Managed ecosystems and CO2: case studies, processes, and perspectives
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Schriftenreihe: | Ecological Studies
187 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XL, 457 S. Ill., graph. Darst. |
ISBN: | 3540312366 9783540312369 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021607741 | ||
003 | DE-604 | ||
005 | 20090202 | ||
007 | t | ||
008 | 060606s2006 gw ad|| |||| 00||| eng d | ||
020 | |a 3540312366 |c Gb. : ca. EUR 160.45 (freier Pr.), ca. sfr 254.00 (freier Pr.) |9 3-540-31236-6 | ||
020 | |a 9783540312369 |9 978-3-540-31236-9 | ||
035 | |a (OCoLC)70249276 | ||
035 | |a (DE-599)BVBBV021607741 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-M49 |a DE-12 |a DE-703 |a DE-83 |a DE-11 |a DE-20 | ||
050 | 0 | |a QK753.C3 | |
082 | 0 | |a 363.73874 |2 22 | |
084 | |a WI 1300 |0 (DE-625)148755: |2 rvk | ||
084 | |a WI 1500 |0 (DE-625)148757: |2 rvk | ||
084 | |a UMW 229f |2 stub | ||
084 | |a 330 |2 sdnb | ||
245 | 1 | 0 | |a Managed ecosystems and CO2 |b case studies, processes, and perspectives |c J. Nösberger ... (eds.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XL, 457 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Ecological Studies |v 187 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Gaz carbonique - Aspect de l'environnement | |
650 | 4 | |a Gaz carbonique - Effets physiologiques | |
650 | 4 | |a Gaz carbonique - Essais d'environnement | |
650 | 4 | |a Plantes, Effets du gaz carbonique atmosphérique sur les | |
650 | 4 | |a Umwelt | |
650 | 4 | |a Carbon dioxide |x Environmental aspects | |
650 | 4 | |a Carbon dioxide |x Environmental testing | |
650 | 4 | |a Carbon dioxide |x Physiological effect | |
650 | 4 | |a Plants |x Effect of atmospheric carbon dioxide on | |
650 | 0 | 7 | |a Landnutzung |0 (DE-588)4259046-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohlendioxidaustausch |0 (DE-588)4233896-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohlendioxidbelastung |0 (DE-588)4129021-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökosystem |0 (DE-588)4043216-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Emissionsverringerung |0 (DE-588)4113432-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ökosystem |0 (DE-588)4043216-6 |D s |
689 | 0 | 1 | |a Kohlendioxidbelastung |0 (DE-588)4129021-5 |D s |
689 | 0 | 2 | |a Emissionsverringerung |0 (DE-588)4113432-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Ökosystem |0 (DE-588)4043216-6 |D s |
689 | 1 | 1 | |a Kohlendioxidaustausch |0 (DE-588)4233896-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Landnutzung |0 (DE-588)4259046-2 |D s |
689 | 2 | 1 | |a Kohlendioxidbelastung |0 (DE-588)4129021-5 |D s |
689 | 2 | |C b |5 DE-604 | |
700 | 1 | |a Nösberger, Josef |e Sonstige |4 oth | |
830 | 0 | |a Ecological Studies |v 187 |w (DE-604)BV000004586 |9 187 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014823007&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014823007 |
Datensatz im Suchindex
_version_ | 1804135392043073536 |
---|---|
adam_text | Contents
Part A Introduction
1
Introduction
........................... 3
J.
NÖSBERGER
and S.P. Long
1.1
Managed Ecosystems and the Future Supply
of Raw Materials
......................... 3
1.2
Why are [CO2] Enrichment Studies with Managed
Ecosystems Important?
..................... 4
1.3
Free-Air [CO2] Enrichment
................... 6
1.4
Spatial and Temporal Scale
................... 7
1.5
Elevated [CO2] Affects Plant Growth and Ecosystems
via a Multitude of Mechanisms
................ 9
1.6
Conclusions
........................... 12
References
.................................. 12
2
FACE Technology: Past, Present, and Future
......... 15
G.R. Hendrey and F. Miglietta
2.1
Introduction
........................... 15
2.2
Need for Controlled Experiments in the Field:
Historical Perspective
...................... 17
2.3
Advantages of FACE
....................... 21
2.4
Problems and Limitations
................... 21
2.4.1
CO2 as a Step Treatment
.................... 22
2.4.2
High-Frequency Variation in [CO2]
.............. 23
2.4.3
Limited Plot Size
........................ 24
X
Contents
2.4.4
Blower
Effect
........................... 24
2.5
FACE Systems Engineering
................... 25
2.5.1
Historical Perspective
...................... 25
2.5.2
BNL FACE Design
........................ 26
2.5.3
CNR FACE Design
........................ 28
2.5.4
Web-FACE
............................ 29
2.6
Multiple Variable Experiments
................. 30
2.7
Future Perspectives
....................... 32
2.7.1
The GradFACE Design
..................... 32
2.7.2
HotFACE
............................. 34
2.8
Conclusions
........................... 37
References
.................................. 39
Part
В
Case Studies
3
The Effects of Free-Air [COJ Enrichment
of Cotton, Wheat, and Sorghum
................ 47
B.A. KlMBALL
3.1
Introduction
........................... 47
3.2
Description of the FACE System
and Experimental Methodology
................ 47
3.3
Cotton
.............................. 51
3.3.1
Resource Availability
...................... 51
3.3.2
Resource Acquisition and Transformation
.......... 52
3.3.2.1
CO2 and Carbon
......................... 52
3.3.2.2
Light
............................... 58
3.3.2.3
Water
............................... 58
3.3.2.4
Nutrients
............................. 59
3.3.3
Consequences for Management
................ 59
3.3.4
Consequences for Plant Breeding
............... 60
3.4
Wheat
.............................. 60
3.4.1
Resource Availability
...................... 60
3.4.2
Resource Acquisition and Transformation
.......... 62
3.4.2.1
CO2 and Carbon
......................... 62
3.4.2.2
Water
............................... 62
3.4.2.3
Nutrients
............................. 63
3.4.3
Consequences for Management
................ 63
3.4.4
Consequences for Plant Breeding
............... 64
3.5
Sorghum
............................. 64
Contents
XI
3.5.1
Resource Availability
...................... 64
3.5.2
Resource Acquisition and Transformation
.......... 65
3.5.2.1
CO2 and Carbon
......................... 65
3.5.2.2
Water
............................... 65
3.5.2.3
Nutrients
............................. 65
3.5.3
Consequences for Management
................ 66
3.5.4.
Consequences for Plant Breeding
............... 66
3.6
Conclusions
........................... 66
References
.................................. 67
4
SoyFACE: the Effects and Interactions
of Elevated [CO2] and
[Су
on Soybean
............ 71
D.R.
Ort,
E.A. Ainsworth, M.
Aldea,
DJ. Allen,
C.J. Bernacchi, M.R. Berenbaum, G.A.
Bollero,
G. Cornic,
P.A.
Davey, O. Dermody, F.G. Dohleman, J.G. Hamilton,
E.A. Heaton, A.D.B. Leakey, J. Mahoney, T.A. Mies,
P.B. Morgan, R.L. Nelson, B. O Neil, A. Rogers,
A.R. Zangerl, X.-G. Zhu,
E.H.
