Planet formation: theory, observations, and experiments
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2006
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Cambridge astrobiology
1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 302 S. Ill., graph. Darst. |
ISBN: | 0521860156 9780521860154 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021618608 | ||
003 | DE-604 | ||
005 | 20230309 | ||
007 | t | ||
008 | 060616s2006 ad|| |||| 00||| eng d | ||
020 | |a 0521860156 |9 0-521-86015-6 | ||
020 | |a 9780521860154 |9 978-0-521-86015-4 | ||
035 | |a (OCoLC)64313073 | ||
035 | |a (DE-599)BVBBV021618608 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-19 | ||
050 | 0 | |a QB603.O74 | |
082 | 0 | |a 523.4 |2 22 | |
084 | |a US 7400 |0 (DE-625)146727: |2 rvk | ||
084 | |a US 8000 |0 (DE-625)146732: |2 rvk | ||
245 | 1 | 0 | |a Planet formation |b theory, observations, and experiments |c ed. by Hubert Klahr ... |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2006 | |
300 | |a XV, 302 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge astrobiology |v 1 | |
650 | 4 | |a Planets |x Origin | |
650 | 0 | 7 | |a Planetenentstehung |0 (DE-588)4174796-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Planetenentstehung |0 (DE-588)4174796-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Klahr, Hubert |e Sonstige |4 oth | |
830 | 0 | |a Cambridge astrobiology |v 1 |w (DE-604)BV021667211 |9 1 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014833704&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014833704 |
Datensatz im Suchindex
_version_ | 1804135409071947776 |
---|---|
adam_text | Contents
Preface page xiii
Acknowledgments xv
1 Historical notes on planet formation
Peter Bodenheimer 1
1.1 Introduction 1
1.2 Descartes and von Weizsacker: vortices 1
1.3 Magnetic effects 2
1.4 Gravitational instability 3
1.5 Core accretion: gas capture 6
1.6 Planet searches 8
2 The Formation and Evolution of Planetary Systems: placing our
Solar System in context
Jeroen Bouwman, Michael R. Meyer, Jinyoung Serena Kim,
Murray D. Silverstone, John M. Carpenter, and Dean C. Hines 14
2.1 Introduction 14
2.1.1 The formation of planets: from protoplanetary
towards debris disk systems 16
2.1.2 The Spitzer Space Telescope and the formation and
evolution of planetary systems legacy program 17
2.2 From protoplanetary to debris disks: processing and
dispersion of the inner dust disk 20
2.3 Debris disks: Asteroid or Kuiper Belt? 25
3 Destruction of protoplanetary disks by photoevaporation
Sabine Richling, David Hollenbach and Harold W. Yorke 31
3.1 Introduction 31
3.2 Photoevaporation and other dispersal mechanisms 33
3.3 Photoevaporation by external radiation 34
3.4 Photoevaporation by the central star 36
vii
viii Contents
3.5 Photoevaporation and dust evolution 39
3.6 Conclusions 40
Acknowledgments 41
4 Turbulence in protoplanetary accretion disks: driving mechanisms
and role in planet formation
Hubert Klahr, Michal Rozyczka, Natalia Dziourkevitch, Richard
Wiinsch, and Anders Johansen 42
4.1 Introduction 42
4.1.1 Protostellar collapse and formation of disks 42
4.1.2 Observations of accretion in protoplanetary systems 43
4.1.3 Self gravity and the early evolution of disks 44
4.1.4 Viscous evolution 46
4.2 Magnetohydrodynamic turbulence 47
4.2.1 Non ideal magnetohydrodynamics 48
4.2.2 Ohmic dissipation 50
4.2.3 Ambipolar diffusion 50
4.2.4 Hall term 50
4.3 Layered accretion 51
4.3.1 Ionization structure 52
4.3.2 Layered disk evolution 55
4.4 Alternative instabilities in the dead zone 56
4.5 Transport by turbulence 57
4.5.1 Dust dynamics 58
4.5.2 Dust trapping mechanisms 59
4.5.3 Turbulent diffusion 61
4.6 Conclusions 62
5 The origin of solids in the early Solar System
Mario Trieloff and Herbert Palme 64
5.1 Introduction: geoscience meets astronomy 64
5.2 Meteorites: remnants of planetesimal formation 4.6 billion
years ago in the asteroid belt 66
