4.3.2 Input-Output LCA 101
4.4.4 Software Tools 102
4.5 Summary 103
4.6 References 104
5. Life Cycle Cost Analysis 111
5.1 Cost Analysis and the Life Cycle Approach 111
5.1.1 From Assessment of Production Costs
to Economic Analysis of Life Cycle 113
5.2 Product Life Cycle Cost Analysis 114
5.2.1 Premises and Definition of LCCA 116
5.2.2 General Framework for LCCA 118
5.2.2.1 Preliminary Definitions 118
5.2.2.2 Cost Valuation 119
5.2.2.3 Results Analysis 119
5.2.2.4 Decision Making 120
5.2.3 Decomposition of Costs and Cost
Breakdown Structure 120
5.2.4 Life Cycle Cost Models 121
5.2.5 Cost Estimating 122
5.3 Evolution of Models for Product Life Cycle
Cost Analysis 125
5.3.1 Function Costing 126
5.3.2 Activity-based Costing 126
5.3.3 Feature-based Costing 127
5.4 Reference Standards and Codes of Practice 127
5.4.1 Standard IEC 60300-3-3:
Life Cycle Costing 128
5.5 Summary 131
5.6 References 132
6. Integrated Economic-Environmental Analysis
of the Life Cycle 135
6.1 Life Cycle Cost Analysis
and Environmental Aspects 135
6.1.1 Scenario of LCCA Extended
to Environmental Aspects 137
6.2 Environmental Costs and Environmental Accounting 139
6.2.1 Environmental Accounting 141
6.2.2 Typologies of Environmental Accounting 141
6.3 Integration between LCCA and LCA 142
6.3.1 Integrated Economic-Environmental
Approach in Life Cycle Management 145
6.4 Other Approaches to Economic-Environmental
Analysis: Eco-Cost Models 145
6.5 Summary 147
6.6 References 147
Part II—Methodological Statement
7. Product Design and Development Process 153
7.1 Product Design and Development 153
7.1.1 Contexts and Perspectives of Product
Development: General Overview 154
7.1.2 Summary of the Product Development Process 156
7.2 Product Design 158
7.2.1 Engineering Design 159
7.2.2 Organization and Decomposition
in Product Design 160
7.2.2.1 Integration and Decomposition
of Product Architecture 161
7.2.2.2 Integration and Decomposition
of Design Process 162
7.2.3 Product Design Process 162
7.2.3.1 Typologies of Design Process Models 163
7.2.3.2 Reference Model 164
7.2.4 Product Design in the Context
of the Product Development Process 167
7.2.4.1 Relation with the Development
Process Planning Phase 167
7.2.4.2 Relation with the Postdesign
Planning Phase 168
7.3 Methodological Evolution in Product Design 169
7.3.1 Concurrent Engineering 171
7.3.1.1 Characteristic Features of Concurrent
Engineering 172
7.3.1.2 Concurrent Engineering
and Life Cycle Approach 174
7.3.2 Design for X and Design-Centered
Development Model 176
7.3.2.1 The Design for X System 177
7.3.2.2 Objective Properties and
Design for X Tools 178
7.3.2.3 Choice of Design for X Tools
and Their Use in the Design Process 179
7.3.2.4 Design for X and Design-Centered
Model in Relation to
Other Methodological Approaches 181
7.4 Summary 181
7.5 References 182
Integration of Environmental Aspects in Product Design 187
8.1 Orientation toward Environmental Aspects in the Design
Process 187
8.1.1 Premises for the Integration of Environmental
Requirements 188
8.1.2 Interventions in the Product Development Process 190
8.2 Environmental Strategies for the Life Cycle Approach 191
8.2.1 Environmental Strategies in Product Design 193
8.2.2 Useful Life Extension Strategies 195
8.2.3 End-of-Life Strategies 196
8.2.4 Introduction of Environmental Strategies
into the Design Process 197
8.3 Tools and Techniques for
Environmental Requirements of the Life Cycle 201
8.3.1 Role of Design for X 201
8.3.2 DFX Tools for Environmental
Strategies 202
8.4 Integration in Product Development: Proposed
Framework 203
8.4.1 Tools and Techniques for Integrated
Design: Overview 205
8.5 Toward an International Standard:
The ISO/ TR 14062 Technical Report 208
8.5.1 General Premises and Fundamental
Concepts 209
8.5.2 Environmental Objectives and Design
Strategies 210
8.5.3 Integration of Environmental Aspects
in the Design Process 210
8.6 Summary 211
8.7 References 212
Life Cycle Environmental Strategies and
Considerations for Product Design 217
9.1 Strategies for Improving Resources Exploitation and
Determinant Factors 217
9.1.1 Influence of External Factors and Product
Durability 219
9.1.2 Identification of Optimal Strategies 220
9.1.3 Use Process Modeling 223
9.2 Strategies for Extension of Useful Life and Design
Considerations 224
9.2.1 Design for Serviceability 226
9.2.1.1 Main Aspects of Serviceability 226
9.2.1.2 Parameters of Constructional
System Reliability 227
9.2.2 Quantitative Evaluation of Serviceability
