Lipid rafts and caveolae: from membrane biophysics to cell biology
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis Klappentext |
Beschreibung: | XVI, 278 S. |
ISBN: | 3527312617 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021619413 | ||
003 | DE-604 | ||
005 | 20071213 | ||
007 | t | ||
008 | 060619s2006 gw |||| 00||| eng d | ||
015 | |a 05,N44,0555 |2 dnb | ||
016 | 7 | |a 976614618 |2 DE-101 | |
020 | |a 3527312617 |c Gb. : ca. EUR 139.00 (freier Pr.), ca. sfr 220.00 (freier Pr.) |9 3-527-31261-7 | ||
020 | |z 9783527312620 |9 978-3-527-31262-0 | ||
024 | 3 | |a 9783527312610 | |
028 | 5 | 2 | |a 1131261 000 |
035 | |a (OCoLC)63127399 | ||
035 | |a (DE-599)BVBBV021619413 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-355 |a DE-11 | ||
050 | 0 | |a QH601 | |
082 | 0 | |a 571.64 |2 2 | |
084 | |a WE 5000 |0 (DE-625)148296: |2 rvk | ||
084 | |a WE 5300 |0 (DE-625)148304: |2 rvk | ||
084 | |a 570 |2 sdnb | ||
245 | 1 | 0 | |a Lipid rafts and caveolae |b from membrane biophysics to cell biology |c ed. by Christopher J. Fielding |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2006 | |
300 | |a XVI, 278 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Lipides membranaires | |
650 | 4 | |a Membrane cellulaire | |
650 | 4 | |a Caveolin 1 |x secretion | |
650 | 4 | |a Cell membranes | |
650 | 4 | |a Cellular signal transduction | |
650 | 4 | |a Macromolecules | |
650 | 4 | |a Membrane Microdomains |x physiology | |
650 | 4 | |a Phosphoproteins | |
650 | 4 | |a Signal Transduction | |
650 | 0 | 7 | |a Plasmamembran |0 (DE-588)4067550-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Membrantransport |0 (DE-588)4038575-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Caveolae |0 (DE-588)7529996-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Plasmamembran |0 (DE-588)4067550-6 |D s |
689 | 0 | 1 | |a Membrantransport |0 (DE-588)4038575-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Caveolae |0 (DE-588)7529996-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Fielding, Christopher J. |0 (DE-588)131683365 |4 edt | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2686571&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014834505&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014834505&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-014834505 |
Datensatz im Suchindex
_version_ | 1804135410526322688 |
---|---|
adam_text | Table
of
Contents
1
Lipid
Rafts, Caveolae, and Membrane Traffic
1
Doris
Meder
and
Kai
Simons
1.1
Introduction
1
1.2
Basic Organization Principles of a Cell Membrane
1
1.3
Evidence for Phase Separation in Model Membrane Systems:
Liquid-Ordered and Liquid-Disordered Phases
3
1.4
Evidence for Phase Separation in Cell Membranes:
The Raft Concept
5
1.5
Raft Domains are Clustered to Exert their Function
S
1.6
The Apical Membrane of Epithelial Cells:
A Percolating Raft Membrane at
25 °С 9
1.7
Caveolae: Scaffolded Membrane Domains Rich in Raft Lipids
10
1.8
Caveolae and
Lipid
Rafts in Membrane Traffic
12
Abbreviations
17
References
17
1
The Forces that Shape Caveolae
25
Piene
Sens and Matthew S. Turner
2.1
Introduction
25
2.2
Physical Modeling of
Lipid
Membranes
26
2.3
Caveolae as Invaginated
Lipid
Rafts
29
2.4
Membrane Inclusions
31
2.5
Caveolae as a Thermodynamic Phase Separation of Membrane
Proteins
33
2.6
Caveolae and Membrane Tension: Mechano-Sensitivity and
Mechano-Regulation
38
2.7
Conclusions
42
Abbreviations
42
References
43
Lipid Rąfis
and Caveolae. Christopher J. Fielding
Copyright
© 2006
WILEY-VCH
Verlag
GmbH
&
Co. KGaA, Weinheim
ISBN:
3-527-31261-7
VI Table of Contents
3
The Biophysical Characterization of Lipid Rafts
45
Pranav
Skärma,
Rajat
Varma,
and Satyajit Mayor
3.1
Introduction: The Fluid Mosaic Model and Membrane Domains
45
3.2
The Origin of the Raft Hypothesis
45
3.3
The Role of Lipid-Anchored Proteins in the Development of the
Membrane Raft Hypothesis
48
3.4
The Case For and Against DRMs as Evidence for Rafts in Cell
Membranes
49
3.5
Why Are Biophysical Studies Useful for Understanding Lipid
Rafts?