5.3 Calcium aluminum rich inclusions and chondrules:
remnants from the earliest Solar System 67
5.4 Compositional variety of chondrites: planetesimal formation
occurred at a variety of conditions in the protoplanetary
disk 69
5.4.1 Metal abundance and oxidation state 69
5.4.2 Ratio of refractory to volatile elements 73
5.4.3 Major element fractionations: Mg, Si, Fe 74
5.4.4 Oxygen isotopes 74
Contents ix
5.5 Isotopic homogeneity of Solar System materials 75
5.5.1 Heterogeneity inherited from the interstellar
medium: restricted to rare individual grains 76
5.5.2 Heterogeneous or homogeneous distribution of
short lived nuclides: mixed evidence 77
5.6 Dating accretion, heating, and cooling of planetesimals 78
5.7 A timescale of early Solar System events 80
5.8 Formation of terrestrial planets 83
5.9 Disk dissipation, Jupiter formation and gas solid
fractionation 84
5.10 Summary 86
Acknowledgments 89
6 Experiments on planetesimal formation
Gerhard Wurm and Jiirgen Blum 90
6.1 Introduction 90
6.2 Two body collisions and the growth of aggregates in
dust clouds 91
6.2.1 Hit and stick collisions 91
6.2.2 Medium/high kinetic energy collisions 100
6.3 Dust aggregate collisions and electromagnetic forces 106
6.4 Dust aggregate collisions and dust gas interactions 107
6.5 Future experiments 108
6.6 Summary 109
Acknowledgments 111
7 Dust coagulation in protoplanetary disks
Thomas Henning, Cornells P. Dullemond, Sebastian Wolf, and
Carsten Dominik 112
7.1 Introduction 112
7.2 Observational evidence for grain growth 113
7.3 Radiative transfer analysis 116
7.4 Theoretical models of dust coagulation 118
7.4.1 Important processes 118
7.4.2 Global models of grain sedimentation and
aggregation in protoplanetary disks 124
7.5 Summary 128
8 The accretion of giant planet cores
Edward W. Thommes and Martin J. Duncan 129
8.1 Introduction 129
8.2 Estimating the growth rate 131
8.2.1 Oligarchic growth 131
x Contents
8.3 Possibilities for boosting accretion speed and efficiency 136
8.3.1 The role of protoplanet atmospheres 137
8.3.2 Accretion in the shear dominated regime 138
8.3.3 Local enhancement of solids 140
8.4 Ice giants: the problem of Uranus and Neptune 141
8.5 Migration and survival 143
8.6 Discussion and conclusions 144
9 Planetary transits: a first direct vision of extrasolar planets
Alain Lecavelier des Etangs and Alfred Vidal Madjar 147
9.1 Introduction 147
9.2 Probability and frequency of transits 149
9.3 Basics of transits 151
9.3.1 Photometric transits 151
9.3.2 Spectroscopic transits 153
9.4 Observed photometric transits 153
9.4.1 /3Pictoris 153
9.4.2 HD 209458b 154
9.4.3 OGLE planets 155
9.4.4 TrES 1 155
9.4.5 Missing photometric transits 156
9.4.6 The planet radius problem 156
9.5 Observed spectroscopic transits 157
9.5.1 ^Pictoris 157
9.5.2 HD 209458b 158
9.5.3 Evaporation of hot Jupiters 159
9.5.4 The search for transits with space
observatories 161
9.6 Conclusion 161
Acknowledgments 162
10 The core accretion gas capture model for gas giant planet
formation
Olenka Hubickyj 163
10.1 Introduction 163
10.2 The development of the CAGC model 165
10.3 Observational requirements for planet forming models 167
10.4 The CAGC computer model 169
10.5 Recent results 173
10.6 Summary 177
Acknowledgments 178
Contents xi
11 Properties of exoplanets: a Doppler study of 1330 stars
Geoffrey Marcy, Debra A. Fischer, R. Paul Butler, and Steven S. Vogt 179
11.1 Overview of exoplanet properties and theory 179
11.2 The Lick, Keck, and AAT planet searches 180
11.3 Observed properties of exoplanets 181
11.3.1 The planet metallicity relationship 183
11.4 The lowest mass planets and multi planet systems 184
11.5 The Space Interferometry Mission 185
11.5.1 Finding Earth mass planets with SIM 186
11.5.2 Low mass detection threshold of SIM 186
11.6 The synergy of SIM and Terrestrial Planet Finder (TPF)/Darwin 190
Acknowledgments 191
12 Giant planet formation: theories meet observations