Properties 227
9.2.3 Specific Determinant Factors for Useful Life
Extension Strategies 228
9.2.4 Design Expedients 230
9.2.5 Design Variables 230
9.3 Strategies for Recovery at End-of-Life and Design
Considerations 231
9.3.1 Definition of Recovery Strategies
at End-of-Life 232
9.3.2 Management and Optimization of Recovery
Strategies 234
9.3.3 Approaches and Tools for Design 236
9.3.3.1 Design for Disassembly 236
9.3.3.2 Design for Recycling 237
9.3.4 Quantitative Evaluation of the Potential
for Recovery 240
9.3.5 Specific Determinant Factors for End-
of-Life Strategies 242
9.3.6 Design Expedients 243
9.3.7 Design Variables 244
9.4 Product Modularity as a Key Concept
for the Application of Environmental Strategies 244
9.5 Summary 246
9.6 References 246
10. Engineering Methods for
Product Duration Design and Evaluation 251
10.1 Durability of Products and Components 251
10.2 Fatigue of Materials 253
10.2.1 Loading History 254
10.2.2 Design for Fatigue 255
10.2.3 Infinite Life Approach 256
10.2.4 Design for Finite Life 261
10.3 Damage 264
10.3.1 Mechanical Representation of Damage 264
10.3.1.1 The Concept of Effective Stress 265
10.3.1.2 Connection between Strain
and Damage 265
10.3.2 Cumulative Damage Fatigue and Theories
of Lifespan Prediction 270
10.3.2.1 Phenomenological Approach 270
10.3.2.2 Theories Based on Fracture Growth 274
10.3.2.3 Energy Theories of Damage 276
10.4 Thermography and the Risitano Method 277
10.4.1 Thermography 280
10.4.2 The Risitano Method 283
10.4.2.1 Fatigue Limit Determination 283
10.4.2.2 Construction of the Wohler Curve 286
10.5 Summary 291
10.6 References 291
Part III—Methods, Tools, and Case Studies
11. Product Constructional System Definition Based
on Optimal Life Cycle Strategies 297
11.1 Aims and Approach 297
11.2 Method and Tools for Analysis and Design 298
11.2.1 Product Constructional System
and Design Choices 299
11.2.2 Analysis and Decomposition
of Product Architecture 300
11.2.3 Investigation Typologies 301
11.2.3.1 Analysis of Criticality and
Potentiality of the Conventional
System 301
11.2.3.2 Redesign of Product 302
11.2.4 Verification Tools 304
11.3 Optimal Life Cycle Strategy Evaluation Tool 304
11.3.1 Determinant Factors for Strategies 304
11.3.2 Implementation of Matrices for Analysis
of Strategies 305
11.4 Case Study: System Analysis and Redesign
of a Household Refrigerator 307
11.4.1 Preliminary Analysis of System 308
11.4.2 Analysis of Criticality and Potentiality
of the Conventional Architecture 308
11.4.3 Redesign of the Constructional System 312
11.4.4 Focus on the Results of the Modularity
Concept and Ease of Disassembly Approach 317
11.4.5 Product-Service Integration 321
11.5 Final Remarks 322
11.6 Summary 323
11.7 References 323
12. Environmental Characterization of
Materials and Optimal Choice 325
12.1 Materials Selection and Environmental Properties 325
12.2 Environmental Characterization of Materials
and Processes 326
12.2.1 Data on Materials and Processes 327
12.3 Summary of Selection Method 328
12.4 Analysis of Production Feasibility 330
12.5 Analysis of Performance 332
12.6 Life Cycle Indicators 333
12.6.1 Environmental Impact Functions 333
12.6.2 Cost Functions 334
12.7 Analysis of Results and Optimal Choice 335
12.7.1 Graphic Tools 335
12.7.2 Multiobjective Analysis 335
12.8 Case Study: Selection of Material
for an Automobile Brake Disk 336
12.8.1 Definition of Design Requirements 337
12.8.2 Analysis of Production Feasibility 338
12.8.3 Analysis of Performance 338
12.8.4 Evaluation of Life Cycle Indicators
and Analysis of Results 339
12.8.5 Introduction of Environmental
Impact of Use: Evaluation of Life Cycle
Indicators and Analysis of Results 341
12.9 Acknowledgments 344
12.10 Summary 344
12.11 References 345
13. Design for Disassembly and Distribution of
Disassembly Depth 347
13.1 Design for Disassembly and
Disassembly Level 347
13.1.1 Design Approaches to Ease of Disassembly 348
13.1.1.1 Metrics for Design 349
13.1.1.2 Orientations of the Design Intervention 350
13.1.2 Optimal Disassembly Level 351
13.2 Distribution of Disassembly Depth 352
13.3 Objectives and Approach to the Problem 353
13.4 Method Statement 353
13.5 Evaluation of Disassembly Depth 355
13.5.1 Preliminary Modeling of the Constructional
System 355
13.5.2 Characterization of Components on the Basis
of Disassembly Difficulty 357
13.5.2.1 Procedure and Rules
of Characterization 358
13.5.2.2 Improving the Characterization 361
