How to prove it: a structured approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2006
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 384 S. |
ISBN: | 0521861241 0521675995 9780521861243 9780521675994 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021610939 | ||
003 | DE-604 | ||
005 | 20151026 | ||
007 | t | ||
008 | 060608s2006 xxk |||| 00||| eng d | ||
010 | |a 2005029447 | ||
020 | |a 0521861241 |9 0-521-86124-1 | ||
020 | |a 0521675995 |9 0-521-67599-5 | ||
020 | |a 9780521861243 |9 978-0-521-86124-3 | ||
020 | |a 9780521675994 |9 978-0-521-67599-4 | ||
035 | |a (OCoLC)62084309 | ||
035 | |a (DE-599)BVBBV021610939 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 |a DE-384 |a DE-83 |a DE-11 |a DE-188 |a DE-91 |a DE-91G | ||
050 | 0 | |a QA9 | |
082 | 0 | |a 511.3 | |
084 | |a QH 100 |0 (DE-625)141530: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a 00A35 |2 msc | ||
084 | |a 03F07 |2 msc | ||
084 | |a MAT 036f |2 stub | ||
100 | 1 | |a Velleman, Daniel J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a How to prove it |b a structured approach |c Daniel J. Velleman |
250 | |a 2. ed. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2006 | |
300 | |a XIII, 384 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Mathematics | |
650 | 0 | 7 | |a Beweis |0 (DE-588)4132532-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweistheorie |0 (DE-588)4145177-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Beweistheorie |0 (DE-588)4145177-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Beweis |0 (DE-588)4132532-1 |D s |
689 | 1 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014826149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014826149 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135396925243392 |
---|---|
adam_text | HOW TO PROVE IT / VELLEMAN, DANIEL J. : 2006
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
SENTENTIAL LOGIC
1.1 DEDUCTIVE REASONING AND LOGICAL CONNECTIVES
1.2 TRUTH TABLES
1.3 VARIABLES AND SETS
1.4 OPERATIONS ON SETS
1.5 THE CONDITIONAL AND BICONDITIONAL CONNECTIVES
QUANTIFICATIONAL LOGIC
2.1 QUANTIFIERS
2.2 EQUIVALENCES INVOLVING QUANTIFIERS
2.3 MORE OPERATIONS ON SETS
PROOFS
3.1 PROOF STRATEGIES
3.2 PROOFS INVOLVING NEGATIONS AND CONDITIONALS
3.3 PROOFS INVOLVING QUANTIFIERS
3.4 PROOFS INVOLVING CONJUNCTIONS AND BICONDITIONALS
3.5 PROOFS INVOLVING DISJUNCTIONS
3.6 EXISTENCE AND UNIQUENESS PROOFS
3.7 MORE EXAMPLES OF PROOFS
RELATIONS
4.1 ORDERED PAIRS AND CARTESIAN PRODUCTS
4.2 RELATIONS
4.3 MORE ABOUT RELATIONS
4.4 ORDERING RELATIONS
4.5 CLOSURES
4.6 EQUIVALENCE RELATIONS
FUNCTIONS
5.1 FUNCTIONS
5.2 ONE-TO-ONE AND ONTO
5.3 INVERSES OF FUNCTIONS
5.4 IMAGES AND INVERSE IMAGES: A RESEARCH PROJECT
MATHEMATICAL INDUCTION
6.1 PROOF BY MATHEMATICAL INDUCTION
6.2 MORE EXAMPLES
6.3 RECURSION
6.4 STRONG INDUCTION
6.5 CLOSURES AGAIN
INFINITE SETS
7.1 EQUINUMEROUS SETS
7.2 COUNTABLE AND UNCOUNTABLE SETS
7.3 THE CANTOR
SCHRODER
BERNSTEIN THEOREMAPPENDIX 1: SOLUTIONS TO SELECTED EXERCISES
APPENDIX 2: PROOF DESIGNER
SUGGESTIONS FOR FURTHER READING
SUMMARY FOR PROOF TECHNIQUES
INDEX.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
adam_txt |
HOW TO PROVE IT / VELLEMAN, DANIEL J. : 2006
TABLE OF CONTENTS / INHALTSVERZEICHNIS
INTRODUCTION
SENTENTIAL LOGIC
1.1 DEDUCTIVE REASONING AND LOGICAL CONNECTIVES
1.2 TRUTH TABLES
1.3 VARIABLES AND SETS
1.4 OPERATIONS ON SETS
1.5 THE CONDITIONAL AND BICONDITIONAL CONNECTIVES
QUANTIFICATIONAL LOGIC
2.1 QUANTIFIERS
2.2 EQUIVALENCES INVOLVING QUANTIFIERS
2.3 MORE OPERATIONS ON SETS
PROOFS
3.1 PROOF STRATEGIES
3.2 PROOFS INVOLVING NEGATIONS AND CONDITIONALS
3.3 PROOFS INVOLVING QUANTIFIERS
3.4 PROOFS INVOLVING CONJUNCTIONS AND BICONDITIONALS
3.5 PROOFS INVOLVING DISJUNCTIONS
3.6 EXISTENCE AND UNIQUENESS PROOFS
3.7 MORE EXAMPLES OF PROOFS
RELATIONS
4.1 ORDERED PAIRS AND CARTESIAN PRODUCTS
4.2 RELATIONS
4.3 MORE ABOUT RELATIONS
4.4 ORDERING RELATIONS
4.5 CLOSURES
4.6 EQUIVALENCE RELATIONS
FUNCTIONS
5.1 FUNCTIONS
5.2 ONE-TO-ONE AND ONTO
5.3 INVERSES OF FUNCTIONS
5.4 IMAGES AND INVERSE IMAGES: A RESEARCH PROJECT
MATHEMATICAL INDUCTION
6.1 PROOF BY MATHEMATICAL INDUCTION
6.2 MORE EXAMPLES
6.3 RECURSION
6.4 STRONG INDUCTION
6.5 CLOSURES AGAIN
INFINITE SETS
7.1 EQUINUMEROUS SETS
7.2 COUNTABLE AND UNCOUNTABLE SETS
7.3 THE CANTOR
SCHRODER
BERNSTEIN THEOREMAPPENDIX 1: SOLUTIONS TO SELECTED EXERCISES
APPENDIX 2: PROOF DESIGNER
SUGGESTIONS FOR FURTHER READING
SUMMARY FOR PROOF TECHNIQUES
INDEX.