Alan Boss 192
12.1 Introduction 192
12.2 Gas giant planet census 193
12.3 Metallicity correlation 194
12.4 Low metallicity stars 196
12.5 Gas giant planets orbiting M dwarfs 197
12.6 Core masses of Jupiter and Saturn 198
12.7 Super Earths and failed cores 199
12.8 Gas giant planet formation epochs 200
12.9 Planetary system architectures 201
12.10 Conclusions 202
13 From hot Jupiters to hot Neptunes ... and below
Christophe Lovis, Michel Mayor, and Stephane Udry 203
13.1 Recent improvements in radial velocity precision 203
13.2 Detecting planets down to a few Earth masses 205
13.3 New discoveries and implications for planet formation theories 208
13.4 Update on some statistical properties of exoplanets 210
13.4.1 Giant planet occurrence 210
13.4.2 Mass and period distributions 211
13.4.3 Eccentricity distribution 213
13.4.4 Metallicity of planet host stars 214
14 Disk planet interaction and migration
Frederic Masset and Wilhelm Kley 116
14.1 Introduction 216
14.2 Type I migration 216
14.2.1 Evaluation of the tidal torque 217
xii Contents
14.2.2 Corotation torque 222
14.2.3 Type I migration drift rate estimates 223
14.3 Type II migration 224
14.3.1 Numerical modeling 224
14.3.2 Viscous laminar disks 225
14.3.3 The migration rate 227
14.3.4 Inviscid disks 228
14.4 Type III migration 230
14.5 Other modes of migration 234
14.6 Eccentricity driving 234
15 The brown dwarf—planet relation
Matthew R. Bate 236
15.1 Introduction 236
15.2 Masses 236
15.3 Evolution 239
15.4 The multiplicity of brown dwarfs 239
15.4.1 Binary brown dwarfs 240
15.4.2 Brown dwarfs as companions to stars 241
15.5 Formation mechanisms 241
15.5.1 Brown dwarfs from the collapse of low mass
molecular cores 242
15.5.2 Brown dwarfs from the competition between
accretion and ejection 243
15.5.3 Brown dwarfs from evaporated cores 246
15.6 Planet or brown dwarf? 247
15.7 Conclusions 249
Acknowledgments 249
16 Exoplanet detection techniques from astronomy to astrobiology
Wolfgang Brandner 250
16.1 Introduction: planet detection and studies in the historical context 250
16.2 Observing methods and ground/space projects 251
16.2.1 Indirect detection methods 252
16.2.2 Direct detection methods 253
16.3 Outlook: planet mapping and bio signatures 254
17 Overview and prospective in theory and observation of planet
formation
Douglas N. C. Lin 256
References 263
Index 300
|
adam_txt |
Contents
Preface page xiii
Acknowledgments xv
1 Historical notes on planet formation
Peter Bodenheimer 1
1.1 Introduction 1
1.2 Descartes and von Weizsacker: vortices 1
1.3 Magnetic effects 2
1.4 Gravitational instability 3
1.5 Core accretion: gas capture 6
1.6 Planet searches 8
2 The Formation and Evolution of Planetary Systems: placing our
Solar System in context
Jeroen Bouwman, Michael R. Meyer, Jinyoung Serena Kim,
Murray D. Silverstone, John M. Carpenter, and Dean C. Hines 14
2.1 Introduction 14
2.1.1 The formation of planets: from protoplanetary
towards debris disk systems 16
2.1.2 The Spitzer Space Telescope and the formation and
evolution of planetary systems legacy program 17
2.2 From protoplanetary to debris disks: processing and
dispersion of the inner dust disk 20
2.3 Debris disks: Asteroid or Kuiper Belt? 25
3 Destruction of protoplanetary disks by photoevaporation
Sabine Richling, David Hollenbach and Harold W. Yorke 31
3.1 Introduction 31
3.2 Photoevaporation and other dispersal mechanisms 33
3.3 Photoevaporation by external radiation 34
3.4 Photoevaporation by the central star 36
vii
viii Contents
3.5 Photoevaporation and dust evolution 39
3.6 Conclusions 40
Acknowledgments 41
4 Turbulence in protoplanetary accretion disks: driving mechanisms
and role in planet formation
Hubert Klahr, Michal Rozyczka, Natalia Dziourkevitch, Richard
Wiinsch, and Anders Johansen 42
4.1 Introduction 42
4.1.1 Protostellar collapse and formation of disks 42
4.1.2 Observations of accretion in protoplanetary systems 43