13.5.3 Index of Disassembly Depth 362
13.5.3.1 Disassembly Difficulty
of Junction Systems 363
13.6 Efficiency of Ease of Disassembly Distribution 363
13.6.1 Evaluation of the Objective Properties
of Components 364
13.6.2 Evaluation of the Efficiency
of Disassembly Depth 366
13.7 Case Study: Electromechanical System 366
13.7.1 Evaluation of Disassembly Depth 367
13.7.2 Analysis of the Design Solution 368
13.7.3 Redesign and Optimization 369
13.8 Summary 370
13.9 References 372
14. Optimal Disassembly Planning 375
14.1 Disassembly Planning 375
14.1.1 General View of the State of the Art 377
14.1.2 Extension to Design of the Life Cycle 378
14.1.3 Application of Artificial Intelligence 379
14.1.4 Concluding Considerations 379
14.2 Objectives and Approach to the Problem 380
14.3 Common Structure of the Proposed Tools 381
14.3.1 Common Preliminary Modeling 382
14.3.2 Disassembly Sequence and Operation Time 384
14.3.3 Structure and General Characteristics
of the Resolving Algorithm 385
14.4 Development of the First Tool: Goals of Servicing 388
14.4.1 Preliminary Modeling 388
14.4.2 Identification of the System 388
14.4.3 Generation of Disassembly Sequences and
Identification of Optimal Solution 389
14.5 Development of the Second Tool:
Goals of Recovery 389
14.5.1 Preliminary Modeling 390
14.5.2 Advanced Modeling 392
14.5.2.1 Functions of the Environmental
Impact of the Life Cycle 393
14.5.2.2 Recovery Planning 395
14.5.2.3 Functions of the Costs
of the Life Cycle 395
14.5.3 Identification of the System 396
14.5.4 Generation of Disassembly Sequences and
Identification of the Optimal Solution 397
14.6 Simulations and Analysis of Results 398
14.6.1 Prototype 1: Selective Disassembly 399
14.6.2 Prototype 2: Partial or Complete
Disassembly 400
14.7 Summary 403
14.8 References 404
15. Product Recovery Cycles Planning and
Cost-Benefit Analysis of Recovery 407
15.1 Approach to the Recovery Problem 408
15.2 Method for Recovery Cycles Planning 409
15.3 Calculation Models for Recovery Cycles Planning 411
15.3.1 Basic Procedure for Implementing
the Calculation Models 411
15.3.2 Determinant Factors for Recovery 411
15.3.3 Determinant Factor Matrices
and Recovery Vectors 413
15.3.4 Effective Component Reusability 413
15.3.5 Recovery Fractions 414
15.3.6 Extension of Useful Life 415
15.4 Case Study: Analysis and Optimization
of Heat Exchanger Constructional Systems 417
15.4.1 Construction Standards of Heat Exchangers 417
15.4.2 Operations for Recovery at the End
of Working Life 417
15.4.3 Application of the Calculation Models 418
15.4.4 Analysis and Evaluation of Results 419
15.4.4.1 Comparison CFU- and AES-Type
Architectures 422
15.4.4.2 Optimization of CFU-Type Architecture 423
15.4.4.3 Final Overview of Results 426
15.5 Cost-Benefit Analysis of Recovery Cycles 427
15.5.1 Calculation Models for Cost-Benefit
Analysis of Recovery 428
15.5.2 Case Study: Implementation
of Cost-Benefit Analysis Models 431
15.6 Acknowledgments 432
15.7 Summary 432
15.8 References 432
16. Methodological Framework and Analysis Models
for Simulation of the Product Life Cycle 435
16.1 Simulation and the Life Cycle Approach 435
16.2 Approach to the Problem and Methodological
Framework 436
16.3 Product Model and Analysis Tools 438
16.3.1 Model of System Behavior 439
16.3.2 Evaluation of Performance Decay 440
16.3.2.1 Duration Index 440
16.3.2.2 Dynamic Criticality Factor 441
16.3.2.3 Behavior Criticality Index 442
16.3.3 Analysis of Life Cycle Strategies 442
16.3.3.1 Life Cycle Service Cost 442
16.3.3.2 Recovery Cycles and Extension
of Useful Life 443
16.4 Definition of Objective Functions 444
16.4.1 Environmental Impact of the Life Cycle 445
16.5 Simulation and Analysis of Results 446
16.5.1 Behavior Model of the System 446
16.5.2 Performance Evaluations and Analysis
of Criticality 447
16.5.3 First Analysis of the Performance
in the Life Cycle 448
16.5.4 Analysis of the Environmental Impact
of the Life Cycle 450
16.6 Summary 451
16.7 References 453
Index 455
|
adam_txt |
Titel: Product design for the environment
Autor: Giudice, Fabio
Jahr: 2006
Contents
List of Figures xix
List of Tables xxv
Preface xxvii
Acknowledgments xxxi
Author Biographies xxxiii
1. From Sustainable Development
to Design for Environment 1
1.1 Sustainable Development 1
1.1.1 Key Factors in Sustainable Development
and the Role of Environmental Protection 2
1.1.2 Role of Science and Technology 4
1.2 Industrial Ecology 5
1.2.1 Scope and Evolution