DeLucia, and S.P. Long
4.1
Introduction
........................... 71
4.2
Site Description
......................... 71
4.3
Experimental Treatments
.................... 72
4.3.1
Field Layout and Blocking
................... 72
4.3.2
CO2 Treatment
.......................... 73
4.3.3
O3 Treatment
........................... 73
4.3.4
CO2
x
O3 Treatment
...................... 74
4.4
Resource Acquisition
...................... 74
4.4.1
Effects of [CO2] Treatment on Photosynthesis
........ 74
4.4.2
Effects of [O3] Treatment on Photosynthesis
......... 77
4.4.3
Effects of [COj] and
[O3]
on Canopy Development
..... 78
4.4.4
Effects of [CO2] and
[Oj]
on Insect Herbivory
........ 78
4.5
Resource Transformation
.................... 79
4.5.1
Effects of e[CO2] Treatment on Crop Production and Yield
. 79
4.5.2
Effects of O3 Treatment on Crop Production and Yield
... 81
4.6
Consequences for Future Soybean Crop Management
and Plant Breeding
....................... 81
4.7
Conclusions
........................... 83
References
.................................. 84
XII Contents
5
Paddy Rice Responses to Free-Air [CO2] Enrichment
.... 87
K. Kobayashi, M. Okada, H.Y. Kim, M. Lieffering,
S. Miura, and T. Hasegawa
5.1
Introduction to Rice
...................... 87
5.2
The Rice FACE Experiment: Phase
1.............. 88
5.2.1
Site Description, Plot Layout and Crop Management
.... 88
5.2.2
Experimental Treatments
.................... 89
5.2.2.1
[COJ Enrichment
........................ 89
5.2.2.2 N
Fertilizer Application
..................... 89
5.3
Effects of elCOJ on Paddy Rice
................ 89
5.3.1
Effects on Resource Acquisition
................ 89
5.3.1.1
Phenology
............................ 89
5.3.1.2
Light Capture by Leaves
.................... 90
5.3.1.3
Leaf Photosynthesis
....................... 91
5.3.1.4
Root Development
....................... 92
5.3.1.5
Tillering
............................. 93
5.3.1.6
Accumulation of Plant Biomass and Nitrogen
........ 93
5.3.2
Effects on Resource Transformation
.............. 95
5.3.2.1
Distribution of Plant Biomass and
N
During Reproductive Growth
................. 95
5.3.2.2
Grain Yield, Yield Components and Harvest Index
...... 96
5.3.2.3
Grain Quality
.......................... 97
5.3.3
Synthesis of Rice Plant Responses to e[CO2]
and
N
Fertilization
....................... 98
5.4
Implications for Rice Production in e[CO2]
.......... 100
5.4.1
Prediction of Global Change Impacts
............. 100
5.4.2
Adaptations to e[CO2]
..................... 101
5.5
Conclusions
........................... 102
References
.................................. 103
6
Growth and Quality Responses of Potato to Elevated
[CO2]
. 105
M.
BiNDi,
F. MiGLiETTA, F. Vaccari,
E.
Magliulo,
and
A. Giuntoli
6.1
Introdution
........................... 105
6.2
Site Description
......................... 106
6.2.1
Physical: Location, Size, Elevation, Layout of Experiment
and Blocking
........................... 106
6.2.2
Soil Types, Tillage Practices, Fertilisation,
Crop Samplings and Measurements
.............. 106
Contents XIII
6.2.3
Meteorological
Description
.................. 109
6.3
Experimental Treatments
.................... 110
6.3.1
Elevated [CO2]
.......................... 110
6.4
Resource Acquisition
...................... 110
6.4.1
Effect of Treatments
....................... 110
6.4.1.1
Photosynthesis
......................... 110
6.4.1.2
Canopy Temperature and Energy Balance
.......... 112
6.4.1.3
Water Consumption
....................... 113
6.4.1.4
Crop Phenology and Development
.............. 113
6.4.1.5
Herbivory
............................ 113
6.5
Resource Transformation
.................... 114
6.5.1
Effect of Treatments on Biomass Growth
........... 114
6.5.1.1
Aboveground
.......................... 114
6.5.1.2
Belowground
.......................... 114
6.5.2
Effect of Treatments on Yield Quantity and Quality
..... 116
6.5.2.1
Above-and Belowground Biomass
.............. 116
6.5.2.2
Tuber Physical Quality
..................... 116
6.5.2.3
Tuber Chemical Quality
.................... 117
6.6
Conclusions
........................... 118
References
.................................. 119
7
Responses of an Arable Crop Rotation System
to Elevated [CO2]
........................ 121
H.J.Weigel, R. Manderscheid, S. Burkart, A. Pacholski,
K. Waloszczyk,
С
Frühauf,
and O. Heinemeyer
7.1
Introduction
........................... 121
7.2
Site Description
......................... 123
7.2.1
Location, Climate, Meteorological and Soil Conditions
... 123
7.2.2
Crop Rotation and Agricultural Management
........ 123
7.2.3
Treatment Design
........................ 125
7.3
Results
.............................. 126
7.3.1
Resource Acquisition
...................... 126
7.3.1.1
[CO2] Effects on Photosynthesis
(Canopy CO2 Exchange Rates)
................. 126
7.3.1.2
[CO2] Effects on Canopy Evapotranspiration
ET
(Canopy H2O Exchange Rate)
................. 127
7.3.1.3
[CO2] Effects on Leaf Area Index
................ 129
7.3.2
Resource Transformation
.................... 130
7.3.2.1
[CO2] Effects on Above-ground Biomass Production
.... 130
7.3.2.2
[CO2] Effects on Below-ground Biomass Production
.... 131
XIV Contents
7.3.2.3
[C02]
Effects on Soil Microbial Biomass
........... 132
7.3.2.4
[CO2] Effects on In Situ Soil CO2 Efflux
............ 133
7.4
Conclusions
........................... 134
References
.................................. 135
8
Short- and
Long-Term
Responses of Fertile Grassland
to Elevated [C02]
........................ 139
A.
Lüscher,
U.
Aeschlimann, M.K. Schneider,
and H. Blum
8.1
Introduction
........................... 139
8.2
Site Description
......................... 140
8.3
Experimental Treatments
.................... 141
8.4
Nutrient Availability: A Key Factor
for the Plant s Response to e[CO2]
............... 142
8.4.1
Above-Ground Yield
...................... 142
8.4.2
Resource Acquisition and Resource Allocation
........ 144
8.5
Changes over
10
Years in the e[CO2] Response
of Pure L.
perenne
Swards
................... 145
8.6 N
Availability in Soil
...................... 158
8.7
С
and
N
Sequestration
..................... 150
8.8
Conclusions
........................... 151
References
.................................. 152
9
Impacts of Elevated CO2 on a Grassland Grazed by Sheep:
the New Zealand FACE Experiment
.............. 157
P.C.D. Newton, V.
Allard, R.A.
Carran, and M. Lieffering
9.1
Introduction
........................... 157
9.2
Site Description
......................... 158
9.3
Experimental Treatments
.................... 159
9.4
Resource Acquisition
...................... 160
9.4.1
Photosynthesis
......................... 160
9.4.2
Nutrients
............................. 161
9.4.3
Soil Moisture
........................... 163
9.5
Resource Transformation
.................... 164
9.5.1
Aboveground Yield and Species Composition
........ 164
9.5.2
Belowground Yield
....................... 165
9.5.3
Chemical Composition and Feed Quality
........... 167
9.6
Conclusions
........................... 169
References
.................................. 169
Contents
XV
10
Responses
to Elevated [COJ of a Short Rotation, Multispecies
Poplar Plantation: the POPFACE/EUROFACE Experiment
. 173
G. Scarascia-Mugnozza,
С
Calfapietra, R. Ceulemans,
B. Gielen, M.F. Cotrufo, P. DeAngelis, D. Godbold,
M.R. Hoosbeek,
O. Kull,
M. Lukac,
M. Marek,
F. Miglietta,
A. Polle,
С.
Raines,
M. Sabatti,
N.
Anselmi, and G.
Taylor
10.1
Introduction
........................... 173
10.1.1
Research
Leading to This Experiment.............
173
10.1.2
Focus on Agroforestry Plantations
............... 173
10.1.3
Objectives and Hypotheses
................... 174
10.2.
Site Description
......................... 174
10.2.1
Location and Layout of Experiment
.............. 174
10.2.2
Soil Types, Fertilisation, Irrigation
............... 176
10.2.3
Meteorological Description
.................. 176
10.2.4
Stand History and Description
................. 177
10.3.
Experimental Treatment
.................... 177
10.3.1
Atmospheric [CO2] Enrichment
................ 177
10.3.2
Nitrogen Fertilisation
...................... 178
10.3.3
Species Comparison
....................... 178
10.3.4
Interactions
........................... 178
10.4
Resource Acquisition
...................... 179
10.4.1
Photosynthesis and Respiration
................ 179
10.4.2
Stomatal
Conductance
..................... 181
10.4.3
Nitrogen and Other Nutrient Concentrations and Dynamics
181
10.4.4
LAI and Light Interception
................... 182
10.4.5
Canopy Architecture
...................... 184
10.4.6
Root Development and Mycorrhizal Colonization
...... 184
10.5
Resource Transformation
.................... 185
10.5.1
Aboveground Productivity
................... 185
10.5.2
Belowground Productivity
................... 185
10.5.3
Soil Carbon: Litter Production, Soil Respiration and C-Pools
188
10.5.4
Wood Quality and Biochemical Composition
of Wood and Roots
....................... 189
10.5.5
Pest and Disease Susceptibility
................. 189
10.6
Consequences and Implications
................ 190
10.6.1
Forest Management
....................... 190
10.6.2
Global Carbon Cycle
...................... 190
10.6.3
Other Ecosystem Goods and Services
............. 191
10.7
Conclusions
........................... 192
References
.................................. 193
XVI Contents
11
The Duke Forest
FACE Experiment: C02
Enrichment
of a Loblolly Pine Forest
.................... 197
W.H. SCHLESINGER, E.S.