4.1.3 Self gravity and the early evolution of disks 44
4.1.4 Viscous evolution 46
4.2 Magnetohydrodynamic turbulence 47
4.2.1 Non ideal magnetohydrodynamics 48
4.2.2 Ohmic dissipation 50
4.2.3 Ambipolar diffusion 50
4.2.4 Hall term 50
4.3 Layered accretion 51
4.3.1 Ionization structure 52
4.3.2 Layered disk evolution 55
4.4 Alternative instabilities in the dead zone 56
4.5 Transport by turbulence 57
4.5.1 Dust dynamics 58
4.5.2 Dust trapping mechanisms 59
4.5.3 Turbulent diffusion 61
4.6 Conclusions 62
5 The origin of solids in the early Solar System
Mario Trieloff and Herbert Palme 64
5.1 Introduction: geoscience meets astronomy 64
5.2 Meteorites: remnants of planetesimal formation 4.6 billion
years ago in the asteroid belt 66
5.3 Calcium aluminum rich inclusions and chondrules:
remnants from the earliest Solar System 67
5.4 Compositional variety of chondrites: planetesimal formation
occurred at a variety of conditions in the protoplanetary
disk 69
5.4.1 Metal abundance and oxidation state 69
5.4.2 Ratio of refractory to volatile elements 73
5.4.3 Major element fractionations: Mg, Si, Fe 74
5.4.4 Oxygen isotopes 74
Contents ix
5.5 Isotopic homogeneity of Solar System materials 75
5.5.1 Heterogeneity inherited from the interstellar
medium: restricted to rare individual grains 76
5.5.2 Heterogeneous or homogeneous distribution of
short lived nuclides: mixed evidence 77
5.6 Dating accretion, heating, and cooling of planetesimals 78
5.7 A timescale of early Solar System events 80
5.8 Formation of terrestrial planets 83
5.9 Disk dissipation, Jupiter formation and gas solid
fractionation 84
5.10 Summary 86
Acknowledgments 89
6 Experiments on planetesimal formation
Gerhard Wurm and Jiirgen Blum 90
6.1 Introduction 90
6.2 Two body collisions and the growth of aggregates in
dust clouds 91
6.2.1 Hit and stick collisions 91
6.2.2 Medium/high kinetic energy collisions 100
6.3 Dust aggregate collisions and electromagnetic forces 106
6.4 Dust aggregate collisions and dust gas interactions 107
6.5 Future experiments 108
6.6 Summary 109
Acknowledgments 111
7 Dust coagulation in protoplanetary disks
Thomas Henning, Cornells P. Dullemond, Sebastian Wolf, and
Carsten Dominik 112
7.1 Introduction 112
7.2 Observational evidence for grain growth 113
7.3 Radiative transfer analysis 116
7.4 Theoretical models of dust coagulation 118
7.4.1 Important processes 118
7.4.2 Global models of grain sedimentation and
aggregation in protoplanetary disks 124
7.5 Summary 128
8 The accretion of giant planet cores
Edward W. Thommes and Martin J. Duncan 129
8.1 Introduction 129
8.2 Estimating the growth rate 131
8.2.1 Oligarchic growth 131
x Contents
8.3 Possibilities for boosting accretion speed and efficiency 136
8.3.1 The role of protoplanet atmospheres 137
8.3.2 Accretion in the shear dominated regime 138
8.3.3 Local enhancement of solids 140
8.4 Ice giants: the problem of Uranus and Neptune 141
8.5 Migration and survival 143
8.6 Discussion and conclusions 144
9 Planetary transits: a first direct vision of extrasolar planets
Alain Lecavelier des Etangs and Alfred Vidal Madjar 147
9.1 Introduction 147
9.2 Probability and frequency of transits 149
9.3 Basics of transits 151
9.3.1 Photometric transits 151
9.3.2 Spectroscopic transits 153
9.4 Observed photometric transits 153
9.4.1 /3Pictoris 153
9.4.2 HD 209458b 154
9.4.3 OGLE planets 155
9.4.4 TrES 1 155
9.4.5 Missing photometric transits 156
9.4.6 The planet radius problem 156
9.5 Observed spectroscopic transits 157
9.5.1 ^Pictoris 157
9.5.2 HD 209458b 158
9.5.3 Evaporation of hot Jupiters 159
9.5.4 The search for transits with space
observatories 161
9.6 Conclusion 161
Acknowledgments 162
10 The core accretion gas capture model for gas giant planet
formation
Olenka Hubickyj 163
10.1 Introduction 163
10.2 The development of the CAGC model 165
10.3 Observational requirements for planet forming models 167
10.4 The CAGC computer model 169