51
3.6
Diffusion-Based Measurements
52
3.6.1
Single-Molecule Studies
52
3.6.2
Fluorescence Recovery After Photobleaching
55
3.6.3
Fluorescence Correlation Spectroscopy
57
3.7
Proximity Measurements
59
3.7.1
Proximity Measurement Using Homo-FRET
60
3.7.2
Proximity Measurement Using Hetero-FRET
62
3.8
Conclusions
63
Abbreviations
64
References
64
4
The Role of Caveolae and Noncaveolar Rafts in Endocytosis
69
Bo van Deurs,
Frederik
Vilhardt, Maria Torgersen, Kirstine Roepstorff,
Anette
M. Hommelgaard,
and
Kirsten Sandvig
4.1
Introduction
69
4.2
Caveolae are Largely Immobile, Nonendocytic Membrane
Domains
71
4.3
Caveolae May Show Local, Short-Range Motility: A Role in
Transendothelial Transport?
73
4.4
An Intemalization Wave of Caveolae can be Stimulated by Virus
74
4.5
Role of Caveolae in Endocytosis of Cholera Toxin
75
4.6
A Small Fraction of Caveolae may become Constitutively
Internalized
81
4.7
Caveosomes: Intracellular Caveolin-Associated Structures
82
4.8
The Role of Dynamin in Caveolar Function
83
4.9
Caveolin Immobilizes Rafts/Caveolar
Invaginations
83
4.10
A
2005
Consensus Model for Caveolar Endocytosis
85
Acknowledgments
85
Abbreviations
86
References
86
5
Role of Cholesterol in Signal Transduction from Caveolae
91
Christopher
J
.
Fielding and Phoebe E. Fielding
5.1
Introduction
91
5.2
Lipids of Caveolae
93
Table
of
Contents
I
VII
5.3
Proteins in Caveolae
95
5.4
The Caveolin Scaffold Hypothesis
98
5.4.1
Does the Scaffold Motif in Signaling Proteins that are Present in
Caveolae Represent the Contact Site of these Proteins with
Caveolin?
99
5.5 FC
Binding by Proteins Including Caveolin
101
5.6 FC in
Caveolae: Effects of Depletion and Loading
102
5.7 FC
Changes in Caveolae: Effects of Signal Transduction
104
5.8
Summary
107
Abbreviations
107
References
107
6
Phosphorylation of Caveolin and Signaling from Caveolae
116
Cynthia Corley
Mastiek,
Amy Sanguinetti, Haiming
Cao,
and Suhani
Thakker
6.1
Introduction
115
6.2
Signaling Pathways Leading to Caveolin Tyrosine Phosphoryla¬
tion
116
6.2.1
Caveolins-l and
-2
are Phosphorylated in Response to Insulin in
Adipocytes
116
6.2.2
The Caveolins are not Direct Substrates of the Insulin Receptor
117
6.2.3
Src-Family Kinases and Stress-Induced Caveolin Phosphorylation
118
6.2.4
Non-Receptor Tyrosine Kinases and Insulin-Induced Caveolin
Phosphorylation
119
6.2.5
Abl is a Caveolin Kinase
120
6.2.6
Abl and
Fyn
Cooperate in the Caveolin Phosphorylation Signaling
Pathway
121
6.2.7
Model of the Interaction of
Fyn
and Abl in Caveolin
Phosphorylation
122
6.3
Signaling Pathways Downstream of Caveolin Tyrosine
Phosphorylation
123
6.3.1
Csk Binds to Phosphocaveolin
224
6.3.2
Regulation of Src-Family Kinases by Csk
125
6.3.3
Feedback Inhibition of
Fyn
Through Activation of Csk
125
6.3.4
Phosphocaveolin in the Loop
126
6.3.5
Src-Family Kinases, Csk and Actin Remodeling
127
6.3.6
Phosphocaveolin is Enriched at Sites of Attachment of the Actin
Cytoskeleton to the Plasma Membrane
127
6.3.7
Abl in the Loop
129
6.3.8
Abl and Actin Remodeling
130
6.3.9
Insulin-Induced Actin Remodeling, GluT4
Translocation,
and
Caveolae
131
6.3.10
The Role of Caveolin Phosphorylation in Cells
131
6.4
Summary
133
Abbreviations
133
References
134
Vlil
I Table of Contents
7
Role of
Lipid
Microdomains in
the Formation of Supramolecular Protein
Complexes and
Transmembrane
Signaling
141
György Vámosi,
Andrea
Bodnár, György Veréb, János Szöllösi, and Sándor
Damjanovich
7.1
Introduction
141
7.1.1
Lateral organization of membrane proteins
142
7.1.2
Factors controlling the organization of membrane proteins
143
7.2
Biophysical Strategies for Studying the Lateral Organization of
Membrane Proteins
144
7.2.1
Determination of Domain Size and Overlap between Fluorescence
Distributions using Fluorescence Microscopy
144
7.2.2
Fluorescence Resonance Energy Transfer (FRET)