of the Ecological Metaphor 6
1.2.2 Definition of Industrial Ecology 8
1.2.3 Objectives and Approaches
of Industrial Ecology 10
1.2.4 Typologies of Cycles in Nature and
Translation into Industrial Ecosystems 10
1.2.5 Efficiency of Industrial Ecosystems
and Determining Factors 12
1.3 Design in the Context of the Environmental
Question 13
1.4 Design for Environment 15
1.4.1 DFE: Definition and Approach 15
1.4.2 Approaches to
Optimal Environmental Performance 17
1.4.3 Area of Intervention of DFE 19
1.4.4 Implementation of DFE and
General Guidelines 20
1.4.5 Orientation of DFE Evolution 21
1.5 Concepts, Tools, and Approaches to
the Environmental Question: Overview 22
1.6 Standards and Regulations
Oriented toward Environmental Quality of Products 24
1.6.1 Environmental Standards
and Product Certification 25
1.6.2 Extension of Manufacturer Responsibility 26
1.6.2.1 The European Example 27
1.7 Summary 28
1.8 References 29
Part I—Life Cycle Approach
2. Life Cycle Approach and
the Product-System Concept and Modeling 37
2.1 Life Cycle Concept and Theory 37
2.1.1 Life Cycle Theory: General Concepts 37
2.1.2 Life Cycle Theory in the Management
of Product Development 39
2.2 Life Cycle and the Product-System Concept 40
2.3 Product-System and Environmental Impact 43
2.3.1 Environmental Aspects of the
Consumption of Energy Resources 46
2.3.2 Emission Phenomena and Environmental
Effects 47
2.4 Life Cycle Modeling 48
2.4.1 Approach to Environmental
Performance 49
2.4.2 Modeling by Elementary Function or Activity 49
2.4.3 Typologies of Activity Models 51
2.5 Product Life Cycle: Reference Model 52
2.5.1 Main Phases of the Life Cycle 52
2.5.1.1 Preproduction 53
2.5.1.2 Production 54
2.5.1.3 Distribution 55
2.5.1.4 Use 55
2.5.1.5 Retirement and Disposal 56
2.5.2 Flows of Material Resources
and Recovery Levels 56
2.6 Summary 58
2.7 References 58
3. Life Cycle Design and Management 61
3.1 Life Cycle Approach in Product Design 61
3.1.1 Life Cycle Design 63
3.2 Life Cycle Design Oriented toward
Environmental Performance of Products 65
3.2.1 Characteristics, Objectives, and Approach 67
3.2.2 Guidelines for Design 70
3.2.3 Tools to Evaluate Environmental
Performance of Products 71
3.2.4 Life Cycle Simulation 75
3.3 Life Cycle Management 76
3.4 Summary 77
3.5 References 78
4. Life Cycle Assessment 83
4.1 Environmental Analysis and Evaluation
of the Life Cycle 83
4.1.1 Origins and Evolution 84
4.1.2 Introduction of Life Cycle Assessment
and Concept Development 86
4.2 Premises, Properties, and Framework of Life
Cycle Assessment 87
4.2.1 Definition of Life Cycle and Product-System 88
4.2.2 Methodological Framework of LCA 89
4.2.3 Phases of LCA in ISO Standards 92
4.2.3.1 ISO 14040:1997—Principles
and Framework 92
4.2.3.2 ISO 14041:1998—Life Cycle
Inventory (LCI) 94
4.2.3.3 ISO 14042: 2000—Life Cycle Impact
Assessment (LCIA) 95
4.2.3.4 ISO 14043: 2000—Life Cycle
Interpretation 95
4.3 Fields of Application and Limitations
of Life Cycle Assessment 96
4.4 Overview of Practical Approaches and Tools
for Life Cycle Assessment 97
4.4.1 Full LCA 98
4.4.2 Streamlined LCA 98
4.4.3 Alternative Approaches 101
4.4.3.1 Activity-based LCA 101
4.4.3.2 Input-Output LCA 101
4.4.4 Software Tools 102
4.5 Summary 103
4.6 References 104
5. Life Cycle Cost Analysis 111
5.1 Cost Analysis and the Life Cycle Approach 111
5.1.1 From Assessment of Production Costs
to Economic Analysis of Life Cycle 113
5.2 Product Life Cycle Cost Analysis 114
5.2.1 Premises and Definition of LCCA 116
5.2.2 General Framework for LCCA 118
5.2.2.1 Preliminary Definitions 118
5.2.2.2 Cost Valuation 119
5.2.2.3 Results Analysis 119
5.2.2.4 Decision Making 120
5.2.3 Decomposition of Costs and Cost
Breakdown Structure 120
5.2.4 Life Cycle Cost Models 121
5.2.5 Cost Estimating 122
5.3 Evolution of Models for Product Life Cycle
Cost Analysis 125
5.3.1 Function Costing 126
5.3.2 Activity-based Costing 126
5.3.3 Feature-based Costing 127
5.4 Reference Standards and Codes of Practice 127
5.4.1 Standard IEC 60300-3-3:
Life Cycle Costing 128
5.5 Summary 131
5.6 References 132
6. Integrated Economic-Environmental Analysis
of the Life Cycle 135
6.1 Life Cycle Cost Analysis
and Environmental Aspects 135
6.1.1 Scenario of LCCA Extended
to Environmental Aspects 137
6.2 Environmental Costs and Environmental Accounting 139
6.2.1 Environmental Accounting 141
6.2.2 Typologies of Environmental Accounting 141
6.3 Integration between LCCA and LCA 142
6.3.1 Integrated Economic-Environmental
