Graduate mathematical physics: with MATHEMATICA supplements
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2006
|
Schriftenreihe: | Physics textbook
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVI, 466 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 3527406379 9783527406371 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021623628 | ||
003 | DE-604 | ||
005 | 20090310 | ||
007 | t | ||
008 | 060621s2006 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N10,1128 |2 dnb | ||
016 | 7 | |a 978516168 |2 DE-101 | |
020 | |a 3527406379 |c Pb. : ca. EUR 49.00 (freier Pr.), ca. sfr 78.00 (freier Pr.) |9 3-527-40637-9 | ||
020 | |a 9783527406371 |9 978-3-527-40637-1 | ||
024 | 3 | |a 9783527406371 | |
028 | 5 | 2 | |a 1140637 000 |
035 | |a (OCoLC)74519665 | ||
035 | |a (DE-599)BVBBV021623628 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-20 |a DE-92 |a DE-703 |a DE-91G |a DE-83 |a DE-11 | ||
050 | 0 | |a QC20 | |
082 | 0 | |a 530.15 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a PHY 011f |2 stub | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Kelly, James J. |e Verfasser |0 (DE-588)132188805 |4 aut | |
245 | 1 | 0 | |a Graduate mathematical physics |b with MATHEMATICA supplements |c James J. Kelly |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2006 | |
300 | |a XVI, 466 S. |b Ill., graph. Darst. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Physics textbook | |
630 | 0 | 4 | |a Mathematica (Computer file) |
650 | 4 | |a Physique mathématique | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 1 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2774878&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014838655&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014838655 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135417200508928 |
---|---|
adam_text | Contents
Preface V
Note to the Reader XV
1 Analytic Functions 1
1.1 Complex Numbers 1
1.1.1 Motivation and Definitions 1
1.1.2 Triangle Inequalities 4
1.1.3 Polar Representation 4
1.1.4 Argument Function 5
1.2 Take Care with Multivalued Functions 8
1.3 Functions as Mappings 13
1.3.1 Mapping: w = ez 14
1.3.2 Mapping: w = Sin[z] 16
1.4 Elementary Functions and Their Inverses 17
1.4.1 Exponential and Logarithm 17
1.4.2 Powers 18
1.4.3 Trigonometrie and Hyperbolic Functions 19
1.4.4 Standard Branch Cuts 20
1.5 Sets, Curves, Regions and Domains 21
1.6 Limits and Continuity 22
1.7 Differentiability 23
1.7.1 Cauchy Riemann Equations 23
1.7.2 Differentiation Rules 25
1.8 Properties of Analytic Functions 26
1.9 Cauchy Goursat Theorem 28
1.9.1 Simply Connected Regions 28
1.9.2 Proof 29
1.9.3 Example 31
1.10 Cauchy Integral Formula 32
1.10.1 Integration Around Nonanalytic Regions 32
1.10.2 Cauchy Integral Formula 33
1.10.3 Example: Yukawa Field 34
1.10.4 Derivatives of Analytic Functions 36
1.10.5 Morera s Theorem 37
1.11 Complex Sequences and Series 37
1.11.1 Convergence Tests 37
1.11.2 Uniform Convergence 40
Graduate Mathematical Physics. James J. Kelly
Copyright © 2006 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 3 527 40637 9
VIII Contents
1.12 Derivatives and Taylor Series for Analytic Functions 41
1.12.1 Taylor Series 41
1.12.2 Cauchy Inequality 44
1.12.3 Liouville s Theorem 44
1.12.4 Fundamental Theorem of Algebra 44
1.12.5 Zeros of Analytic Functions 45
1.13 Laurent Series 45
1.13.1 Derivation 45
1.13.2 Example 47
1.13.3 Classification of Singularities 48
1.13.4 Poles and Residues 49
1.14 Meromorphic Functions 51
1.14.1 Pole Expansion 51
1.14.2 Example: Tan[z] 53
1.14.3 Product Expansion 54
1.14.4 Example: Sin[z] 54
Problems for Chapter 1 55
2 Integration 65
2.1 Introduction 65
2.2 Good Tricks 65