145
7.2.3
Fluorescence Cross-Correlation Spectroscopy: Analysis of Protein
Co-Mobility
147
7.2.4
Atomic Force Microscopy (AFM)
149
7.2.5
Scanning Near-Field Optical Microscopy
(SNOM)
149
7.3
The Immunological Synapse
150
7.4
Voltage-Gated K+ Channels in
Lipid
Rafts: Possible Involvement in
Local Regulatory Processes
154
7.5
Cell Fusion as a Tool for Studying Dynamic Behavior of Protein
Clusters
155
7.6
Lipid
Rafts as Platforms for Cytokine Receptor Assembly and
Signaling
156
7.7
Organization and Function of Receptor Tyrosine Kinases is Linked to
Lipid
Microdomains 162
Acknowledgments
166
Abbreviations
166
References
167
8
Caveolin and its Role in Intracellular Chaperone Complexes
175
William V. Everson and Eric
J
.
Smart
8.1
Caveolae and Caveolin-l
175
8.2
Caveolin Protein Structure, Domains, and Membrane Interac¬
tions
177
8.3
Caveolin Expression and Localization in the Cell
178
8.4
Caveolin Expression and Localization Varies Depending on the
Physiological State of Cells in Culture
180
8.5
Caveolin-l Expression Confers a New Level of Regulation
182
8.6
Caveolae Cholesterol and Caveolin Localization to Caveoiae
182
8.7
Caveolin and Cholesterol Cross Membranes During Trafficking
183
8.8
Two Chaperone Complexes Regulate a Caveola-Cholesterol Trafficking
Cycle
184
8.9
Caveolae Linked to Nongenomic Actions and Uptake of
Estrogen
185
8.10
Protein Acylation and Caveolae
186
Table
of
Contents
IIX
8.11
Scavenger Receptors Localize to Caveolae
187
8.12
Cholesterol Homeostasis Regulates Caveolin Localization and
Organization of other Proteins in Caveolae
187
8.13
Chaperone Complexes Involved in Cholesterol Transport in
Specialized Tissues
188
8.14
Caveolin is Linked to Additional
Sterol
and
Lipid
Uptake and
Trafficking Pathways
188
8.15
Conclusions
189
Abbreviations
189
References
189
9
The Roles of Caveolae and Caveolin in Cell Shape, Locomotion, and
Stress Fiber Formation
295
Sang
Chul
Park and Kyung A. Cho
9.1
Introduction
195
9.2
Caveolin and Polarity
195
9.3
Caveolin and Rho-family GTPases
197
9.4
Caveolin and Focal Adhesion Complex
198
9.5
The Dynamics of Caveolin and Actin
199
9.6
Caveolae-Dependent Endocytosis via Actin Stress Fiber
200
9.7
Summary
201
Abbreviations
202
References
202
10
Lipid
Rafts in Trafficking and Processing of Prion Protein and Amyloid
Precursor Protein
205
Daniela
Sarnataro, Vincenza
Campana, anã Chiara Zurzolo
10.1
Introduction
205
10.2
Lipid
Rafts and Caveolae
206
10.2.1
Biochemical Properties and Functions
206
10.3
PrPc and Prion Diseases
207
10.3.1
The Site of PrPc Conversion: The Role of Rafts in the Different
Intracellular Compartments
208
10.3.2
Role of
Lipid
Rafts in PrPSc Formation
210
10.3.3
Mechanism of Raft Action in Prion Conversion
211
10.3.4
Role of Rafts in Proteolytic Attack on PrPc
214
10.4
Alzheimer s Disease: The Role of Rafts in APP Trafficking and
Processing
215
10.4.1
The History-of APP Cleavage
235
10.4.2
Intracellular Compartments and
Aß
Generation: Involvement of
Lipid
Rafts
215
10.4.3
The Role of Rafts in
ß-Secretase
Activity
217
10.4.4
The Role of Caveolae/Lipid Rafts in
a-Secretase
Activity
220
10.4.4.1
The Role of
Lipid
Rafts in this Event
221
X j
Table of Contents
10.4.5
The Role of Caveolae/Rafts in y-Secretase Activity
221
10.4.6
The Contribution of Cholesterol and Sphingolipids in APP
Processing
222
10.5
Conclusions
222
Acknowledgments
223
Abbreviations
223
References
224
Π
Caveolae and the Endothelial Nitric Oxide Synthase
233
Olivier
Veron
11.1
Introduction
233
11.2
Caveolin: A Scaffold for eNOS
235
11.3
The Caveolin-eNOS Regulatory Cycle
236
11.4
Lipoproteins and Caveolin-eNOS Interaction
239
11.5
Angiogenesis and Caveolin-eNOS Interaction
241
11.6
Vasodilation, Endothelial Permeability and Caveolin-eNOS
Interaction
242
11.7
Caveolin-S-eNOS Interaction in Cardiac Myocytes
244
11.8
Conclusions