Approach in Life Cycle Management 145
6.4 Other Approaches to Economic-Environmental
Analysis: Eco-Cost Models 145
6.5 Summary 147
6.6 References 147
Part II—Methodological Statement
7. Product Design and Development Process 153
7.1 Product Design and Development 153
7.1.1 Contexts and Perspectives of Product
Development: General Overview 154
7.1.2 Summary of the Product Development Process 156
7.2 Product Design 158
7.2.1 Engineering Design 159
7.2.2 Organization and Decomposition
in Product Design 160
7.2.2.1 Integration and Decomposition
of Product Architecture 161
7.2.2.2 Integration and Decomposition
of Design Process 162
7.2.3 Product Design Process 162
7.2.3.1 Typologies of Design Process Models 163
7.2.3.2 Reference Model 164
7.2.4 Product Design in the Context
of the Product Development Process 167
7.2.4.1 Relation with the Development
Process Planning Phase 167
7.2.4.2 Relation with the Postdesign
Planning Phase 168
7.3 Methodological Evolution in Product Design 169
7.3.1 Concurrent Engineering 171
7.3.1.1 Characteristic Features of Concurrent
Engineering 172
7.3.1.2 Concurrent Engineering
and Life Cycle Approach 174
7.3.2 Design for X and Design-Centered
Development Model 176
7.3.2.1 The Design for X System 177
7.3.2.2 Objective Properties and
Design for X Tools 178
7.3.2.3 Choice of Design for X Tools
and Their Use in the Design Process 179
7.3.2.4 Design for X and Design-Centered
Model in Relation to
Other Methodological Approaches 181
7.4 Summary 181
7.5 References 182
Integration of Environmental Aspects in Product Design 187
8.1 Orientation toward Environmental Aspects in the Design
Process 187
8.1.1 Premises for the Integration of Environmental
Requirements 188
8.1.2 Interventions in the Product Development Process 190
8.2 Environmental Strategies for the Life Cycle Approach 191
8.2.1 Environmental Strategies in Product Design 193
8.2.2 Useful Life Extension Strategies 195
8.2.3 End-of-Life Strategies 196
8.2.4 Introduction of Environmental Strategies
into the Design Process 197
8.3 Tools and Techniques for
Environmental Requirements of the Life Cycle 201
8.3.1 Role of Design for X 201
8.3.2 DFX Tools for Environmental
Strategies 202
8.4 Integration in Product Development: Proposed
Framework 203
8.4.1 Tools and Techniques for Integrated
Design: Overview 205
8.5 Toward an International Standard:
The ISO/ TR 14062 Technical Report 208
8.5.1 General Premises and Fundamental
Concepts 209
8.5.2 Environmental Objectives and Design
Strategies 210
8.5.3 Integration of Environmental Aspects
in the Design Process 210
8.6 Summary 211
8.7 References 212
Life Cycle Environmental Strategies and
Considerations for Product Design 217
9.1 Strategies for Improving Resources Exploitation and
Determinant Factors 217
9.1.1 Influence of External Factors and Product
Durability 219
9.1.2 Identification of Optimal Strategies 220
9.1.3 Use Process Modeling 223
9.2 Strategies for Extension of Useful Life and Design
Considerations 224
9.2.1 Design for Serviceability 226
9.2.1.1 Main Aspects of Serviceability 226
9.2.1.2 Parameters of Constructional
System Reliability 227
9.2.2 Quantitative Evaluation of Serviceability
Properties 227
9.2.3 Specific Determinant Factors for Useful Life
Extension Strategies 228
9.2.4 Design Expedients 230
9.2.5 Design Variables 230
9.3 Strategies for Recovery at End-of-Life and Design
Considerations 231
9.3.1 Definition of Recovery Strategies
at End-of-Life 232
9.3.2 Management and Optimization of Recovery
Strategies 234
9.3.3 Approaches and Tools for Design 236
9.3.3.1 Design for Disassembly 236
9.3.3.2 Design for Recycling 237
9.3.4 Quantitative Evaluation of the Potential
for Recovery 240
9.3.5 Specific Determinant Factors for End-
of-Life Strategies 242
9.3.6 Design Expedients 243
9.3.7 Design Variables 244
9.4 Product Modularity as a Key Concept
for the Application of Environmental Strategies 244
9.5 Summary 246
9.6 References 246
10. Engineering Methods for
Product Duration Design and Evaluation 251
10.1 Durability of Products and Components 251
10.2 Fatigue of Materials 253
10.2.1 Loading History 254
10.2.2 Design for Fatigue 255
10.2.3 Infinite Life Approach 256
10.2.4 Design for Finite Life 261
10.3 Damage 264
10.3.1 Mechanical Representation of Damage 264
10.3.1.1 The Concept of Effective Stress 265
10.3.1.2 Connection between Strain
and Damage 265
10.3.2 Cumulative Damage Fatigue and Theories
of Lifespan Prediction 270