BERNHARDT,
Ε. Η.
DeLuCIA,
D.S.
Ellsworth,
A.C.
Finzi,
G. R.
Hendrey, K.S.
Hofmockel,
J
Lichter,
R. Matamala, D.
Moore,
R.
Oren,
J.S. Pippen,
and R.B.
Thomas
11.1
Introduction...........................
197
11.2
Site Description
......................... 198
11.3
Results
.............................. 200
11.3.1
Resource Acquisition
...................... 200
11.3.2
Resource Transformation
.................... 201
11.3.3
Nitrogen Limitation
....................... 205
11.4
Estimated Global Carbon Sink in Forests
........... 207
11.5
Conclusions
........................... 208
References
.................................. 208
12
Impacts of Elevated Atmospheric [CO2] and
[O3]
on Northern Temperate Forest Ecosystems:
Results from the Aspen FACE Experiment
.......... 213
D.F. Karnosky and K.S. Pregitzer
12.1
Introduction
........................... 213
12.2
Site Description
......................... 214
12.3
Experimental Treatments
.................... 215
12.4
Resource Acquisition
...................... 216
12.4.1
Photosynthesis and Conductance
............... 216
12.4.2
Respiration
............................ 218
12.4.3
Nitrogen Dynamics
....................... 218
12.4.4
Leaf Area
............................. 218
12.4.5
Root Development
....................... 219
12.5
Resource Transformation
.................... 220
12.5.1
Growth and Productivity
.................... 220
12.5.2
Soil Carbon
........................... 221
12.5.3
Wood Quality
.......................... 221
12.5.4
Pest, Disease and Herbivore Susceptibility
.......... 221
12.6
Consequences and Implications
................ 222
12.7
Conclusions
........................... 226
References
.................................. 226
Contents XVII
1
3 С02
Enrichment of a Deciduous Forest:
The Oak Ridge FACE Experiment
............... 231
R.J. NORBY,
S.D.
WULLSCHLEGER, P.J. HANSON,
CA.
Gunderson, T.J. Tschaplinski, and J.D. Jastrow
13.1
Introduction
........................... 231
13.2
Site Description
......................... 232
13.2.1
Physical
............................. 232
13.2.2
Soil Types
............................ 233
13.2.3
Meteorological Description
.................. 233
13.2.4
Stand Description
........................ 233
13.3
Experimental Treatments
.................... 234
13.4
Resource Acquisition
...................... 234
13.4.1
CO2 Effects on Physiological Functions and Metabolites
. . 234
13.4.1.1
Carbon
.............................. 234
13.4.1.2
Water
............................... 236
13.4.1.3
Nitrogen
............................. 237
13.4.2
CO2 Effects on Tree and Stand Structure
........... 237
13.4.2.1
Leaf Area Index
......................... 237
13.4.2.2
Root System Structure
..................... 237
13.4.3
Structure-Function Integration
................ 238
13.4.3.1
Carbon Uptake
......................... 238
13.4.3.2
Stand Water Use
......................... 238
13.4.3.3
Nitrogen Cycling
........................ 240
13.5
Resource Transformation
.................... 240
13.5.1
Productivity
........................... 240
13.5.1.1
Aboveground Production
.................... 240
13.5.1.2
Belowground Production
.................... 241
13.5.1.3
Ecosystem Productivity
..................... 241
13.5.2
Soil
С
............................... 243
13.5.2.1
Carbon Input and Decomposition
............... 243
13.5.2.2
Carbon Pools
.......................... 243
13.5.2.3
Microbial Activity and Nutrient Cycling
........... 244
13.5.3
Products
............................. 245
13.5.4
Biotic Interactions
........................ 245
13.6
Consequences and Implications
................ 245
13.6.1
Forest Management
....................... 245
13.6.2
Global
С
Cycle
.......................... 246
13.7
Conclusions
........................... 248
References
.................................. 249
XVIII
Contents
Part C Processes
14
Long-Term
Responses of Photosynthesis and
Stornata
to Elevated [COJ in Managed Systems
............ 253
S.P. Long, E.A. Ainsworth, C.J. Bernacchi,
P.A.
Davey,
G.J. Hymus, A.D.B. Leakey, P.B. Morgan, and C.P. Osborne
14.1
Introduction
........................... 253
14.1.1
The Theory of Responses of Photosynthesis
and
Stomatal
Conductance to Elevated [CO2]
........ 253
14.1.2
Chamber Acclimation and Down-Regulation
of Photosynthesis
........................ 256
14.1.3
A Purpose to Down-Regulation of Photosynthesis
and
Stomatal
Conductance?
.................. 257
14.1.4
Expectations of FACE
...................... 258
14.2
Why FACE for Photosynthesis and Conductance?
...... 258
14.3
Which FACE?
.......................... 260
14.4
Have Findings From FACE Altered Perspectives?
....... 262
14.4.1
Photosynthesis is Increased Less and
Stomatal
Conductance
Decreased More in FACE
.................... 262
14.4.2
Photosynthesis is Stimulated Less at the Beginning and End
of the Day
............................ 262
14.4.3
Stimulation of Photosynthesis is Sustained
and Little Affected by Nitrogen Supply
............ 263
14.4.4
In Vivo Rubisco Activity is Decreased More than Capacity
for RubP Regeneration
..................... 265
14.5
Conclusion
............................ 266
References
.................................. 267
15
Carbon Partitioning and Respiration
-
Their Control and Role in Plants at High CO2
........ 271
P.W. Hill, J.F. Farrar, E.L. Boddy, A.M. Gray, and D.L. Jones
15.1
Introduction
........................... 271
15.2
A Brief Background to Partitioning of Dry Matter
and Carbon
........................... 272
15.3
Export From Source Leaves
.................. 273
15.4
Whole-Plant Partitioning
.................... 275
15.4.1
Growth and Development
................... 277
15.5
Within Root Partitioning
.................... 278
15.5.1
Roots are a Sink for Photosynthetically Fixed
С
....... 279
Contents XIX
15.5.2
Root Growth
........................... 280
15.5.3
Exudation, Mucilage, and Cell Death
............. 280
15.5.4
Root Death and Turnover
.................... 281
15.5.5
Elevated CO2 and FACE Experiments
............. 281
15.6
Respiration
............................ 282
15.6.1
Direct and Indirect Effects of CO2
............... 282
15.6.2
Above-Ground Respiration and FACE
............. 284
15.6.3
Roots in Soil
........................... 284
15.6.4
Below-Ground Respiration and FACE
............. 285
15.7
Conclusion
............................ 286
References
.................................. 287
16
The Response of Foliar Carbohydrates to Elevated [CO2]
. . 293
A. Rogers and E.A. Ainsworth
16.1
Introduction
........................... 293
16.1.1
Why is it Important to Understand the Response
of Foliar Carbohydrates to Growth at e[CO2]?
........ 293
16.1.2
What Were the Known Effects of e[CO2]
on Foliar Carbohydrates Before FACE?
............ 294
16.2
Do Carbohydrates Accumulate in the Leaves of Plants
Grown in the Field Using FACE Technology?
......... 295
16.3
Manipulations of Source-Sink Balance
............ 298
16.4
The Effect of Nitrogen Supply on Sink Capacity
....... 301
16.5
What Are the Signs of a Limited Sink Capacity?
....... 303
16.6
Conclusion
............................ 305
References
.................................. 305
17
Evapotranspiration, Canopy Temperature,
and Plant Water Relations
................... 311
B.A. Kimball and C.J. Bernacchi
17.1
Introduction
........................... 311
17.2
Canopy Temperature
...................... 311
17.3
Evapotranspiration
....................... 314
17.3.1
Changes in
ET
with e[CO2]
................... 314
17.3.2
Correlations of
ET
with Canopy Temperature
and Shoot Biomass Changes
.................. 315
17.3.3
Applicability of Plot-Scale
ET
Measurements
to Regional Scales
........................ 317
17.3.4
Combined Physiological and Global-Warming Effects
of e[CO2] on
ET......................... 318
XX
Contents
17.4
Soil
Water Content ....................... 319
17.5
Plant Water Use Efficiency
................... 320
17.6
Plant Water Relations
...................... 320
17.7
Conclusions
........................... 321
References
.................................. 322
18
Biological Nitrogen Fixation: A Key Process for the Response
of Grassland Ecosystems to Elevated Atmospheric
[ССУ
. . 325
U.A. Hartwig
and M.J. Sadowsky
18.1
Introduction
........................... 325
18.2
Elevated Atmospheric [CO2] Appears Not to Affect
the Activity of Symbiotic N2 Fixation
............. 326
18.3
The Initial Response of Symbiotic N2 Fixation
to Elevated Atmospheric [CO2] Under Field Conditions
is Different From That Under Continuous Nutrient Supply
. 326
18.4
What Are the Possible Reasons For the Differential Responses
of Symbiotic N2 Fixation to Elevated Atmospheric [CO2]
in Laboratory and Field Experiments?