246
Abbreviations
246
References
247
12
The Role of Caveolin-l in Tumor Cell Survival and Cancer
Progression
249
Dana Ravid and Mordechai Liscovitch
12.1
Introduction
249
12.2
The Caveolin-l Gene and its Regulation During Differentiation and
Transformation
250
12.3
Divergent Expression of Caveolin-l in Human Cancer:
The Case of Lung Cancer
252
12.4
Actions of Caveolin-l in Cancer Cells: Effects of Heterologous
Expression and Genetic or Functional Suppression
252
12.4.1
Anti-Proliferative Activity of Caveolin-l
252
12.4.2
Pro-Apoptotic Activity of Caveolin-l
253
12.4.3
Survival-Promoting Activity of Caveolin-l
253
12.5
Molecular Mechanisms Implicated in the Pro-Survival Action of
Caveolin-l
254
12.6
The Role of
Tyr
14
Phosphorylation in Caveolin-l-Mediated
Signaling
256
12.7
Stress-Induced Changes in Caveolin-l Expression
257
12.8
Concluding Remarks
258
Acknowledgments
259
Abbreviations
259
References
260
Index
265
I his keenly awaited overview of this field represents a complete guide
to the structure and function of the most important mammalian cell
membrane
organelies.
FiUing a huge gap in the primary literature, this
book covers the subject in detail.
Following an introduction by
Kai
Simons, the discoverer of
lipid
rafts
and the most prominent scientist in the field, chapters include:
Historical Background
Distinct Structures and Functions
Structural Basis
Signaling
Viral Entry and Virion Budding
Cholesterol Transport
Caveolins
lipid
Shells
Cell Polarity and Intracellular Trafficking
Cancer Cells
The book is of prime importance to molecular and cell biologists, bio¬
chemists, membrane scientists, cancer researchers, and virologists.
Christopher Fielding is
Neider
Professor of Cardiovascular
Physiology at the University of California at San Francisco
(UCSF). He graduated from University College in London
(UK) where he also received his PhD. After appointments at
Oxford University and at the University of Chicago, he joined
the faculty at UCSF in igyir being appointed full professor
in
1985.
Professor Fielding s main research interest is in the traffick¬
ing of cholesterol, its regulation and its role in signal transduc-
tion.
|
adam_txt |
Table
of
Contents
1
Lipid
Rafts, Caveolae, and Membrane Traffic
1
Doris
Meder
and
Kai
Simons
1.1
Introduction
1
1.2
Basic Organization Principles of a Cell Membrane
1
1.3
Evidence for Phase Separation in Model Membrane Systems:
Liquid-Ordered and Liquid-Disordered Phases
3
1.4
Evidence for Phase Separation in Cell Membranes:
The "Raft Concept"
5
1.5
Raft Domains are Clustered to Exert their Function
S
1.6
The Apical Membrane of Epithelial Cells:
A Percolating Raft Membrane at
25 °С 9
1.7
Caveolae: Scaffolded Membrane Domains Rich in Raft Lipids
10
1.8
Caveolae and
Lipid
Rafts in Membrane Traffic
12
Abbreviations
17
References
17
1
The Forces that Shape Caveolae
25
Piene
Sens and Matthew S. Turner
2.1
Introduction
25
2.2
Physical Modeling of
Lipid
Membranes
26
2.3
Caveolae as Invaginated
Lipid
Rafts
29
2.4
Membrane Inclusions
31
2.5
Caveolae as a Thermodynamic Phase Separation of Membrane
Proteins
33
2.6
Caveolae and Membrane Tension: Mechano-Sensitivity and
Mechano-Regulation
38
2.7
Conclusions
42
Abbreviations
42
References
43
Lipid Rąfis
and Caveolae. Christopher J. Fielding
Copyright
© 2006
WILEY-VCH
Verlag
GmbH
&
Co. KGaA, Weinheim
ISBN:
3-527-31261-7
VI Table of Contents
3
The Biophysical Characterization of Lipid Rafts
45
Pranav
Skärma,
Rajat
Varma,
and Satyajit Mayor
3.1
Introduction: The Fluid Mosaic Model and Membrane Domains
45
3.2
The Origin of the Raft Hypothesis
45
3.3
The Role of Lipid-Anchored Proteins in the Development of the
Membrane Raft Hypothesis
48
3.4
The Case For and Against DRMs as Evidence for "Rafts" in Cell
Membranes
49
3.5
Why Are Biophysical Studies Useful for Understanding Lipid
Rafts?