10.3.2.1 Phenomenological Approach 270
10.3.2.2 Theories Based on Fracture Growth 274
10.3.2.3 Energy Theories of Damage 276
10.4 Thermography and the Risitano Method 277
10.4.1 Thermography 280
10.4.2 The Risitano Method 283
10.4.2.1 Fatigue Limit Determination 283
10.4.2.2 Construction of the Wohler Curve 286
10.5 Summary 291
10.6 References 291
Part III—Methods, Tools, and Case Studies
11. Product Constructional System Definition Based
on Optimal Life Cycle Strategies 297
11.1 Aims and Approach 297
11.2 Method and Tools for Analysis and Design 298
11.2.1 Product Constructional System
and Design Choices 299
11.2.2 Analysis and Decomposition
of Product Architecture 300
11.2.3 Investigation Typologies 301
11.2.3.1 Analysis of Criticality and
Potentiality of the Conventional
System 301
11.2.3.2 Redesign of Product 302
11.2.4 Verification Tools 304
11.3 Optimal Life Cycle Strategy Evaluation Tool 304
11.3.1 Determinant Factors for Strategies 304
11.3.2 Implementation of Matrices for Analysis
of Strategies 305
11.4 Case Study: System Analysis and Redesign
of a Household Refrigerator 307
11.4.1 Preliminary Analysis of System 308
11.4.2 Analysis of Criticality and Potentiality
of the Conventional Architecture 308
11.4.3 Redesign of the Constructional System 312
11.4.4 Focus on the Results of the Modularity
Concept and Ease of Disassembly Approach 317
11.4.5 Product-Service Integration 321
11.5 Final Remarks 322
11.6 Summary 323
11.7 References 323
12. Environmental Characterization of
Materials and Optimal Choice 325
12.1 Materials Selection and Environmental Properties 325
12.2 Environmental Characterization of Materials
and Processes 326
12.2.1 Data on Materials and Processes 327
12.3 Summary of Selection Method 328
12.4 Analysis of Production Feasibility 330
12.5 Analysis of Performance 332
12.6 Life Cycle Indicators 333
12.6.1 Environmental Impact Functions 333
12.6.2 Cost Functions 334
12.7 Analysis of Results and Optimal Choice 335
12.7.1 Graphic Tools 335
12.7.2 Multiobjective Analysis 335
12.8 Case Study: Selection of Material
for an Automobile Brake Disk 336
12.8.1 Definition of Design Requirements 337
12.8.2 Analysis of Production Feasibility 338
12.8.3 Analysis of Performance 338
12.8.4 Evaluation of Life Cycle Indicators
and Analysis of Results 339
12.8.5 Introduction of Environmental
Impact of Use: Evaluation of Life Cycle
Indicators and Analysis of Results 341
12.9 Acknowledgments 344
12.10 Summary 344
12.11 References 345
13. Design for Disassembly and Distribution of
Disassembly Depth 347
13.1 Design for Disassembly and
Disassembly Level 347
13.1.1 Design Approaches to Ease of Disassembly 348
13.1.1.1 Metrics for Design 349
13.1.1.2 Orientations of the Design Intervention 350
13.1.2 Optimal Disassembly Level 351
13.2 Distribution of Disassembly Depth 352
13.3 Objectives and Approach to the Problem 353
13.4 Method Statement 353
13.5 Evaluation of Disassembly Depth 355
13.5.1 Preliminary Modeling of the Constructional
System 355
13.5.2 Characterization of Components on the Basis
of Disassembly Difficulty 357
13.5.2.1 Procedure and Rules
of Characterization 358
13.5.2.2 Improving the Characterization 361
13.5.3 Index of Disassembly Depth 362
13.5.3.1 Disassembly Difficulty
of Junction Systems 363
13.6 Efficiency of Ease of Disassembly Distribution 363
13.6.1 Evaluation of the Objective Properties
of Components 364
13.6.2 Evaluation of the Efficiency
of Disassembly Depth 366
13.7 Case Study: Electromechanical System 366
13.7.1 Evaluation of Disassembly Depth 367
13.7.2 Analysis of the Design Solution 368
13.7.3 Redesign and Optimization 369
13.8 Summary 370
13.9 References 372
14. Optimal Disassembly Planning 375
14.1 Disassembly Planning 375
14.1.1 General View of the State of the Art 377
14.1.2 Extension to Design of the Life Cycle 378
14.1.3 Application of Artificial Intelligence 379
14.1.4 Concluding Considerations 379
14.2 Objectives and Approach to the Problem 380
14.3 Common Structure of the Proposed Tools 381
14.3.1 Common Preliminary Modeling 382
14.3.2 Disassembly Sequence and Operation Time 384
14.3.3 Structure and General Characteristics
of the Resolving Algorithm 385
14.4 Development of the First Tool: Goals of Servicing 388
14.4.1 Preliminary Modeling 388
14.4.2 Identification of the System 388
14.4.3 Generation of Disassembly Sequences and
Identification of Optimal Solution 389
14.5 Development of the Second Tool:
Goals of Recovery 389
14.5.1 Preliminary Modeling 390