............ 328
18.5
The Time Component, While Often Suggested,
Is Now Evident in the
10-
Year Swiss FACE Experiment
... 330
18.6
The Significance of Symbiotic N2 Fixation
Under Elevated Atmospheric [CO2] in Terrestrial Ecosystems:
An Attempt to Reach a General Conclusion
.......... 331
18.7
Conclusion
............................ 332
References
.................................. 333
19
Effects of Elevated [CO2] and
N
Fertilization on Interspecific
Interactions in Temperate Grassland Model Ecosystems
. . 337
A. LüscHER
and U. Aeschlimann
19.1
Introduction
........................... 337
19.2
Materials and Methods
..................... 338
19.2.1
Experimental Site
........................ 338
19.2.2
Experimental Treatments
.................... 339
19.2.3
Data Collection and Statistical Analysis
............ 340
19.3
Results
.............................. 340
19.3.1
Proportion of
T. repens
in Mixture
............... 340
19.3.2
Biomass and Nitrogen Yield
.................. 340
Contents XXI
19.3.3 Relative
Yield of
Biomass and
Nitrogen
............ 342
19.4
Discussion
............................ 343
19.4.1
Interspecific Differences in the Response to e[CO2]
Were Augmented in the Mixed Community
When Compared to the Pure Sward
.............. 343
19.4.2
Competitive Ability Depended Strongly on the Species,
the
N
and [CO2] Treatments
.................. 344
19.4.3
Resource Complementarity Strongly Depended
on the
N
and [COJ Treatments
................ 345
19.5
Conclusions
........................... 347
References
.................................. 348
20
The Potential of Genomics and Genetics to Understand
Plant Response to Elevated Atmospheric
[CO2]
....... 351
G.
Taylor, P.
J.
Tricker, L.E. Graham, M.J. Tallis,
A.M.
Rae,
H.Trewin, and N.R. Street
20.1
Introduction
........................... 351
20.1.1
What We Know and What We Need to Know.........
351
20.1.2
Can an
Integrative
(Systems) Biology Approach be Useful?
. 352
20.2
Genomics in Field-Grown Plants
............... 354
20.2.1
Transcript
Profiling
....................... 354
20.2.2
Use of Expression Arrays in FACE Experiments
....... 356
20.2.3
QTL Discovery for Responsive Traits
............. 358
20.2.4
Association Genetics
...................... 359
20.3
Proteomics and Metabolomics in Field-Grown Plants
.... 361
20.4
The Importance of Experimental Design
and Sampling Strategy in FACE Facilities
........... 364
20.5
The Future
............................ 366
20.6
Conclusions
........................... 366
References
.................................. 367
21
The Impact of Elevated Atmospheric
[CO2]
on Soil
С
and
N
Dynamics:
A Meta-
Analysis
.............. 373
K.-]. van Groenigen, M.-A.
de
Graaff, J. Six, D. Harris,
P. Kuikman, and
С
van
Kessel
21.1
Introduction
........................... 373
21.2
Materials and Methods
..................... 374
XXII Contents
21.2.1
Database
Compilation
..................... 374
21.2.2
Statistical Analyses
....................... 376
21.3
Results
.............................. 377
21.3.1
Soil
С
and
N
Contents
...................... 377
21.3.2
Microbial Biomass and Activity
................ 379
21.4
Discussion
............................ 381
21.4.1
Soil
С
Contents
......................... 381
21.4.2
Microbial Biomass and Activity
................ 383
21.4.3
Soil
N
Dynamics
......................... 384
21.5
Future Research Needs
..................... 385
21.6
Conclusions
........................... 386
References
.................................. 388
22
The Influence of Elevated [CO2] on Diversity, Activity
and Biogeochemical Functions of Rhizosphere
and Soil Bacterial Communities
................ 393
S. Tarnawski and M. Aragno
22.1
Introduction
........................... 393
22.2
Interactions Between Soil Microbiota
and Rhizosphere Conditions
.................. 394
22.3
Effect of etCOJ on Rhizodeposition
............. 397
22.4
Responses of Microbial Biomass, Cell Number and Activity
398
22.5
Effects on Soil Structure and Enzyme Activities
....... 400
22.6
Responses of Bacterial Community Structure to e[CO2]
. . . 400
22.7
Elevated
[CO2]
and Nitrogen Cycle in Soil and Rhizosphere
402
22.7.1
N-pools, Uptake and Mineralization
.............. 402
22.7.2
N2 Fixation
............................ 403
22.7.3
Nitrification
........................... 403
22.7.4
Denitrification
.......................... 404
22.8
Plant-Growth Promoting Rhizobacteria
........... 406
22.9
Discussion and Perspectives
.................. 406
22.10
Conclusions
........................... 408
References
.................................. 409
23
Increases in Atmospheric [CO2] and the Soil Food Web
... 413
D.A. Phillips, T.C. Fox, H. Ferris, and J.C. Moore
23.1
Introduction
........................... 413
23.1.1
Soil Food Webs: The Concept
................. 414
Contents XXIII
23.2
Effects of Elevated [COJ on Soil Organic Matter
and the Food Web
........................ 415
23.3
Root Exudation and the Effects of Elevated [CO2]
...... 417
23.4
Linking Plants to Soil Food Webs under Changing [CO2]
. . 419
23.5
Conclusions
........................... 422
References
.................................. 423
Part
D
Perspectives
24
FACE Value: Perspectives on the Future
of Free-Air CO2 Enrichment Studies
............. 431
A. Rogers, E.A. Ainsworth, and
С
Kammann
24.1
The Value of FACE Experiments
................ 431
24.2
What Have We Learnt From FACE?
.............. 432
24.2.1
Photosynthesis and Aboveground Productivity
....... 432
24.2.2
Photosynthetic Acclimation
.................. 433
24.2.2.1
Response of Different Functional Groups
........... 434
24.2.2.2
Belowground Responses
.................... 435
24.3
What Is Missing From Current FACE Research
and What Are the Gaps in Understanding?
.......... 437
24.3.1
Additional Treatments
..................... 437
24.3.2
Future Challenges
........................ 438
24.3.3
What Is the Fate of
С
Partitioned Belowground?
....... 439
24.3.3.1 N
Cycling
............................. 440
24.3.3.2
Soil Faunal Food Webs and Soil Structure
.......... 440
24.3.3.3
Trace Gases
........................... 440
24.4
Technologies for Future FACE Science
............ 441
24.4.1
The Use of Stable Isotopes
................... 441
24.4.2
Genomic Technologies and Tools in FACE
.......... 442
24.5
A Potential Problem for Long-Running FACE Experiments?
443
24.6
Conclusion
............................ 444
References
.................................. 445
Subject Index
................................ 451
|
adam_txt |
Contents
Part A Introduction
1
Introduction
. 3
J.
NÖSBERGER
and S.P. Long
1.1
Managed Ecosystems and the Future Supply
of Raw Materials
. 3
1.2
Why are [CO2] Enrichment Studies with Managed
Ecosystems Important?