51
3.6
Diffusion-Based Measurements
52
3.6.1
Single-Molecule Studies
52
3.6.2
Fluorescence Recovery After Photobleaching
55
3.6.3
Fluorescence Correlation Spectroscopy
57
3.7
Proximity Measurements
59
3.7.1
Proximity Measurement Using Homo-FRET
60
3.7.2
Proximity Measurement Using Hetero-FRET
62
3.8
Conclusions
63
Abbreviations
64
References
64
4
The Role of Caveolae and Noncaveolar Rafts in Endocytosis
69
Bo van Deurs,
Frederik
Vilhardt, Maria Torgersen, Kirstine Roepstorff,
Anette
M. Hommelgaard,
and
Kirsten Sandvig
4.1
Introduction
69
4.2
Caveolae are Largely Immobile, Nonendocytic Membrane
Domains
71
4.3
Caveolae May Show Local, Short-Range Motility: A Role in
Transendothelial Transport?
73
4.4
An Intemalization Wave of Caveolae can be Stimulated by Virus
74
4.5
Role of Caveolae in Endocytosis of Cholera Toxin
75
4.6
A Small Fraction of Caveolae may become Constitutively
Internalized
81
4.7
Caveosomes: Intracellular Caveolin-Associated Structures
82
4.8
The Role of Dynamin in Caveolar Function
83
4.9
Caveolin Immobilizes Rafts/Caveolar
Invaginations
83
4.10
A
2005
Consensus Model for Caveolar Endocytosis
85
Acknowledgments
85
Abbreviations
86
References
86
5
Role of Cholesterol in Signal Transduction from Caveolae
91
Christopher
J
.
Fielding and Phoebe E. Fielding
5.1
Introduction
91
5.2
Lipids of Caveolae
93
Table
of
Contents
I
VII
5.3
Proteins in Caveolae
95
5.4
The Caveolin Scaffold Hypothesis
98
5.4.1
Does the Scaffold Motif in Signaling Proteins that are Present in
Caveolae Represent the Contact Site of these Proteins with
Caveolin?
99
5.5 FC
Binding by Proteins Including Caveolin
101
5.6 FC in
Caveolae: Effects of Depletion and Loading
102
5.7 FC
Changes in Caveolae: Effects of Signal Transduction
104
5.8
Summary
107
Abbreviations
107
References
107
6
Phosphorylation of Caveolin and Signaling from Caveolae
116
Cynthia Corley
Mastiek,
Amy Sanguinetti, Haiming
Cao,
and Suhani
Thakker
6.1
Introduction
115
6.2
Signaling Pathways Leading to Caveolin Tyrosine Phosphoryla¬
tion
116
6.2.1
Caveolins-l and
-2
are Phosphorylated in Response to Insulin in
Adipocytes
116
6.2.2
The Caveolins are not Direct Substrates of the Insulin Receptor
117
6.2.3
Src-Family Kinases and Stress-Induced Caveolin Phosphorylation
118
6.2.4
Non-Receptor Tyrosine Kinases and Insulin-Induced Caveolin
Phosphorylation
119
6.2.5
Abl is a Caveolin Kinase
120
6.2.6
Abl and
Fyn
Cooperate in the Caveolin Phosphorylation Signaling
Pathway
121
6.2.7
Model of the Interaction of
Fyn
and Abl in Caveolin
Phosphorylation
122
6.3
Signaling Pathways Downstream of Caveolin Tyrosine
Phosphorylation
123
6.3.1
Csk Binds to Phosphocaveolin
224
6.3.2
Regulation of Src-Family Kinases by Csk
125
6.3.3
Feedback Inhibition of
Fyn
Through Activation of Csk
125
6.3.4
Phosphocaveolin in the Loop
126
6.3.5
Src-Family Kinases, Csk and Actin Remodeling
127
6.3.6
Phosphocaveolin is Enriched at Sites of Attachment of the Actin
Cytoskeleton to the Plasma Membrane
127
6.3.7
Abl in the Loop
129
6.3.8
Abl and Actin Remodeling
130
6.3.9
Insulin-Induced Actin Remodeling, GluT4
Translocation,
and
Caveolae
131
6.3.10
The Role of Caveolin Phosphorylation in Cells
131
6.4
Summary
133
Abbreviations
133
References
134
Vlil
I Table of Contents