14.5.2 Advanced Modeling 392
14.5.2.1 Functions of the Environmental
Impact of the Life Cycle 393
14.5.2.2 Recovery Planning 395
14.5.2.3 Functions of the Costs
of the Life Cycle 395
14.5.3 Identification of the System 396
14.5.4 Generation of Disassembly Sequences and
Identification of the Optimal Solution 397
14.6 Simulations and Analysis of Results 398
14.6.1 Prototype 1: Selective Disassembly 399
14.6.2 Prototype 2: Partial or Complete
Disassembly 400
14.7 Summary 403
14.8 References 404
15. Product Recovery Cycles Planning and
Cost-Benefit Analysis of Recovery 407
15.1 Approach to the Recovery Problem 408
15.2 Method for Recovery Cycles Planning 409
15.3 Calculation Models for Recovery Cycles Planning 411
15.3.1 Basic Procedure for Implementing
the Calculation Models 411
15.3.2 Determinant Factors for Recovery 411
15.3.3 Determinant Factor Matrices
and Recovery Vectors 413
15.3.4 Effective Component Reusability 413
15.3.5 Recovery Fractions 414
15.3.6 Extension of Useful Life 415
15.4 Case Study: Analysis and Optimization
of Heat Exchanger Constructional Systems 417
15.4.1 Construction Standards of Heat Exchangers 417
15.4.2 Operations for Recovery at the End
of Working Life 417
15.4.3 Application of the Calculation Models 418
15.4.4 Analysis and Evaluation of Results 419
15.4.4.1 Comparison CFU- and AES-Type
Architectures 422
15.4.4.2 Optimization of CFU-Type Architecture 423
15.4.4.3 Final Overview of Results 426
15.5 Cost-Benefit Analysis of Recovery Cycles 427
15.5.1 Calculation Models for Cost-Benefit
Analysis of Recovery 428
15.5.2 Case Study: Implementation
of Cost-Benefit Analysis Models 431
15.6 Acknowledgments 432
15.7 Summary 432
15.8 References 432
16. Methodological Framework and Analysis Models
for Simulation of the Product Life Cycle 435
16.1 Simulation and the Life Cycle Approach 435
16.2 Approach to the Problem and Methodological
Framework 436
16.3 Product Model and Analysis Tools 438
16.3.1 Model of System Behavior 439
16.3.2 Evaluation of Performance Decay 440
16.3.2.1 Duration Index 440
16.3.2.2 Dynamic Criticality Factor 441
16.3.2.3 Behavior Criticality Index 442
16.3.3 Analysis of Life Cycle Strategies 442
16.3.3.1 Life Cycle Service Cost 442
16.3.3.2 Recovery Cycles and Extension
of Useful Life 443
16.4 Definition of Objective Functions 444
16.4.1 Environmental Impact of the Life Cycle 445
16.5 Simulation and Analysis of Results 446
16.5.1 Behavior Model of the System 446
16.5.2 Performance Evaluations and Analysis
of Criticality 447
16.5.3 First Analysis of the Performance
in the Life Cycle 448
16.5.4 Analysis of the Environmental Impact
of the Life Cycle 450
16.6 Summary 451
16.7 References 453
Index 455 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Giudice, Fabio La Rosa, Guido Risitano, Antonino |
author_facet | Giudice, Fabio La Rosa, Guido Risitano, Antonino |
author_role | aut aut aut |
author_sort | Giudice, Fabio |
author_variant | f g fg r g l rg rgl a r ar |
building | Verbundindex |
bvnumber | BV021626472 |
callnumber-first | T - Technology |
callnumber-label | TS171 |
callnumber-raw | TS171.4 |
callnumber-search | TS171.4 |
callnumber-sort | TS 3171.4 |
callnumber-subject | TS - Manufactures |
classification_tum | UMW 035f TEC 623f |
ctrlnum | (OCoLC)636385329 (DE-599)BVBBV021626472 |
dewey-full | 745.2 |
dewey-hundreds | 700 - The arts |
dewey-ones | 745 - Decorative arts |
dewey-raw | 745.2 |
dewey-search | 745.2 |
dewey-sort | 3745.2 |
dewey-tens | 740 - Graphic arts and decorative arts |
discipline | Kunstgeschichte Technik Umwelt |
discipline_str_mv | Kunstgeschichte Technik Umwelt |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01769nam a2200469zc 4500</leader><controlfield tag="001">BV021626472</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151019 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060622s2006 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005045695</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780849327223</subfield><subfield code="9">978-0-8493-2722-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0849327229</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-8493-2722-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)636385329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021626472</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TS171.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">745.