. 4
1.3
Free-Air [CO2] Enrichment
. 6
1.4
Spatial and Temporal Scale
. 7
1.5
Elevated [CO2] Affects Plant Growth and Ecosystems
via a Multitude of Mechanisms
. 9
1.6
Conclusions
. 12
References
. 12
2
FACE Technology: Past, Present, and Future
. 15
G.R. Hendrey and F. Miglietta
2.1
Introduction
. 15
2.2
Need for Controlled Experiments in the Field:
Historical Perspective
. 17
2.3
Advantages of FACE
. 21
2.4
Problems and Limitations
. 21
2.4.1
CO2 as a Step Treatment
. 22
2.4.2
High-Frequency Variation in [CO2]
. 23
2.4.3
Limited Plot Size
. 24
X
Contents
2.4.4
Blower
Effect
. 24
2.5
FACE Systems Engineering
. 25
2.5.1
Historical Perspective
. 25
2.5.2
BNL FACE Design
. 26
2.5.3
CNR FACE Design
. 28
2.5.4
Web-FACE
. 29
2.6
Multiple Variable Experiments
. 30
2.7
Future Perspectives
. 32
2.7.1
The GradFACE Design
. 32
2.7.2
HotFACE
. 34
2.8
Conclusions
. 37
References
. 39
Part
В
Case Studies
3
The Effects of Free-Air [COJ Enrichment
of Cotton, Wheat, and Sorghum
. 47
B.A. KlMBALL
3.1
Introduction
. 47
3.2
Description of the FACE System
and Experimental Methodology
. 47
3.3
Cotton
. 51
3.3.1
Resource Availability
. 51
3.3.2
Resource Acquisition and Transformation
. 52
3.3.2.1
CO2 and Carbon
. 52
3.3.2.2
Light
. 58
3.3.2.3
Water
. 58
3.3.2.4
Nutrients
. 59
3.3.3
Consequences for Management
. 59
3.3.4
Consequences for Plant Breeding
. 60
3.4
Wheat
. 60
3.4.1
Resource Availability
. 60
3.4.2
Resource Acquisition and Transformation
. 62
3.4.2.1
CO2 and Carbon
. 62
3.4.2.2
Water
. 62
3.4.2.3
Nutrients
. 63
3.4.3
Consequences for Management
. 63
3.4.4
Consequences for Plant Breeding
. 64
3.5
Sorghum
. 64
Contents
XI
3.5.1
Resource Availability
. 64
3.5.2
Resource Acquisition and Transformation
. 65
3.5.2.1
CO2 and Carbon
. 65
3.5.2.2
Water
. 65
3.5.2.3
Nutrients
. 65
3.5.3
Consequences for Management
. 66
3.5.4.
Consequences for Plant Breeding
. 66
3.6
Conclusions
. 66
References
. 67
4
SoyFACE: the Effects and Interactions
of Elevated [CO2] and
[Су
on Soybean
. 71
D.R.
Ort,
E.A. Ainsworth, M.
Aldea,
DJ. Allen,
C.J. Bernacchi, M.R. Berenbaum, G.A.
Bollero,
G. Cornic,
P.A.
Davey, O. Dermody, F.G. Dohleman, J.G. Hamilton,
E.A. Heaton, A.D.B. Leakey, J. Mahoney, T.A. Mies,
P.B. Morgan, R.L. Nelson, B. O'Neil, A. Rogers,
A.R. Zangerl, X.-G. Zhu,
E.H.
DeLucia, and S.P. Long
4.1
Introduction
. 71
4.2
Site Description
. 71
4.3
Experimental Treatments
. 72
4.3.1
Field Layout and Blocking
. 72
4.3.2
CO2 Treatment
. 73
4.3.3
O3 Treatment
. 73
4.3.4
CO2
x
O3 Treatment
. 74
4.4
Resource Acquisition
. 74
4.4.1
Effects of [CO2] Treatment on Photosynthesis
. 74
4.4.2
Effects of [O3] Treatment on Photosynthesis
. 77
4.4.3
Effects of [COj] and
[O3]
on Canopy Development
. 78
4.4.4
Effects of [CO2] and
[Oj]
on Insect Herbivory
. 78
4.5
Resource Transformation
. 79
4.5.1
Effects of e[CO2] Treatment on Crop Production and Yield
. 79
4.5.2
Effects of O3 Treatment on Crop Production and Yield
. 81
4.6
Consequences for Future Soybean Crop Management
and Plant Breeding
. 81
4.7
Conclusions
. 83
References
. 84
XII Contents
5
Paddy Rice Responses to Free-Air [CO2] Enrichment
. 87
K. Kobayashi, M. Okada, H.Y. Kim, M. Lieffering,
S. Miura, and T. Hasegawa
5.1
Introduction to Rice
. 87
5.2
The Rice FACE Experiment: Phase
1. 88
5.2.1
Site Description, Plot Layout and Crop Management
. 88
5.2.2
Experimental Treatments
. 89
5.2.2.1
[COJ Enrichment
. 89
5.2.2.2 N
Fertilizer Application
. 89
5.3
Effects of elCOJ on Paddy Rice
. 89
5.3.1
Effects on Resource Acquisition
. 89
5.3.1.1
Phenology
. 89
5.3.1.2
Light Capture by Leaves
. 90
5.3.1.3
Leaf Photosynthesis
. 91
5.3.1.4
Root Development
. 92
5.3.1.5
Tillering
. 93
5.3.1.6
Accumulation of Plant Biomass and Nitrogen
. 93
5.3.2
Effects on Resource Transformation
. 95
5.3.2.1
Distribution of Plant Biomass and
N
During Reproductive Growth
. 95
5.3.2.2
Grain Yield, Yield Components and Harvest Index
. 96
5.3.2.3
Grain Quality
. 97
5.3.3
Synthesis of Rice Plant Responses to e[CO2]
and
N
Fertilization
. 98
5.4
Implications for Rice Production in e[CO2]
. 100
5.4.1
Prediction of Global Change Impacts
. 100
5.4.2
Adaptations to e[CO2]
. 101
5.5
Conclusions
. 102
References
. 103
6
Growth and Quality Responses of Potato to Elevated
[CO2]
. 105
M.
BiNDi,
F. MiGLiETTA, F. Vaccari,
E.
Magliulo,
and
A. Giuntoli
6.1
Introdution
. 105
6.2
Site Description
. 106
6.2.1
Physical: Location, Size, Elevation, Layout of Experiment
and Blocking
. 106
6.2.2
Soil Types, Tillage Practices, Fertilisation,
Crop Samplings and Measurements
. 106
Contents XIII
6.2.3
Meteorological
Description
. 109
6.3
Experimental Treatments
. 110
6.3.1
Elevated [CO2]
. 110
6.4
Resource Acquisition
. 110
6.4.1
Effect of Treatments
. 110
6.4.1.1
Photosynthesis
. 110
6.4.1.2
Canopy Temperature and Energy Balance
. 112
6.4.1.3
Water Consumption
. 113
6.4.1.4
Crop Phenology and Development
. 113
6.4.1.5
Herbivory
. 113
6.5
Resource Transformation
. 114
6.5.1
Effect of Treatments on Biomass Growth
. 114
6.5.1.1
Aboveground
. 114
6.5.1.2
Belowground
. 114
6.5.2
Effect of Treatments on Yield Quantity and Quality
. 116
6.5.2.1
Above-and Belowground Biomass
. 116
6.5.2.2
Tuber Physical Quality
. 116
6.5.2.3
Tuber Chemical Quality
. 117
6.6
Conclusions
. 118
References
. 119
7
Responses of an Arable Crop Rotation System
to Elevated [CO2]
. 121
H.J.Weigel, R. Manderscheid, S. Burkart, A. Pacholski,
K. Waloszczyk,
С
Frühauf,
and O. Heinemeyer
7.1
Introduction
. 121
7.2
Site Description
. 123
7.2.1
Location, Climate, Meteorological and Soil Conditions
. 123
7.2.2
Crop Rotation and Agricultural Management
. 123
7.2.3
Treatment Design
. 125
7.3
Results
. 126
7.3.1
Resource Acquisition
. 126
7.3.1.1
[CO2] Effects on Photosynthesis
(Canopy CO2 Exchange Rates)
. 126
7.3.1.2
[CO2] Effects on Canopy Evapotranspiration
ET
(Canopy H2O Exchange Rate)
. 127
7.3.1.3
[CO2] Effects on Leaf Area Index
. 129
7.3.2
Resource Transformation
. 130
7.3.2.1
[CO2] Effects on Above-ground Biomass Production
. 130
7.3.2.2
[CO2] Effects on Below-ground Biomass Production
. 131
XIV Contents
7.3.2.3
[C02]
Effects on Soil Microbial Biomass
. 132
7.3.2.4
[CO2] Effects on In Situ Soil CO2 Efflux
. 133
7.4
Conclusions
. 134
References
. 135
8
Short- and
Long-Term
Responses of Fertile Grassland
to Elevated [C02]
. 139
A.
Lüscher,
U.
Aeschlimann, M.K. Schneider,
and H. Blum
8.1
Introduction
. 139
8.2
Site Description
. 140
8.3
Experimental Treatments
. 141
8.4
Nutrient Availability: A Key Factor
for the Plant's Response to e[CO2]
. 142
8.4.1
Above-Ground Yield
. 142
8.4.2
Resource Acquisition and Resource Allocation
. 144
8.5
Changes over
10
Years in the e[CO2] Response
of Pure L.
perenne
Swards
. 145
8.6 N
Availability in Soil
. 158
8.7
С
and
N
Sequestration
. 150
8.8
Conclusions
. 151
References
. 152
9
Impacts of Elevated CO2 on a Grassland Grazed by Sheep:
the New Zealand FACE Experiment
. 157
P.C.D. Newton, V.
Allard, R.A.