10.5 Recent results 173
10.6 Summary 177
Acknowledgments 178
Contents xi
11 Properties of exoplanets: a Doppler study of 1330 stars
Geoffrey Marcy, Debra A. Fischer, R. Paul Butler, and Steven S. Vogt 179
11.1 Overview of exoplanet properties and theory 179
11.2 The Lick, Keck, and AAT planet searches 180
11.3 Observed properties of exoplanets 181
11.3.1 The planet metallicity relationship 183
11.4 The lowest mass planets and multi planet systems 184
11.5 The Space Interferometry Mission 185
11.5.1 Finding Earth mass planets with SIM 186
11.5.2 Low mass detection threshold of SIM 186
11.6 The synergy of SIM and Terrestrial Planet Finder (TPF)/Darwin 190
Acknowledgments 191
12 Giant planet formation: theories meet observations
Alan Boss 192
12.1 Introduction 192
12.2 Gas giant planet census 193
12.3 Metallicity correlation 194
12.4 Low metallicity stars 196
12.5 Gas giant planets orbiting M dwarfs 197
12.6 Core masses of Jupiter and Saturn 198
12.7 Super Earths and failed cores 199
12.8 Gas giant planet formation epochs 200
12.9 Planetary system architectures 201
12.10 Conclusions 202
13 From hot Jupiters to hot Neptunes . and below
Christophe Lovis, Michel Mayor, and Stephane Udry 203
13.1 Recent improvements in radial velocity precision 203
13.2 Detecting planets down to a few Earth masses 205
13.3 New discoveries and implications for planet formation theories 208
13.4 Update on some statistical properties of exoplanets 210
13.4.1 Giant planet occurrence 210
13.4.2 Mass and period distributions 211
13.4.3 Eccentricity distribution 213
13.4.4 Metallicity of planet host stars 214
14 Disk planet interaction and migration
Frederic Masset and Wilhelm Kley 116
14.1 Introduction 216
14.2 Type I migration 216
14.2.1 Evaluation of the tidal torque 217
xii Contents
14.2.2 Corotation torque 222
14.2.3 Type I migration drift rate estimates 223
14.3 Type II migration 224
14.3.1 Numerical modeling 224
14.3.2 Viscous laminar disks 225
14.3.3 The migration rate 227
14.3.4 Inviscid disks 228
14.4 Type III migration 230
14.5 Other modes of migration 234
14.6 Eccentricity driving 234
15 The brown dwarf—planet relation
Matthew R. Bate 236
15.1 Introduction 236
15.2 Masses 236
15.3 Evolution 239
15.4 The multiplicity of brown dwarfs 239
15.4.1 Binary brown dwarfs 240
15.4.2 Brown dwarfs as companions to stars 241
15.5 Formation mechanisms 241
15.5.1 Brown dwarfs from the collapse of low mass
molecular cores 242
15.5.2 Brown dwarfs from the competition between
accretion and ejection 243
15.5.3 Brown dwarfs from evaporated cores 246
15.6 Planet or brown dwarf? 247
15.7 Conclusions 249
Acknowledgments 249
16 Exoplanet detection techniques from astronomy to astrobiology
Wolfgang Brandner 250
16.1 Introduction: planet detection and studies in the historical context 250
16.2 Observing methods and ground/space projects 251
16.2.1 Indirect detection methods 252
16.2.2 Direct detection methods 253
16.3 Outlook: planet mapping and bio signatures 254
17 Overview and prospective in theory and observation of planet
formation
Douglas N. C. Lin 256
References 263
Index 300 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV021618608 |
callnumber-first | Q - Science |
callnumber-label | QB603 |
callnumber-raw | QB603.O74 |
callnumber-search | QB603.O74 |
callnumber-sort | QB 3603 O74 |
callnumber-subject | QB - Astronomy |
classification_rvk | US 7400 US 8000 |
ctrlnum | (OCoLC)64313073 (DE-599)BVBBV021618608 |
dewey-full | 523.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 523 - Specific celestial bodies and phenomena |
dewey-raw | 523.4 |
dewey-search | 523.4 |