2.2.1 Parametric Differentiation 65
2.2.2 Convergence Factors 66
2.3 Contour Integration 66
2.3.1 Residue Theorem 66
2.3.2 Definite Integrals ofthe Form £* /[sin 0, cos 6}d6 67
2.3.3 Definite Integrals ofthe Form ^f[x dx 69
2.3.4 Fourier Integrals 70
2.3.5 Custom Contours 72
2.4 Isolated Singularities on the Contour 73
2.4.1 Removable Singularity 73
2.4.2 Cauchy Principal Value 75
2.5 Integration Around a Branch Point 77
2.6 Reduction to Tabulated Integrals 79
2.6.1 Example: / e~* dx 80
2.6.2 Example: The Beta Function 81
2.6.3 Example: £° J^ du 81
2.7 Integral Representations for Analytic Functions 82
2.8 Using MATHKMAT1CA to Evaluate Integrals 86
2.8.1 Symbolic Integration 86
2.8.2 Numerical Integration 88
2.8.3 Further Information 89
Problems for Chapter 2 89
Contents IX
3 Asymptotic Series 95
3.1 Introduction 95
3.2 Method of Steepest Descent 96
3.2.1 Example: Gamma Function 99
3.3 Partial Integration 101
3.3.1 Example: Complementary Error Function 102
3.4 Expansion of an Integrand 104
3.4.1 Example: Modified Bessel Function 105
Problems for Chapter 3 108
4 Generalized Functions 111
4.1 Motivation 111
4.2 Properties of the Dirac Delta Function 113
4.3 Other Useful Generalized Functions 115
4.3.1 Heaviside Step Function 115
4.3.2 Derivatives of the Dirac Delta Function 116
4.4 Green Functions 118
4.5 Multidimensional Delta Functions 120
Problems for Chapter 4 122
5 Integral Transforms 125
5.1 Introduction 125
5.2 Fourier Transform 126
5.2.1 Motivation 126
5.2.2 Definition and Inversion 128
5.2.3 Basic Properties 130
5.2.4 Parseval s Theorem 131
5.2.5 Convolution Theorem 132
5.2.6 Correlation Theorem 133
5.2.7 Useful Fourier Transforms 134
5.2.8 Fourier Transform of Derivatives 138
5.2.9 Summary 139
5.3 Green Functions via Fourier Transform 139
5.3.1 Example: Green Function for One Dimensional Diffusion .... 139
5.3.2 Example: Three Dimensional Green Function for Diffusion
Equations 141
5.3.3 Example: Green Function for Damped Oscillator 143
5.3.4 Operator Method 147
5.4 Cosine or Sine Transforms for Even or Odd Functions 147
5.5 Discrete Fourier Transform 148
5.5.1 Sampling 149
5.5.2 Convolution 153
5.5.3 Temporal Correlation 156
5.5.4 Power Spectrum Estimation 160
X Contents
5.6 Laplace Transform 165
5.6.1 Definition and Inversion 165
5.6.2 Laplace Transforms for Elementary Functions 167
5.6.3 Laplace Transform of Derivatives 170
5.6.4 Convolution Theorem 171
5.6.5 Summary 173
5.7 Green Functions via Laplace Transform 173
5.7.1 Example: Series RC Circuit 174
5.7.2 Example: Damped Oscillator 175
5.7.3 Example: Diffusion with Constant Boundary Value 176
Problems for Chapter 5 181
6 Analytic Continuation and Dispersion Relations 191
6.1 Analytic Continuation 191
6.1.1 Motivation 191
6.1.2 Uniqueness 192
6.1.3 Reflection Principle 194
6.1.4 Permanence of Algebraic Form 195
6.1.5 Example: Gamma Function 195
6.2 Dispersion Relations 196
6.2.1 Causality 196
6.2.2 Oscillator Model 200
6.2.3 Kramers Kronig Relations 203
6.2.4 SumRules 205
6.3 Hubert Transform 207
6.4 Spreading of a Wave Packet 208
6.5 Solitons 212
Problems for Chapter 6 216
7 Sturm Liouville Theory 223
7.1 Introduction: The General String Equation 223
7.2 Hubert Spaces 226
7.2.1 Schwartz Inequality 229
7.2.2 Gram Schmidt Orthogonalization 230
7.3 Properties of Sturm Liouville Systems 232
7.3.1 Self Adjointness 232
7.3.2 Reality of Eigenvalues and Orthogonality of Eigenfunctions . . . 233
7.3.3 Discreteness of Eigenvalues 235
7.3.4 Completeness of Eigenfunctions 235
7.3.5 Parseval s Theorem 237
7.3.6 Reality of Eigenfunctions ^38
7.3.7 Interleaving of Zeros 23
7.3.8 Comparison Theorems 240
7.4 Green Functions 242
Contents XI
7.4.1 Interface Matching 242