7
Role of
Lipid
Microdomains in
the Formation of Supramolecular Protein
Complexes and
Transmembrane
Signaling
141
György Vámosi,
Andrea
Bodnár, György Veréb, János Szöllösi, and Sándor
Damjanovich
7.1
Introduction
141
7.1.1
Lateral organization of membrane proteins
142
7.1.2
Factors controlling the organization of membrane proteins
143
7.2
Biophysical Strategies for Studying the Lateral Organization of
Membrane Proteins
144
7.2.1
Determination of Domain Size and Overlap between Fluorescence
Distributions using Fluorescence Microscopy
144
7.2.2
Fluorescence Resonance Energy Transfer (FRET)
145
7.2.3
Fluorescence Cross-Correlation Spectroscopy: Analysis of Protein
Co-Mobility
147
7.2.4
Atomic Force Microscopy (AFM)
149
7.2.5
Scanning Near-Field Optical Microscopy
(SNOM)
149
7.3
The Immunological Synapse
150
7.4
Voltage-Gated K+ Channels in
Lipid
Rafts: Possible Involvement in
Local Regulatory Processes
154
7.5
Cell Fusion as a Tool for Studying Dynamic Behavior of Protein
Clusters
155
7.6
Lipid
Rafts as Platforms for Cytokine Receptor Assembly and
Signaling
156
7.7
Organization and Function of Receptor Tyrosine Kinases is Linked to
Lipid
Microdomains 162
Acknowledgments
166
Abbreviations
166
References
167
8
Caveolin and its Role in Intracellular Chaperone Complexes
175
William V. Everson and Eric
J
.
Smart
8.1
Caveolae and Caveolin-l
175
8.2
Caveolin Protein Structure, Domains, and Membrane Interac¬
tions
177
8.3
Caveolin Expression and Localization in the Cell
178
8.4
Caveolin Expression and Localization Varies Depending on the
Physiological State of Cells in Culture
180
8.5
Caveolin-l Expression Confers a New Level of Regulation
182
8.6
Caveolae Cholesterol and Caveolin Localization to Caveoiae
182
8.7
Caveolin and Cholesterol Cross Membranes During Trafficking
183
8.8
Two Chaperone Complexes Regulate a Caveola-Cholesterol Trafficking
Cycle
184
8.9
Caveolae Linked to Nongenomic Actions and Uptake of
Estrogen
185
8.10
Protein Acylation and Caveolae
186
Table
of
Contents
IIX
8.11
Scavenger Receptors Localize to Caveolae
187
8.12
Cholesterol Homeostasis Regulates Caveolin Localization and
Organization of other Proteins in Caveolae
187
8.13
Chaperone Complexes Involved in Cholesterol Transport in
Specialized Tissues
188
8.14
Caveolin is Linked to Additional
Sterol
and
Lipid
Uptake and
Trafficking Pathways
188
8.15
Conclusions
189
Abbreviations
189
References
189
9
The Roles of Caveolae and Caveolin in Cell Shape, Locomotion, and
Stress Fiber Formation
295
Sang
Chul
Park and Kyung A. Cho
9.1
Introduction
195
9.2
Caveolin and Polarity
195
9.3
Caveolin and Rho-family GTPases
197
9.4
Caveolin and Focal Adhesion Complex
198
9.5
The Dynamics of Caveolin and Actin
199
9.6
Caveolae-Dependent Endocytosis via Actin Stress Fiber
200
9.7
Summary
201
Abbreviations
202
References
202
10
Lipid
Rafts in Trafficking and Processing of Prion Protein and Amyloid
Precursor Protein
205
Daniela
Sarnataro, Vincenza
Campana, anã Chiara Zurzolo
10.1
Introduction
205
10.2
Lipid
Rafts and Caveolae
206
10.2.1
Biochemical Properties and Functions
206
10.3
PrPc and Prion Diseases
207
10.3.1
The Site of PrPc Conversion: The Role of Rafts in the Different
Intracellular Compartments
208
10.3.2