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Velleman, Daniel J. |
author_facet | Velleman, Daniel J. |
author_role | aut |
author_sort | Velleman, Daniel J. |
author_variant | d j v dj djv |
building | Verbundindex |
bvnumber | BV021610939 |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9 |
callnumber-search | QA9 |
callnumber-sort | QA 19 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 100 SK 130 |
classification_tum | MAT 036f |
ctrlnum | (OCoLC)62084309 (DE-599)BVBBV021610939 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02633nam a2200685 c 4500</leader><controlfield tag="001">BV021610939</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151026 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060608s2006 xxk |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005029447</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521861241</subfield><subfield code="9">0-521-86124-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521675995</subfield><subfield code="9">0-521-67599-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521861243</subfield><subfield code="9">978-0-521-86124-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521675994</subfield><subfield code="9">978-0-521-67599-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62084309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021610939</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA9</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 100</subfield><subfield code="0">(DE-625)141530:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">00A35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03F07</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 036f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Velleman, Daniel J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How to prove it</subfield><subfield code="b">a structured approach</subfield><subfield code="c">Daniel J. Velleman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 384 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014826149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014826149</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV021610939 |
illustrated | Not Illustrated |
index_date | 2024-07-02T14:50:31Z |
indexdate | 2024-07-09T20:39:51Z |
institution | BVB |
isbn | 0521861241 0521675995 9780521861243 9780521675994 |
language | English |
lccn | 2005029447 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014826149 |
oclc_num | 62084309 |
open_access_boolean | |
owner | DE-703 DE-384 DE-83 DE-11 DE-188 DE-91 DE-BY-TUM DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-384 DE-83 DE-11 DE-188 DE-91 DE-BY-TUM DE-91G DE-BY-TUM |
physical | XIII, 384 S. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Velleman, Daniel J. Verfasser aut How to prove it a structured approach Daniel J. Velleman 2. ed. Cambridge [u.a.] Cambridge Univ. Press 2006 XIII, 384 S. txt rdacontent n rdamedia nc rdacarrier Mathematik Logic, Symbolic and mathematical Mathematics Beweis (DE-588)4132532-1 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf Beweistheorie (DE-588)4145177-6 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Beweistheorie (DE-588)4145177-6 s DE-604 Beweis (DE-588)4132532-1 s Mathematik (DE-588)4037944-9 s 2\p DE-604 Mengenlehre (DE-588)4074715-3 s 3\p DE-604 Mathematische Logik (DE-588)4037951-6 s 4\p DE-604 LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014826149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Velleman, Daniel J. How to prove it a structured approach Mathematik Logic, Symbolic and mathematical Mathematics Beweis (DE-588)4132532-1 gnd Mengenlehre (DE-588)4074715-3 gnd Beweistheorie (DE-588)4145177-6 gnd Mathematik (DE-588)4037944-9 gnd Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4132532-1 (DE-588)4074715-3 (DE-588)4145177-6 (DE-588)4037944-9 (DE-588)4037951-6 (DE-588)4151278-9 |
title | How to prove it a structured approach |
title_auth | How to prove it a structured approach |
title_exact_search | How to prove it a structured approach |
title_exact_search_txtP | How to prove it a structured approach |
title_full | How to prove it a structured approach Daniel J. Velleman |
title_fullStr | How to prove it a structured approach Daniel J. Velleman |
title_full_unstemmed | How to prove it a structured approach Daniel J. Velleman |
title_short | How to prove it |
title_sort | how to prove it a structured approach |
title_sub | a structured approach |
topic | Mathematik Logic, Symbolic and mathematical Mathematics Beweis (DE-588)4132532-1 gnd Mengenlehre (DE-588)4074715-3 gnd Beweistheorie (DE-588)4145177-6 gnd Mathematik (DE-588)4037944-9 gnd Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Mathematik Logic, Symbolic and mathematical Mathematics Beweis Mengenlehre Beweistheorie Mathematische Logik Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014826149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT vellemandanielj howtoproveitastructuredapproach |