7.4.2 Eigenfunction Expansion of Green Function 246
7.4.3 Example: Vibrating String 252
7.5 Perturbation Theory 253
7.5.1 Example: Bead at Center of a String 255
7.6 Variational Methods 256
7.6.1 Example: Vibrating String 259
Problems for Chapter 7 260
8 Legendre and Bessel Functions 269
8.1 Introduction 269
8.2 Legendre Functions 270
8.2.1 Generating Function for Legendre Polynomials 270
8.2.2 Series Representation and Rodrigues Formula 274
8.2.3 Schläfli s Integral Representation 275
8.2.4 Legendre Expansion 275
8.2.5 Associated Legendre Functions 277
8.2.6 Spherical Harmonics 281
8.2.7 Multipole Expansion 282
8.2.8 Addition Theorem 283
8.2.9 Legendre Functions of the Second Kind 286
8.2.10 Relationship to Hypergeometric Functions 287
8.2.11 Analytic Structure of Legendre Functions 289
8.3 Bessel Functions 291
8.3.1 Cylindrical 291
8.3.2 Hankel Functions 297
8.3.3 Neumann Functions 299
8.3.4 Modified Bessel Functions 303
8.3.5 Spherical Bessel Functions 305
8.4 Fourier Bessel Transform 308
8.4.1 Example: Fourier Bessel Expansion of Nuclear Charge Density . 311
8.5 Summary 312
8.5.1 Legendre Functions 313
8.5.2 Associated Legendre Functions 314
8.5.3 Spherical Harmonics 315
8.5.4 Cylindrical Bessel Functions 315
8.5.5 Spherical Bessel Functions 316
8.5.6 Fourier Bessel Expansions 318
Problems for Chapter 8 318
9 Boundary Value Problems 327
9.1 Introduction 327
9.1.1 Laplace s Equation in Box with Specified Potential on one Side . 328
9.1.2 Green Function for Grounded Box 329
XII Contents
9.2 Green s Theorem for Electrostatics 332
9.3 Separable Coordinate Systems 335
9.3.1 Spherical Polar Coordinates 336
9.3.2 Cylindrical Coordinates 338
9.4 Spherical Expansion of Dirichlet Green Function for Poisson s Equation . 339
9.4.1 Example: Multipole Expansion for Localized Charge Distribution 342
9.4.2 Example: Point Charge Near Grounded Conducting Sphere .... 342
9.4.3 Example: Specified Potential on Surface ofEmpty Sphere .... 344
9.4.4 Example: Charged Ring at Center of Grounded Conducting Sphere 346
9.5 Magnetic Field of Current Loop 346
9.6 Inhomogeneous Wave Equation 349
9.6.1 Spatial Representation of Time Independent Green Function . . . 349
9.6.2 Partial Wave Expansion 352
9.6.3 Momentum Representation of Time Independent Green Function 354
9.6.4 Retarded Green Function 356
9.6.5 Lippmann Schwinger Equation 358
Problems for Chapter 9 360
10 Group Theory 369
10.1 Introduction 369
10.2 FiniteGroups 370
10.2.1 Definitions 370
10.2.2 Equivalence Classes 373
10.2.3 Subgroups 374
10.2.4 Homomorphism 375
10.2.5 Direct Products 376
10.3 Representations 376
10.3.1 Definitions 376
10.3.2 Example: Vibrating triangle 380
10.3.3 Orthogonality Theorem 383
10.3.4 Character 388
10.3.5 Example: Character table for symmetries of a Square 393
10.3.6 Example: Vibrational eigenvalues of square 397
10.3.7 Direct Product Representations 400
10.3.8 Eigenfunctions 403
10.3.9 Wigner Eckart Theorem 404
10.4 Continuous Groups 405
10.4.1 Definitions 405
10.4.2 Transformation of Functions 408
10.4.3 Generators 409
10.4.4 Example: Linear coordinate transformations in one dimension . . 413
10.4.5 Example: SO(2) 414
10.4.6 Example: SU(2) 416
10.4.7 Example: SO(3) 417
Contents XIII
10.4.8 Total angular momentum 418
10.4.9 Transformation of Operators 419
10.4.10 Invariant Functions 420
10.5 Lie Algebra 422
10.5.1 Definitions 422
10.5.2 Example: SU(2) 423
10.6 Orthogonality Relations for Lie Groups 425
10.7 Quantum Mechanical Representations of the Rotation Group 428
10.7.1 Generators and Commutation Relations 428
10.7.2 Euler Parametrization 430
10.7.3 Homomorphism Between SU(2) and SO(3) 431
10.7.4 Irreducible Representations of SU(2) 433
10.7.5 Orthogonality Relations for Rotation Matrices 437