Carran, and M. Lieffering
9.1
Introduction
. 157
9.2
Site Description
. 158
9.3
Experimental Treatments
. 159
9.4
Resource Acquisition
. 160
9.4.1
Photosynthesis
. 160
9.4.2
Nutrients
. 161
9.4.3
Soil Moisture
. 163
9.5
Resource Transformation
. 164
9.5.1
Aboveground Yield and Species Composition
. 164
9.5.2
Belowground Yield
. 165
9.5.3
Chemical Composition and Feed Quality
. 167
9.6
Conclusions
. 169
References
. 169
Contents
XV
10
Responses
to Elevated [COJ of a Short Rotation, Multispecies
Poplar Plantation: the POPFACE/EUROFACE Experiment
. 173
G. Scarascia-Mugnozza,
С
Calfapietra, R. Ceulemans,
B. Gielen, M.F. Cotrufo, P. DeAngelis, D. Godbold,
M.R. Hoosbeek,
O. Kull,
M. Lukac,
M. Marek,
F. Miglietta,
A. Polle,
С.
Raines,
M. Sabatti,
N.
Anselmi, and G.
Taylor
10.1
Introduction
. 173
10.1.1
Research
Leading to This Experiment.
173
10.1.2
Focus on Agroforestry Plantations
. 173
10.1.3
Objectives and Hypotheses
. 174
10.2.
Site Description
. 174
10.2.1
Location and Layout of Experiment
. 174
10.2.2
Soil Types, Fertilisation, Irrigation
. 176
10.2.3
Meteorological Description
. 176
10.2.4
Stand History and Description
. 177
10.3.
Experimental Treatment
. 177
10.3.1
Atmospheric [CO2] Enrichment
. 177
10.3.2
Nitrogen Fertilisation
. 178
10.3.3
Species Comparison
. 178
10.3.4
Interactions
. 178
10.4
Resource Acquisition
. 179
10.4.1
Photosynthesis and Respiration
. 179
10.4.2
Stomatal
Conductance
. 181
10.4.3
Nitrogen and Other Nutrient Concentrations and Dynamics
181
10.4.4
LAI and Light Interception
. 182
10.4.5
Canopy Architecture
. 184
10.4.6
Root Development and Mycorrhizal Colonization
. 184
10.5
Resource Transformation
. 185
10.5.1
Aboveground Productivity
. 185
10.5.2
Belowground Productivity
. 185
10.5.3
Soil Carbon: Litter Production, Soil Respiration and C-Pools
188
10.5.4
Wood Quality and Biochemical Composition
of Wood and Roots
. 189
10.5.5
Pest and Disease Susceptibility
. 189
10.6
Consequences and Implications
. 190
10.6.1
Forest Management
. 190
10.6.2
Global Carbon Cycle
. 190
10.6.3
Other Ecosystem Goods and Services
. 191
10.7
Conclusions
. 192
References
. 193
XVI Contents
11
The Duke Forest
FACE Experiment: C02
Enrichment
of a Loblolly Pine Forest
. 197
W.H. SCHLESINGER, E.S.
BERNHARDT,
Ε. Η.
DeLuCIA,
D.S.
Ellsworth,
A.C.
Finzi,
G. R.
Hendrey, K.S.
Hofmockel,
J
Lichter,
R. Matamala, D.
Moore,
R.
Oren,
J.S. Pippen,
and R.B.
Thomas
11.1
Introduction.
197
11.2
Site Description
. 198
11.3
Results
. 200
11.3.1
Resource Acquisition
. 200
11.3.2
Resource Transformation
. 201
11.3.3
Nitrogen Limitation
. 205
11.4
Estimated Global Carbon Sink in Forests
. 207
11.5
Conclusions
. 208
References
. 208
12
Impacts of Elevated Atmospheric [CO2] and
[O3]
on Northern Temperate Forest Ecosystems:
Results from the Aspen FACE Experiment
. 213
D.F. Karnosky and K.S. Pregitzer
12.1
Introduction
. 213
12.2
Site Description
. 214
12.3
Experimental Treatments
. 215
12.4
Resource Acquisition
. 216
12.4.1
Photosynthesis and Conductance
. 216
12.4.2
Respiration
. 218
12.4.3
Nitrogen Dynamics
. 218
12.4.4
Leaf Area
. 218
12.4.5
Root Development
. 219
12.5
Resource Transformation
. 220
12.5.1
Growth and Productivity
. 220
12.5.2
Soil Carbon
. 221
12.5.3
Wood Quality
. 221
12.5.4
Pest, Disease and Herbivore Susceptibility
. 221
12.6
Consequences and Implications
. 222
12.7
Conclusions
. 226
References
. 226
Contents XVII
1
3 С02
Enrichment of a Deciduous Forest:
The Oak Ridge FACE Experiment
. 231
R.J. NORBY,
S.D.
WULLSCHLEGER, P.J. HANSON,
CA.
Gunderson, T.J. Tschaplinski, and J.D. Jastrow
13.1
Introduction
. 231
13.2
Site Description
. 232
13.2.1
Physical
. 232
13.2.2
Soil Types
. 233
13.2.3
Meteorological Description
. 233
13.2.4
Stand Description
. 233
13.3
Experimental Treatments
. 234
13.4
Resource Acquisition
. 234
13.4.1
CO2 Effects on Physiological Functions and Metabolites
. . 234
13.4.1.1
Carbon
. 234
13.4.1.2
Water
. 236
13.4.1.3
Nitrogen
. 237
13.4.2
CO2 Effects on Tree and Stand Structure
. 237
13.4.2.1
Leaf Area Index
. 237
13.4.2.2
Root System Structure
. 237
13.4.3
Structure-Function Integration
. 238
13.4.3.1
Carbon Uptake
. 238
13.4.3.2
Stand Water Use
. 238
13.4.3.3
Nitrogen Cycling
. 240
13.5
Resource Transformation
. 240
13.5.1
Productivity
. 240
13.5.1.1
Aboveground Production
. 240
13.5.1.2
Belowground Production
. 241
13.5.1.3
Ecosystem Productivity
. 241
13.5.2
Soil
С
. 243
13.5.2.1
Carbon Input and Decomposition
. 243
13.5.2.2
Carbon Pools
. 243
13.5.2.3
Microbial Activity and Nutrient Cycling
. 244
13.5.3
Products
. 245
13.5.4
Biotic Interactions
. 245
13.6
Consequences and Implications
. 245
13.6.1
Forest Management
. 245
13.6.2
Global
С
Cycle
. 246
13.7
Conclusions
. 248
References
. 249
XVIII
Contents
Part C Processes
14
Long-Term
Responses of Photosynthesis and
Stornata
to Elevated [COJ in Managed Systems
. 253
S.P. Long, E.A. Ainsworth, C.J. Bernacchi,
P.A.
Davey,
G.J. Hymus, A.D.B. Leakey, P.B. Morgan, and C.P. Osborne
14.1
Introduction
. 253
14.1.1
The Theory of Responses of Photosynthesis
and
Stomatal
Conductance to Elevated [CO2]
. 253
14.1.2
Chamber Acclimation and Down-Regulation
of Photosynthesis
. 256
14.1.3
A Purpose to Down-Regulation of Photosynthesis
and
Stomatal
Conductance?
. 257
14.1.4
Expectations of FACE
. 258
14.2
Why FACE for Photosynthesis and Conductance?
. 258
14.3
Which FACE?
. 260
14.4
Have Findings From FACE Altered Perspectives?
. 262
14.4.1
Photosynthesis is Increased Less and
Stomatal
Conductance
Decreased More in FACE
. 262
14.4.2
Photosynthesis is Stimulated Less at the Beginning and End
of the Day
. 262
14.4.3
Stimulation of Photosynthesis is Sustained
and Little Affected by Nitrogen Supply
. 263
14.4.4
In Vivo Rubisco Activity is Decreased More than Capacity
for RubP Regeneration
. 265
14.5
Conclusion
. 266
References
. 267
15
Carbon Partitioning and Respiration
-
Their Control and Role in Plants at High CO2
. 271
P.W. Hill, J.F. Farrar, E.L. Boddy, A.M. Gray, and D.L. Jones
15.1
Introduction
. 271
15.2
A Brief Background to Partitioning of Dry Matter
and Carbon
. 272
15.3
Export From Source Leaves
. 273
15.4
Whole-Plant Partitioning
. 275
15.4.1
Growth and Development
. 277
15.5
Within Root Partitioning
. 278
15.5.1
Roots are a Sink for Photosynthetically Fixed
С
. 279
Contents XIX
15.5.2
Root Growth
. 280
15.5.3
Exudation, Mucilage, and Cell Death
. 280
15.5.4
Root Death and Turnover
. 281
15.5.5
Elevated CO2 and FACE Experiments
. 281
15.6
Respiration
. 282
15.6.1
Direct and Indirect Effects of CO2
. 282
15.6.2
Above-Ground Respiration and FACE
. 284
15.6.3
Roots in Soil
. 284
15.6.4
Below-Ground Respiration and FACE
. 285
15.7
Conclusion
. 286
References
. 287
16
The Response of Foliar Carbohydrates to Elevated [CO2]
. . 293
A. Rogers and E.A. Ainsworth
16.1
Introduction
. 293
16.1.1
Why is it Important to Understand the Response
of Foliar Carbohydrates to Growth at e[CO2]?