dewey-sort | 3523.4 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01510nam a2200409 cb4500</leader><controlfield tag="001">BV021618608</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230309 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060616s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521860156</subfield><subfield code="9">0-521-86015-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521860154</subfield><subfield code="9">978-0-521-86015-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)64313073</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021618608</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB603.O74</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">523.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 7400</subfield><subfield code="0">(DE-625)146727:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 8000</subfield><subfield code="0">(DE-625)146732:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Planet formation</subfield><subfield code="b">theory, observations, and experiments</subfield><subfield code="c">ed. by Hubert Klahr ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 302 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge astrobiology</subfield><subfield code="v">1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planets</subfield><subfield code="x">Origin</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Planetenentstehung</subfield><subfield code="0">(DE-588)4174796-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Planetenentstehung</subfield><subfield code="0">(DE-588)4174796-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klahr, Hubert</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge astrobiology</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV021667211</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014833704&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014833704</subfield></datafield></record></collection> |
id | DE-604.BV021618608 |
illustrated | Illustrated |
index_date | 2024-07-02T14:52:55Z |
indexdate | 2024-07-09T20:40:02Z |
institution | BVB |
isbn | 0521860156 9780521860154 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014833704 |
oclc_num | 64313073 |
open_access_boolean | |
owner | DE-20 DE-19 DE-BY-UBM |
owner_facet | DE-20 DE-19 DE-BY-UBM |
physical | XV, 302 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Cambridge astrobiology |
series2 | Cambridge astrobiology |
spelling | Planet formation theory, observations, and experiments ed. by Hubert Klahr ... 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2006 XV, 302 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cambridge astrobiology 1 Planets Origin Planetenentstehung (DE-588)4174796-3 gnd rswk-swf Planetenentstehung (DE-588)4174796-3 s DE-604 Klahr, Hubert Sonstige oth Cambridge astrobiology 1 (DE-604)BV021667211 1 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014833704&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Planet formation theory, observations, and experiments Cambridge astrobiology Planets Origin Planetenentstehung (DE-588)4174796-3 gnd |
subject_GND | (DE-588)4174796-3 |
title | Planet formation theory, observations, and experiments |
title_auth | Planet formation theory, observations, and experiments |
title_exact_search | Planet formation theory, observations, and experiments |
title_exact_search_txtP | Planet formation theory, observations, and experiments |
title_full | Planet formation theory, observations, and experiments ed. by Hubert Klahr ... |
title_fullStr | Planet formation theory, observations, and experiments ed. by Hubert Klahr ... |
title_full_unstemmed | Planet formation theory, observations, and experiments ed. by Hubert Klahr ... |
title_short | Planet formation |
title_sort | planet formation theory observations and experiments |
title_sub | theory, observations, and experiments |
topic | Planets Origin Planetenentstehung (DE-588)4174796-3 gnd |
topic_facet | Planets Origin Planetenentstehung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014833704&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021667211 |
work_keys_str_mv | AT klahrhubert planetformationtheoryobservationsandexperiments |