10.7.6 Coupling of Angular Momenta 438
10.7.7 Spherical Tensors 442
10.8 Unitary Symmetries in Nuclear and Particle Physics 445
Problems forChapter 10 447
Bibliography 459
Index 461
|
adam_txt |
Contents
Preface V
Note to the Reader XV
1 Analytic Functions 1
1.1 Complex Numbers 1
1.1.1 Motivation and Definitions 1
1.1.2 Triangle Inequalities 4
1.1.3 Polar Representation 4
1.1.4 Argument Function 5
1.2 Take Care with Multivalued Functions 8
1.3 Functions as Mappings 13
1.3.1 Mapping: w = ez 14
1.3.2 Mapping: w = Sin[z] 16
1.4 Elementary Functions and Their Inverses 17
1.4.1 Exponential and Logarithm 17
1.4.2 Powers 18
1.4.3 Trigonometrie and Hyperbolic Functions 19
1.4.4 Standard Branch Cuts 20
1.5 Sets, Curves, Regions and Domains 21
1.6 Limits and Continuity 22
1.7 Differentiability 23
1.7.1 Cauchy Riemann Equations 23
1.7.2 Differentiation Rules 25
1.8 Properties of Analytic Functions 26
1.9 Cauchy Goursat Theorem 28
1.9.1 Simply Connected Regions 28
1.9.2 Proof 29
1.9.3 Example 31
1.10 Cauchy Integral Formula 32
1.10.1 Integration Around Nonanalytic Regions 32
1.10.2 Cauchy Integral Formula 33
1.10.3 Example: Yukawa Field 34
1.10.4 Derivatives of Analytic Functions 36
1.10.5 Morera's Theorem 37
1.11 Complex Sequences and Series 37
1.11.1 Convergence Tests 37
1.11.2 Uniform Convergence 40
Graduate Mathematical Physics. James J. Kelly
Copyright © 2006 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 3 527 40637 9
VIII Contents
1.12 Derivatives and Taylor Series for Analytic Functions 41
1.12.1 Taylor Series 41
1.12.2 Cauchy Inequality 44
1.12.3 Liouville's Theorem 44
1.12.4 Fundamental Theorem of Algebra 44
1.12.5 Zeros of Analytic Functions 45
1.13 Laurent Series 45
1.13.1 Derivation 45
1.13.2 Example 47
1.13.3 Classification of Singularities 48
1.13.4 Poles and Residues 49
1.14 Meromorphic Functions 51
1.14.1 Pole Expansion 51
1.14.2 Example: Tan[z] 53
1.14.3 Product Expansion 54
1.14.4 Example: Sin[z] 54
Problems for Chapter 1 55
2 Integration 65
2.1 Introduction 65
2.2 Good Tricks 65
2.2.1 Parametric Differentiation 65
2.2.2 Convergence Factors 66
2.3 Contour Integration 66
2.3.1 Residue Theorem 66
2.3.2 Definite Integrals ofthe Form £* /[sin 0, cos 6}d6 67
2.3.3 Definite Integrals ofthe Form ^f[x\dx 69
2.3.4 Fourier Integrals 70
2.3.5 Custom Contours 72
2.4 Isolated Singularities on the Contour 73
2.4.1 Removable Singularity 73
2.4.2 Cauchy Principal Value 75
2.5 Integration Around a Branch Point 77
2.6 Reduction to Tabulated Integrals 79
2.6.1 Example: /" e~* dx 80
2.6.2 Example: The Beta Function 81
2.6.3 Example: £° J^ du 81
2.7 Integral Representations for Analytic Functions 82
2.8 Using MATHKMAT1CA' to Evaluate Integrals 86
2.8.1 Symbolic Integration 86
2.8.2 Numerical Integration 88
2.8.3 Further Information 89
Problems for Chapter 2 89
Contents IX
3 Asymptotic Series 95
3.1 Introduction 95
3.2 Method of Steepest Descent 96
3.2.1 Example: Gamma Function 99
3.3 Partial Integration 101
3.3.1 Example: Complementary Error Function 102
3.4 Expansion of an Integrand 104
3.4.1 Example: Modified Bessel Function 105
Problems for Chapter 3 108
4 Generalized Functions 111
4.1 Motivation 111
4.2 Properties of the Dirac Delta Function 113
4.3 Other Useful Generalized Functions 115
4.3.1 Heaviside Step Function 115
4.3.2 Derivatives of the Dirac Delta Function 116
4.4 Green Functions 118
4.5 Multidimensional Delta Functions 120
Problems for Chapter 4 122
5 Integral Transforms 125
5.1 Introduction 125
5.2 Fourier Transform 126
5.2.1 Motivation 126
5.2.2 Definition and Inversion 128
5.2.3 Basic Properties 130
5.2.4 Parseval's Theorem 131
5.2.5 Convolution Theorem 132
5.2.6 Correlation Theorem 133
5.2.7 Useful Fourier Transforms 134