. 293
16.1.2
What Were the Known Effects of e[CO2]
on Foliar Carbohydrates Before FACE?
. 294
16.2
Do Carbohydrates Accumulate in the Leaves of Plants
Grown in the Field Using FACE Technology?
. 295
16.3
Manipulations of Source-Sink Balance
. 298
16.4
The Effect of Nitrogen Supply on Sink Capacity
. 301
16.5
What Are the Signs of a Limited Sink Capacity?
. 303
16.6
Conclusion
. 305
References
. 305
17
Evapotranspiration, Canopy Temperature,
and Plant Water Relations
. 311
B.A. Kimball and C.J. Bernacchi
17.1
Introduction
. 311
17.2
Canopy Temperature
. 311
17.3
Evapotranspiration
. 314
17.3.1
Changes in
ET
with e[CO2]
. 314
17.3.2
Correlations of
ET
with Canopy Temperature
and Shoot Biomass Changes
. 315
17.3.3
Applicability of Plot-Scale
ET
Measurements
to Regional Scales
. 317
17.3.4
Combined Physiological and Global-Warming Effects
of e[CO2] on
ET. 318
XX
Contents
17.4
Soil
Water Content . 319
17.5
Plant Water Use Efficiency
. 320
17.6
Plant Water Relations
. 320
17.7
Conclusions
. 321
References
. 322
18
Biological Nitrogen Fixation: A Key Process for the Response
of Grassland Ecosystems to Elevated Atmospheric
[ССУ
. . 325
U.A. Hartwig
and M.J. Sadowsky
18.1
Introduction
. 325
18.2
Elevated Atmospheric [CO2] Appears Not to Affect
the Activity of Symbiotic N2 Fixation
. 326
18.3
The Initial Response of Symbiotic N2 Fixation
to Elevated Atmospheric [CO2] Under Field Conditions
is Different From That Under Continuous Nutrient Supply
. 326
18.4
What Are the Possible Reasons For the Differential Responses
of Symbiotic N2 Fixation to Elevated Atmospheric [CO2]
in Laboratory and Field Experiments?
. 328
18.5
The Time Component, While Often Suggested,
Is Now Evident in the
10-
Year Swiss FACE Experiment
. 330
18.6
The Significance of Symbiotic N2 Fixation
Under Elevated Atmospheric [CO2] in Terrestrial Ecosystems:
An Attempt to Reach a General Conclusion
. 331
18.7
Conclusion
. 332
References
. 333
19
Effects of Elevated [CO2] and
N
Fertilization on Interspecific
Interactions in Temperate Grassland Model Ecosystems
. . 337
A. LüscHER
and U. Aeschlimann
19.1
Introduction
. 337
19.2
Materials and Methods
. 338
19.2.1
Experimental Site
. 338
19.2.2
Experimental Treatments
. 339
19.2.3
Data Collection and Statistical Analysis
. 340
19.3
Results
. 340
19.3.1
Proportion of
T. repens
in Mixture
. 340
19.3.2
Biomass and Nitrogen Yield
. 340
Contents XXI
19.3.3 Relative
Yield of
Biomass and
Nitrogen
. 342
19.4
Discussion
. 343
19.4.1
Interspecific Differences in the Response to e[CO2]
Were Augmented in the Mixed Community
When Compared to the Pure Sward
. 343
19.4.2
Competitive Ability Depended Strongly on the Species,
the
N
and [CO2] Treatments
. 344
19.4.3
Resource Complementarity Strongly Depended
on the
N
and [COJ Treatments
. 345
19.5
Conclusions
. 347
References
. 348
20
The Potential of Genomics and Genetics to Understand
Plant Response to Elevated Atmospheric
[CO2]
. 351
G.
Taylor, P.
J.
Tricker, L.E. Graham, M.J. Tallis,
A.M.
Rae,
H.Trewin, and N.R. Street
20.1
Introduction
. 351
20.1.1
What We Know and What We Need to Know.
351
20.1.2
Can an
Integrative
(Systems) Biology Approach be Useful?
. 352
20.2
Genomics in Field-Grown Plants
. 354
20.2.1
Transcript
Profiling
. 354
20.2.2
Use of Expression Arrays in FACE Experiments
. 356
20.2.3
QTL Discovery for Responsive Traits
. 358
20.2.4
Association Genetics
. 359
20.3
Proteomics and Metabolomics in Field-Grown Plants
. 361
20.4
The Importance of Experimental Design
and Sampling Strategy in FACE Facilities
. 364
20.5
The Future
. 366
20.6
Conclusions
. 366
References
. 367
21
The Impact of Elevated Atmospheric
[CO2]
on Soil
С
and
N
Dynamics:
A Meta-
Analysis
. 373
K.-]. van Groenigen, M.-A.
de
Graaff, J. Six, D. Harris,
P. Kuikman, and
С
van
Kessel
21.1
Introduction
. 373
21.2
Materials and Methods
. 374
XXII Contents
21.2.1
Database
Compilation
. 374
21.2.2
Statistical Analyses
. 376
21.3
Results
. 377
21.3.1
Soil
С
and
N
Contents
. 377
21.3.2
Microbial Biomass and Activity
. 379
21.4
Discussion
. 381
21.4.1
Soil
С
Contents
. 381
21.4.2
Microbial Biomass and Activity
. 383
21.4.3
Soil
N
Dynamics
. 384
21.5
Future Research Needs
. 385
21.6
Conclusions
. 386
References
. 388
22
The Influence of Elevated [CO2] on Diversity, Activity
and Biogeochemical Functions of Rhizosphere
and Soil Bacterial Communities
. 393
S. Tarnawski and M. Aragno
22.1
Introduction
. 393
22.2
Interactions Between Soil Microbiota
and Rhizosphere Conditions
. 394
22.3
Effect of etCOJ on Rhizodeposition
. 397
22.4
Responses of Microbial Biomass, Cell Number and Activity
398
22.5
Effects on Soil Structure and Enzyme Activities
. 400
22.6
Responses of Bacterial Community Structure to e[CO2]
. . . 400
22.7
Elevated
[CO2]
and Nitrogen Cycle in Soil and Rhizosphere
402
22.7.1
N-pools, Uptake and Mineralization
. 402
22.7.2
N2 Fixation
. 403
22.7.3
Nitrification
. 403
22.7.4
Denitrification
. 404
22.8
Plant-Growth Promoting Rhizobacteria
. 406
22.9
Discussion and Perspectives
. 406
22.10
Conclusions
. 408
References
. 409
23
Increases in Atmospheric [CO2] and the Soil Food Web
. 413
D.A. Phillips, T.C. Fox, H. Ferris, and J.C. Moore
23.1
Introduction
. 413
23.1.1
Soil Food Webs: The Concept
. 414
Contents XXIII
23.2
Effects of Elevated [COJ on Soil Organic Matter
and the Food Web
. 415
23.3
Root Exudation and the Effects of Elevated [CO2]
. 417
23.4
Linking Plants to Soil Food Webs under Changing [CO2]
. . 419
23.5
Conclusions
. 422
References
. 423
Part
D
Perspectives
24
FACE Value: Perspectives on the Future
of Free-Air CO2 Enrichment Studies
. 431
A. Rogers, E.A. Ainsworth, and
С
Kammann
24.1
The Value of FACE Experiments
. 431
24.2
What Have We Learnt From FACE?
. 432
24.2.1
Photosynthesis and Aboveground Productivity
. 432
24.2.2
Photosynthetic Acclimation
. 433
24.2.2.1
Response of Different Functional Groups
. 434
24.2.2.2
Belowground Responses
. 435
24.3
What Is Missing From Current FACE Research
and What Are the Gaps in Understanding?
. 437
24.3.1
Additional Treatments
. 437
24.3.2
Future Challenges
. 438
24.3.3
What Is the Fate of
С
Partitioned Belowground?