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 035f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 623f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giudice, Fabio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Product design for the environment</subfield><subfield code="b">a life cycle approach</subfield><subfield code="c">Fabio Giudice ; Guido La Rosa ; Antonino Risitano</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL [u.a.]</subfield><subfield code="b">CRC, Taylor & Francis</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXII, 481 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Umwelt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design, Industrial</subfield><subfield code="x">Environmental aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Produktentwicklung</subfield><subfield code="0">(DE-588)4139402-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umweltverträgliches Produkt</subfield><subfield code="0">(DE-588)4061629-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Umweltverträgliches Produkt</subfield><subfield code="0">(DE-588)4061629-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Produktentwicklung</subfield><subfield code="0">(DE-588)4139402-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">La Rosa, Guido</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Risitano, Antonino</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014841440&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014841440</subfield></datafield></record></collection> |
id | DE-604.BV021626472 |
illustrated | Illustrated |
index_date | 2024-07-02T14:55:26Z |
indexdate | 2024-07-09T20:40:14Z |
institution | BVB |
isbn | 9780849327223 0849327229 |
language | English |
lccn | 2005045695 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014841440 |
oclc_num | 636385329 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | XXXII, 481 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | CRC, Taylor & Francis |
record_format | marc |
spelling | Giudice, Fabio Verfasser aut Product design for the environment a life cycle approach Fabio Giudice ; Guido La Rosa ; Antonino Risitano Boca Raton, FL [u.a.] CRC, Taylor & Francis 2006 XXXII, 481 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Umwelt Design, Industrial Environmental aspects Environmental engineering Produktentwicklung (DE-588)4139402-1 gnd rswk-swf Umweltverträgliches Produkt (DE-588)4061629-0 gnd rswk-swf Umweltverträgliches Produkt (DE-588)4061629-0 s Produktentwicklung (DE-588)4139402-1 s DE-604 La Rosa, Guido Verfasser aut Risitano, Antonino Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014841440&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Giudice, Fabio La Rosa, Guido Risitano, Antonino Product design for the environment a life cycle approach Umwelt Design, Industrial Environmental aspects Environmental engineering Produktentwicklung (DE-588)4139402-1 gnd Umweltverträgliches Produkt (DE-588)4061629-0 gnd |
subject_GND | (DE-588)4139402-1 (DE-588)4061629-0 |
title | Product design for the environment a life cycle approach |
title_auth | Product design for the environment a life cycle approach |
title_exact_search | Product design for the environment a life cycle approach |
title_exact_search_txtP | Product design for the environment a life cycle approach |
title_full | Product design for the environment a life cycle approach Fabio Giudice ; Guido La Rosa ; Antonino Risitano |
title_fullStr | Product design for the environment a life cycle approach Fabio Giudice ; Guido La Rosa ; Antonino Risitano |
title_full_unstemmed | Product design for the environment a life cycle approach Fabio Giudice ; Guido La Rosa ; Antonino Risitano |
title_short | Product design for the environment |
title_sort | product design for the environment a life cycle approach |
title_sub | a life cycle approach |
topic | Umwelt Design, Industrial Environmental aspects Environmental engineering Produktentwicklung (DE-588)4139402-1 gnd Umweltverträgliches Produkt (DE-588)4061629-0 gnd |
topic_facet | Umwelt Design, Industrial Environmental aspects Environmental engineering Produktentwicklung Umweltverträgliches Produkt |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014841440&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT giudicefabio productdesignfortheenvironmentalifecycleapproach AT larosaguido productdesignfortheenvironmentalifecycleapproach AT risitanoantonino productdesignfortheenvironmentalifecycleapproach |