5.2.8 Fourier Transform of Derivatives 138
5.2.9 Summary 139
5.3 Green Functions via Fourier Transform 139
5.3.1 Example: Green Function for One Dimensional Diffusion . 139
5.3.2 Example: Three Dimensional Green Function for Diffusion
Equations 141
5.3.3 Example: Green Function for Damped Oscillator 143
5.3.4 Operator Method 147
5.4 Cosine or Sine Transforms for Even or Odd Functions 147
5.5 Discrete Fourier Transform 148
5.5.1 Sampling 149
5.5.2 Convolution 153
5.5.3 Temporal Correlation 156
5.5.4 Power Spectrum Estimation 160
X Contents
5.6 Laplace Transform 165
5.6.1 Definition and Inversion 165
5.6.2 Laplace Transforms for Elementary Functions 167
5.6.3 Laplace Transform of Derivatives 170
5.6.4 Convolution Theorem 171
5.6.5 Summary 173
5.7 Green Functions via Laplace Transform 173
5.7.1 Example: Series RC Circuit 174
5.7.2 Example: Damped Oscillator 175
5.7.3 Example: Diffusion with Constant Boundary Value 176
Problems for Chapter 5 181
6 Analytic Continuation and Dispersion Relations 191
6.1 Analytic Continuation 191
6.1.1 Motivation 191
6.1.2 Uniqueness 192
6.1.3 Reflection Principle 194
6.1.4 Permanence of Algebraic Form 195
6.1.5 Example: Gamma Function 195
6.2 Dispersion Relations 196
6.2.1 Causality 196
6.2.2 Oscillator Model 200
6.2.3 Kramers Kronig Relations 203
6.2.4 SumRules 205
6.3 Hubert Transform 207
6.4 Spreading of a Wave Packet 208
6.5 Solitons 212
Problems for Chapter 6 216
7 Sturm Liouville Theory 223
7.1 Introduction: The General String Equation 223
7.2 Hubert Spaces 226
7.2.1 Schwartz Inequality 229
7.2.2 Gram Schmidt Orthogonalization 230
7.3 Properties of Sturm Liouville Systems 232
7.3.1 Self Adjointness 232
7.3.2 Reality of Eigenvalues and Orthogonality of Eigenfunctions . . . 233
7.3.3 Discreteness of Eigenvalues 235
7.3.4 Completeness of Eigenfunctions 235
7.3.5 Parseval's Theorem 237
7.3.6 Reality of Eigenfunctions ^38
7.3.7 Interleaving of Zeros 23
7.3.8 Comparison Theorems 240
7.4 Green Functions 242
Contents XI
7.4.1 Interface Matching 242
7.4.2 Eigenfunction Expansion of Green Function 246
7.4.3 Example: Vibrating String 252
7.5 Perturbation Theory 253
7.5.1 Example: Bead at Center of a String 255
7.6 Variational Methods 256
7.6.1 Example: Vibrating String 259
Problems for Chapter 7 260
8 Legendre and Bessel Functions 269
8.1 Introduction 269
8.2 Legendre Functions 270
8.2.1 Generating Function for Legendre Polynomials 270
8.2.2 Series Representation and Rodrigues' Formula 274
8.2.3 Schläfli's Integral Representation 275
8.2.4 Legendre Expansion 275
8.2.5 Associated Legendre Functions 277
8.2.6 Spherical Harmonics 281
8.2.7 Multipole Expansion 282
8.2.8 Addition Theorem 283
8.2.9 Legendre Functions of the Second Kind 286
8.2.10 Relationship to Hypergeometric Functions 287
8.2.11 Analytic Structure of Legendre Functions 289
8.3 Bessel Functions 291
8.3.1 Cylindrical 291
8.3.2 Hankel Functions 297
8.3.3 Neumann Functions 299
8.3.4 Modified Bessel Functions 303
8.3.5 Spherical Bessel Functions 305
8.4 Fourier Bessel Transform 308
8.4.1 Example: Fourier Bessel Expansion of Nuclear Charge Density . 311
8.5 Summary 312
8.5.1 Legendre Functions 313
8.5.2 Associated Legendre Functions 314
8.5.3 Spherical Harmonics 315
8.5.4 Cylindrical Bessel Functions 315
8.5.5 Spherical Bessel Functions 316
8.5.6 Fourier Bessel Expansions 318
Problems for Chapter 8 318
9 Boundary Value Problems 327
9.1 Introduction 327
9.1.1 Laplace's Equation in Box with Specified Potential on one Side . 328
9.1.2 Green Function for Grounded Box 329
XII Contents
9.2 Green's Theorem for Electrostatics 332
9.3 Separable Coordinate Systems 335
9.3.1 Spherical Polar Coordinates 336
9.3.2 Cylindrical Coordinates 338