. 439
24.3.3.1 N
Cycling
. 440
24.3.3.2
Soil Faunal Food Webs and Soil Structure
. 440
24.3.3.3
Trace Gases
. 440
24.4
Technologies for Future FACE Science
. 441
24.4.1
The Use of Stable Isotopes
. 441
24.4.2
Genomic Technologies and Tools in FACE
. 442
24.5
A Potential Problem for Long-Running FACE Experiments?
443
24.6
Conclusion
. 444
References
. 445
Subject Index
. 451 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV021607741 |
callnumber-first | Q - Science |
callnumber-label | QK753 |
callnumber-raw | QK753.C3 |
callnumber-search | QK753.C3 |
callnumber-sort | QK 3753 C3 |
callnumber-subject | QK - Botany |
classification_rvk | WI 1300 WI 1500 |
classification_tum | UMW 229f |
ctrlnum | (OCoLC)70249276 (DE-599)BVBBV021607741 |
dewey-full | 363.73874 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 363 - Other social problems and services |
dewey-raw | 363.73874 |
dewey-search | 363.73874 |
dewey-sort | 3363.73874 |
dewey-tens | 360 - Social problems and services; associations |
discipline | Biologie Soziologie Wirtschaftswissenschaften Umwelt |
discipline_str_mv | Biologie Soziologie Wirtschaftswissenschaften Umwelt |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02821nam a2200685 cb4500</leader><controlfield tag="001">BV021607741</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090202 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060606s2006 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540312366</subfield><subfield code="c">Gb. : ca. EUR 160.45 (freier Pr.), ca. sfr 254.00 (freier Pr.)</subfield><subfield code="9">3-540-31236-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540312369</subfield><subfield code="9">978-3-540-31236-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70249276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021607741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M49</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK753.C3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">363.73874</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 1300</subfield><subfield code="0">(DE-625)148755:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 1500</subfield><subfield code="0">(DE-625)148757:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 229f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Managed ecosystems and CO2</subfield><subfield code="b">case studies, processes, and perspectives</subfield><subfield code="c">J. Nösberger ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XL, 457 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ecological Studies</subfield><subfield code="v">187</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaz carbonique - Aspect de l'environnement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaz carbonique - Effets physiologiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaz carbonique - Essais d'environnement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plantes, Effets du gaz carbonique atmosphérique sur les</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Umwelt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide</subfield><subfield code="x">Environmental aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide</subfield><subfield code="x">Environmental testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide</subfield><subfield code="x">Physiological effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plants</subfield><subfield code="x">Effect of atmospheric carbon dioxide on</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Landnutzung</subfield><subfield code="0">(DE-588)4259046-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohlendioxidaustausch</subfield><subfield code="0">(DE-588)4233896-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohlendioxidbelastung</subfield><subfield code="0">(DE-588)4129021-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökosystem</subfield><subfield code="0">(DE-588)4043216-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Emissionsverringerung</subfield><subfield code="0">(DE-588)4113432-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökosystem</subfield><subfield code="0">(DE-588)4043216-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohlendioxidbelastung</subfield><subfield code="0">(DE-588)4129021-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Emissionsverringerung</subfield><subfield code="0">(DE-588)4113432-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ökosystem</subfield><subfield code="0">(DE-588)4043216-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kohlendioxidaustausch</subfield><subfield code="0">(DE-588)4233896-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Landnutzung</subfield><subfield code="0">(DE-588)4259046-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Kohlendioxidbelastung</subfield><subfield code="0">(DE-588)4129021-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nösberger, Josef</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ecological Studies</subfield><subfield code="v">187</subfield><subfield code="w">(DE-604)BV000004586</subfield><subfield code="9">187</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014823007&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014823007</subfield></datafield></record></collection> |
id | DE-604.BV021607741 |
illustrated | Illustrated |
index_date | 2024-07-02T14:49:30Z |
indexdate | 2024-07-09T20:39:46Z |
institution | BVB |
isbn | 3540312366 9783540312369 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014823007 |
oclc_num | 70249276 |
open_access_boolean | |
owner | DE-M49 DE-BY-TUM DE-12 DE-703 DE-83 DE-11 DE-20 |
owner_facet | DE-M49 DE-BY-TUM DE-12 DE-703 DE-83 DE-11 DE-20 |
physical | XL, 457 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | Ecological Studies |
series2 | Ecological Studies |
spelling | Managed ecosystems and CO2 case studies, processes, and perspectives J. Nösberger ... (eds.) Berlin [u.a.] Springer 2006 XL, 457 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Ecological Studies 187 Literaturangaben Gaz carbonique - Aspect de l'environnement Gaz carbonique - Effets physiologiques Gaz carbonique - Essais d'environnement Plantes, Effets du gaz carbonique atmosphérique sur les Umwelt Carbon dioxide Environmental aspects Carbon dioxide Environmental testing Carbon dioxide Physiological effect Plants Effect of atmospheric carbon dioxide on Landnutzung (DE-588)4259046-2 gnd rswk-swf Kohlendioxidaustausch (DE-588)4233896-7 gnd rswk-swf Kohlendioxidbelastung (DE-588)4129021-5 gnd rswk-swf Ökosystem (DE-588)4043216-6 gnd rswk-swf Emissionsverringerung (DE-588)4113432-1 gnd rswk-swf Ökosystem (DE-588)4043216-6 s Kohlendioxidbelastung (DE-588)4129021-5 s Emissionsverringerung (DE-588)4113432-1 s DE-604 Kohlendioxidaustausch (DE-588)4233896-7 s Landnutzung (DE-588)4259046-2 s b DE-604 Nösberger, Josef Sonstige oth Ecological Studies 187 (DE-604)BV000004586 187 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014823007&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Managed ecosystems and CO2 case studies, processes, and perspectives Ecological Studies Gaz carbonique - Aspect de l'environnement Gaz carbonique - Effets physiologiques Gaz carbonique - Essais d'environnement Plantes, Effets du gaz carbonique atmosphérique sur les Umwelt Carbon dioxide Environmental aspects Carbon dioxide Environmental testing Carbon dioxide Physiological effect Plants Effect of atmospheric carbon dioxide on Landnutzung (DE-588)4259046-2 gnd Kohlendioxidaustausch (DE-588)4233896-7 gnd Kohlendioxidbelastung (DE-588)4129021-5 gnd Ökosystem (DE-588)4043216-6 gnd Emissionsverringerung (DE-588)4113432-1 gnd |
subject_GND | (DE-588)4259046-2 (DE-588)4233896-7 (DE-588)4129021-5 (DE-588)4043216-6 (DE-588)4113432-1 |
title | Managed ecosystems and CO2 case studies, processes, and perspectives |
title_auth | Managed ecosystems and CO2 case studies, processes, and perspectives |
title_exact_search | Managed ecosystems and CO2 case studies, processes, and perspectives |
title_exact_search_txtP | Managed ecosystems and CO2 case studies, processes, and perspectives |
title_full | Managed ecosystems and CO2 case studies, processes, and perspectives J. Nösberger ... (eds.) |
title_fullStr | Managed ecosystems and CO2 case studies, processes, and perspectives J. Nösberger ... (eds.) |
title_full_unstemmed | Managed ecosystems and CO2 case studies, processes, and perspectives J. Nösberger ... (eds.) |
title_short | Managed ecosystems and CO2 |
title_sort | managed ecosystems and co2 case studies processes and perspectives |
title_sub | case studies, processes, and perspectives |
topic | Gaz carbonique - Aspect de l'environnement Gaz carbonique - Effets physiologiques Gaz carbonique - Essais d'environnement Plantes, Effets du gaz carbonique atmosphérique sur les Umwelt Carbon dioxide Environmental aspects Carbon dioxide Environmental testing Carbon dioxide Physiological effect Plants Effect of atmospheric carbon dioxide on Landnutzung (DE-588)4259046-2 gnd Kohlendioxidaustausch (DE-588)4233896-7 gnd Kohlendioxidbelastung (DE-588)4129021-5 gnd Ökosystem (DE-588)4043216-6 gnd Emissionsverringerung (DE-588)4113432-1 gnd |
topic_facet | Gaz carbonique - Aspect de l'environnement Gaz carbonique - Effets physiologiques Gaz carbonique - Essais d'environnement Plantes, Effets du gaz carbonique atmosphérique sur les Umwelt Carbon dioxide Environmental aspects Carbon dioxide Environmental testing Carbon dioxide Physiological effect Plants Effect of atmospheric carbon dioxide on Landnutzung Kohlendioxidaustausch Kohlendioxidbelastung Ökosystem Emissionsverringerung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014823007&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004586 |
work_keys_str_mv | AT nosbergerjosef managedecosystemsandco2casestudiesprocessesandperspectives |