Role of
Lipid
Rafts in PrPSc Formation
210
10.3.3
Mechanism of Raft Action in Prion Conversion
211
10.3.4
Role of Rafts in Proteolytic Attack on PrPc
214
10.4
Alzheimer's Disease: The Role of Rafts in APP Trafficking and
Processing
215
10.4.1
The "History-of APP Cleavage
235
10.4.2
Intracellular Compartments and
Aß
Generation: Involvement of
Lipid
Rafts
215
10.4.3
The Role of Rafts in
ß-Secretase
Activity
217
10.4.4
The Role of Caveolae/Lipid Rafts in
a-Secretase
Activity
220
10.4.4.1
The Role of
Lipid
Rafts in this Event
221
X j
Table of Contents
10.4.5
The Role of Caveolae/Rafts in y-Secretase Activity
221
10.4.6
The Contribution of Cholesterol and Sphingolipids in APP
Processing
222
10.5
Conclusions
222
Acknowledgments
223
Abbreviations
223
References
224
Π
Caveolae and the Endothelial Nitric Oxide Synthase
233
Olivier
Veron
11.1
Introduction
233
11.2
Caveolin: A Scaffold for eNOS
235
11.3
The Caveolin-eNOS Regulatory Cycle
236
11.4
Lipoproteins and Caveolin-eNOS Interaction
239
11.5
Angiogenesis and Caveolin-eNOS Interaction
241
11.6
Vasodilation, Endothelial Permeability and Caveolin-eNOS
Interaction
242
11.7
Caveolin-S-eNOS Interaction in Cardiac Myocytes
244
11.8
Conclusions
246
Abbreviations
246
References
247
12
The Role of Caveolin-l in Tumor Cell Survival and Cancer
Progression
249
Dana Ravid and Mordechai Liscovitch
12.1
Introduction
249
12.2
The Caveolin-l Gene and its Regulation During Differentiation and
Transformation
250
12.3
Divergent Expression of Caveolin-l in Human Cancer:
The Case of Lung Cancer
252
12.4
Actions of Caveolin-l in Cancer Cells: Effects of Heterologous
Expression and Genetic or Functional Suppression
252
12.4.1
Anti-Proliferative Activity of Caveolin-l
252
12.4.2
Pro-Apoptotic Activity of Caveolin-l
253
12.4.3
Survival-Promoting Activity of Caveolin-l
253
12.5
Molecular Mechanisms Implicated in the Pro-Survival Action of
Caveolin-l
254
12.6
The Role of
Tyr
14
Phosphorylation in Caveolin-l-Mediated
Signaling
256
12.7
Stress-Induced Changes in Caveolin-l Expression
257
12.8
Concluding Remarks
258
Acknowledgments
259
Abbreviations
259
References
260
Index
265
I his keenly awaited overview of this field represents a complete guide
to the structure and function of the most important mammalian cell
membrane
organelies.
FiUing a huge gap in the primary literature, this
book covers the subject in detail.
Following an introduction by
Kai
Simons, the discoverer of
lipid
rafts
and the most prominent scientist in the field, chapters include:
Historical Background
Distinct Structures and Functions
Structural Basis
Signaling
Viral Entry and Virion Budding
Cholesterol Transport
Caveolins
lipid
Shells
Cell Polarity and Intracellular Trafficking
Cancer Cells
The book is of prime importance to molecular and cell biologists, bio¬
chemists, membrane scientists, cancer researchers, and virologists.
Christopher Fielding is
Neider
Professor of Cardiovascular
Physiology at the University of California at San Francisco
(UCSF). He graduated from University College in London
(UK) where he also received his PhD. After appointments at
Oxford University and at the University of Chicago, he joined
the faculty at UCSF in igyir being appointed full professor
in
1985.