9.4 Spherical Expansion of Dirichlet Green Function for Poisson's Equation . 339
9.4.1 Example: Multipole Expansion for Localized Charge Distribution 342
9.4.2 Example: Point Charge Near Grounded Conducting Sphere . 342
9.4.3 Example: Specified Potential on Surface ofEmpty Sphere . 344
9.4.4 Example: Charged Ring at Center of Grounded Conducting Sphere 346
9.5 Magnetic Field of Current Loop 346
9.6 Inhomogeneous Wave Equation 349
9.6.1 Spatial Representation of Time Independent Green Function . . . 349
9.6.2 Partial Wave Expansion 352
9.6.3 Momentum Representation of Time Independent Green Function 354
9.6.4 Retarded Green Function 356
9.6.5 Lippmann Schwinger Equation 358
Problems for Chapter 9 360
10 Group Theory 369
10.1 Introduction 369
10.2 FiniteGroups 370
10.2.1 Definitions 370
10.2.2 Equivalence Classes 373
10.2.3 Subgroups 374
10.2.4 Homomorphism 375
10.2.5 Direct Products 376
10.3 Representations 376
10.3.1 Definitions 376
10.3.2 Example: Vibrating triangle 380
10.3.3 Orthogonality Theorem 383
10.3.4 Character 388
10.3.5 Example: Character table for symmetries of a Square 393
10.3.6 Example: Vibrational eigenvalues of square 397
10.3.7 Direct Product Representations 400
10.3.8 Eigenfunctions 403
10.3.9 Wigner Eckart Theorem 404
10.4 Continuous Groups 405
10.4.1 Definitions 405
10.4.2 Transformation of Functions 408
10.4.3 Generators 409
10.4.4 Example: Linear coordinate transformations in one dimension . . 413
10.4.5 Example: SO(2) 414
10.4.6 Example: SU(2) 416
10.4.7 Example: SO(3) 417
Contents XIII
10.4.8 Total angular momentum 418
10.4.9 Transformation of Operators 419
10.4.10 Invariant Functions 420
10.5 Lie Algebra 422
10.5.1 Definitions 422
10.5.2 Example: SU(2) 423
10.6 Orthogonality Relations for Lie Groups 425
10.7 Quantum Mechanical Representations of the Rotation Group 428
10.7.1 Generators and Commutation Relations 428
10.7.2 Euler Parametrization 430
10.7.3 Homomorphism Between SU(2) and SO(3) 431
10.7.4 Irreducible Representations of SU(2) 433
10.7.5 Orthogonality Relations for Rotation Matrices 437
10.7.6 Coupling of Angular Momenta 438
10.7.7 Spherical Tensors 442
10.8 Unitary Symmetries in Nuclear and Particle Physics 445
Problems forChapter 10 447
Bibliography 459
Index 461 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kelly, James J. |
author_GND | (DE-588)132188805 |
author_facet | Kelly, James J. |
author_role | aut |
author_sort | Kelly, James J. |
author_variant | j j k jj jjk |
building | Verbundindex |
bvnumber | BV021623628 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20 |
callnumber-search | QC20 |
callnumber-sort | QC 220 |
callnumber-subject | QC - Physics |
classification_rvk | SK 950 |
classification_tum | PHY 011f |
ctrlnum | (OCoLC)74519665 (DE-599)BVBBV021623628 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02232nam a2200565 c 4500</leader><controlfield tag="001">BV021623628</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090310 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060621s2006 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N10,1128</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">978516168</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527406379</subfield><subfield code="c">Pb. : ca. EUR 49.00 (freier Pr.), ca. sfr 78.00 (freier Pr.)</subfield><subfield code="9">3-527-40637-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527406371</subfield><subfield code="9">978-3-527-40637-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527406371</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1140637 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)74519665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021623628</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 011f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kelly, James J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132188805</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graduate mathematical physics</subfield><subfield code="b">with MATHEMATICA supplements</subfield><subfield code="c">James J. Kelly</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 466 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics textbook</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Mathematica (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2774878&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014838655&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014838655</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV021623628 |
illustrated | Illustrated |
index_date | 2024-07-02T14:54:32Z |
indexdate | 2024-07-09T20:40:10Z |
institution | BVB |
isbn | 3527406379 9783527406371 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014838655 |
oclc_num | 74519665 |
open_access_boolean | |
owner | DE-20 DE-92 DE-703 DE-91G DE-BY-TUM DE-83 DE-11 |
owner_facet | DE-20 DE-92 DE-703 DE-91G DE-BY-TUM DE-83 DE-11 |
physical | XVI, 466 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | WILEY-VCH |
record_format | marc |
series2 | Physics textbook |
spelling | Kelly, James J. Verfasser (DE-588)132188805 aut Graduate mathematical physics with MATHEMATICA supplements James J. Kelly Weinheim WILEY-VCH 2006 XVI, 466 S. Ill., graph. Darst. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Physics textbook Mathematica (Computer file) Physique mathématique Mathematische Physik Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Mathematica Programm (DE-588)4268208-3 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Mathematische Physik (DE-588)4037952-8 s Mathematica Programm (DE-588)4268208-3 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2774878&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014838655&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kelly, James J. Graduate mathematical physics with MATHEMATICA supplements Mathematica (Computer file) Physique mathématique Mathematische Physik Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Mathematica Programm (DE-588)4268208-3 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4268208-3 (DE-588)4123623-3 |
title | Graduate mathematical physics with MATHEMATICA supplements |
title_auth | Graduate mathematical physics with MATHEMATICA supplements |
title_exact_search | Graduate mathematical physics with MATHEMATICA supplements |
title_exact_search_txtP | Graduate mathematical physics with MATHEMATICA supplements |
title_full | Graduate mathematical physics with MATHEMATICA supplements James J. Kelly |
title_fullStr | Graduate mathematical physics with MATHEMATICA supplements James J. Kelly |
title_full_unstemmed | Graduate mathematical physics with MATHEMATICA supplements James J. Kelly |
title_short | Graduate mathematical physics |
title_sort | graduate mathematical physics with mathematica supplements |
title_sub | with MATHEMATICA supplements |
topic | Mathematica (Computer file) Physique mathématique Mathematische Physik Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Mathematica Programm (DE-588)4268208-3 gnd |
topic_facet | Mathematica (Computer file) Physique mathématique Mathematische Physik Mathematical physics Mathematica Programm Lehrbuch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2774878&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014838655&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kellyjamesj graduatemathematicalphysicswithmathematicasupplements |