Professor Fielding's main research interest is in the traffick¬
ing of cholesterol, its regulation and its role in signal transduc-
tion. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Fielding, Christopher J. |
author2_role | edt |
author2_variant | c j f cj cjf |
author_GND | (DE-588)131683365 |
author_facet | Fielding, Christopher J. |
building | Verbundindex |
bvnumber | BV021619413 |
callnumber-first | Q - Science |
callnumber-label | QH601 |
callnumber-raw | QH601 |
callnumber-search | QH601 |
callnumber-sort | QH 3601 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WE 5000 WE 5300 |
ctrlnum | (OCoLC)63127399 (DE-599)BVBBV021619413 |
dewey-full | 571.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.64 |
dewey-search | 571.64 |
dewey-sort | 3571.64 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02548nam a2200625 c 4500</leader><controlfield tag="001">BV021619413</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071213 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060619s2006 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N44,0555</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">976614618</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527312617</subfield><subfield code="c">Gb. : ca. EUR 139.00 (freier Pr.), ca. sfr 220.00 (freier Pr.)</subfield><subfield code="9">3-527-31261-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783527312620</subfield><subfield code="9">978-3-527-31262-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527312610</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131261 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)63127399</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021619413</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH601</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.64</subfield><subfield code="2">2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 5000</subfield><subfield code="0">(DE-625)148296:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 5300</subfield><subfield code="0">(DE-625)148304:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lipid rafts and caveolae</subfield><subfield code="b">from membrane biophysics to cell biology</subfield><subfield code="c">ed. by Christopher J. Fielding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 278 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipides membranaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane cellulaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Caveolin 1</subfield><subfield code="x">secretion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell membranes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular signal transduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macromolecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane Microdomains</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphoproteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmamembran</subfield><subfield code="0">(DE-588)4067550-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Membrantransport</subfield><subfield code="0">(DE-588)4038575-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Caveolae</subfield><subfield code="0">(DE-588)7529996-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Plasmamembran</subfield><subfield code="0">(DE-588)4067550-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Membrantransport</subfield><subfield code="0">(DE-588)4038575-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Caveolae</subfield><subfield code="0">(DE-588)7529996-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fielding, Christopher J.</subfield><subfield code="0">(DE-588)131683365</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2686571&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014834505&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014834505&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014834505</subfield></datafield></record></collection> |
id | DE-604.BV021619413 |
illustrated | Not Illustrated |
index_date | 2024-07-02T14:53:12Z |
indexdate | 2024-07-09T20:40:04Z |
institution | BVB |
isbn | 3527312617 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014834505 |
oclc_num | 63127399 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-11 |
physical | XVI, 278 S. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Lipid rafts and caveolae from membrane biophysics to cell biology ed. by Christopher J. Fielding Weinheim WILEY-VCH 2006 XVI, 278 S. txt rdacontent n rdamedia nc rdacarrier Lipides membranaires Membrane cellulaire Caveolin 1 secretion Cell membranes Cellular signal transduction Macromolecules Membrane Microdomains physiology Phosphoproteins Signal Transduction Plasmamembran (DE-588)4067550-6 gnd rswk-swf Membrantransport (DE-588)4038575-9 gnd rswk-swf Caveolae (DE-588)7529996-3 gnd rswk-swf Plasmamembran (DE-588)4067550-6 s Membrantransport (DE-588)4038575-9 s DE-604 Caveolae (DE-588)7529996-3 s Fielding, Christopher J. (DE-588)131683365 edt text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2686571&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014834505&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014834505&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Lipid rafts and caveolae from membrane biophysics to cell biology Lipides membranaires Membrane cellulaire Caveolin 1 secretion Cell membranes Cellular signal transduction Macromolecules Membrane Microdomains physiology Phosphoproteins Signal Transduction Plasmamembran (DE-588)4067550-6 gnd Membrantransport (DE-588)4038575-9 gnd Caveolae (DE-588)7529996-3 gnd |
subject_GND | (DE-588)4067550-6 (DE-588)4038575-9 (DE-588)7529996-3 |
title | Lipid rafts and caveolae from membrane biophysics to cell biology |
title_auth | Lipid rafts and caveolae from membrane biophysics to cell biology |
title_exact_search | Lipid rafts and caveolae from membrane biophysics to cell biology |
title_exact_search_txtP | Lipid rafts and caveolae from membrane biophysics to cell biology |
title_full | Lipid rafts and caveolae from membrane biophysics to cell biology ed. by Christopher J. Fielding |
title_fullStr | Lipid rafts and caveolae from membrane biophysics to cell biology ed. by Christopher J. Fielding |
title_full_unstemmed | Lipid rafts and caveolae from membrane biophysics to cell biology ed. by Christopher J. Fielding |
title_short | Lipid rafts and caveolae |
title_sort | lipid rafts and caveolae from membrane biophysics to cell biology |
title_sub | from membrane biophysics to cell biology |
topic | Lipides membranaires Membrane cellulaire Caveolin 1 secretion Cell membranes Cellular signal transduction Macromolecules Membrane Microdomains physiology Phosphoproteins Signal Transduction Plasmamembran (DE-588)4067550-6 gnd Membrantransport (DE-588)4038575-9 gnd Caveolae (DE-588)7529996-3 gnd |
topic_facet | Lipides membranaires Membrane cellulaire Caveolin 1 secretion Cell membranes Cellular signal transduction Macromolecules Membrane Microdomains physiology Phosphoproteins Signal Transduction Plasmamembran Membrantransport Caveolae |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2686571&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014834505&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014834505&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fieldingchristopherj lipidraftsandcaveolaefrommembranebiophysicstocellbiology |