Alloy physics: a comprehensive reference
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Beschreibung für Leser Inhaltsverzeichnis |
Beschreibung: | XXVIII, 973 S. Ill., graph. Darst. |
ISBN: | 3527313214 9783527313211 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021603333 | ||
003 | DE-604 | ||
005 | 20071031 | ||
007 | t | ||
008 | 060601s2007 ad|| |||| 00||| eng d | ||
015 | |a GBA623576 |2 dnb | ||
020 | |a 3527313214 |9 3-527-31321-4 | ||
020 | |a 9783527313211 |9 978-3-527-31321-1 | ||
035 | |a (OCoLC)255149312 | ||
035 | |a (DE-599)BVBBV021603333 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-20 |a DE-M347 |a DE-19 |a DE-1102 |a DE-526 |a DE-634 |a DE-83 |a DE-11 | ||
050 | 0 | |a TA483 | |
082 | 0 | |a 620.16 | |
084 | |a UQ 7000 |0 (DE-625)146565: |2 rvk | ||
084 | |a UQ 7600 |0 (DE-625)146580: |2 rvk | ||
084 | |a VE 9650 |0 (DE-625)147160:253 |2 rvk | ||
084 | |a ZM 4300 |0 (DE-625)157036: |2 rvk | ||
245 | 1 | 0 | |a Alloy physics |b a comprehensive reference |c ed. by Wolfgang Pfeiler |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2007 | |
300 | |a XXVIII, 973 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Legierung - Physikalische Eigenschaft - Aufsatzsammlung | |
650 | 4 | |a Alloys | |
650 | 4 | |a Alloys |x Microstructure | |
650 | 4 | |a Alloys |x Surfaces | |
650 | 0 | 7 | |a Legierung |0 (DE-588)4035035-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metallphysik |0 (DE-588)4169621-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physikalische Eigenschaft |0 (DE-588)4134738-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Metallphysik |0 (DE-588)4169621-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Legierung |0 (DE-588)4035035-6 |D s |
689 | 1 | 1 | |a Physikalische Eigenschaft |0 (DE-588)4134738-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Pfeiler, Wolfgang |e Sonstige |4 oth | |
856 | 4 | |u http://www.gbv.de/dms/ilmenau/toc/507951794.PDF |3 Inhaltsverzeichnis | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0801/2007465747-d.html |3 Beschreibung für Leser | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014818643&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014818643 |
Datensatz im Suchindex
_version_ | 1804135386850525184 |
---|---|
adam_text | Contents
Preface XIX
Foreword XXI
by Robert W. Cahn
Motto XXIII
List of Contributors XXV
1 Introduction 1
Wolfgang Pfeiler
1.1 The Importance of Alloys at the Beginning of the Third
Millennium 1
1.2 Historical Development 5
1.2.1 Historical Perspective 5
1.2.2 The Development of Modern Alloy Science 9
1.3 Atom Kinetics 12
1.4 The Structure of this Book 13
References 18
2 Crystal Structure and Chemical Bonding 19
Yuri Grin, Ulrich Schwarz, and Walter Steurer
2.1 Introduction 19
2.2 Factors Governing Formation, Composition and Crystal Structure of
Intermetallic Phases 20
2.2.1 Mappings of Crystal Structure Types 21
2.3 Models of Chemical Bonding in Intermetallic Phases 25
2.3.1 Models Based on the Valence (or Total) Electron Numbers 25
2.3.2 Quantum Mechanical Models for Metallic Structures 29
2.3.3 Electronic Closed Shell Configurations and Two Center Two Electron
Bonds in Intermetallic Compounds 31
2.3.3.1 Zintl Klemm Approach 32
Alloy Physics: A Comprehensive Reference. Edited by Wolfgang Pfeiler
Copyright © 2007 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 978 3 527 31321 1
VI I Contents
2.3.3.2 Extended 8 N Rule 33
2.3.3.3 Bonding Models in Direct Space 34
2.4 Structure Types of Intermetallic Compounds 36
2.4.1 Classification of the Crystal Structures of Intermetallic
Compounds 37
2.4.2 Crystal Structures Derived from the Closest Packings of Equal
Spheres 37
2.4.3 Crystal Structures Derived from the Close Packings of Equal
Spheres 40
2.4.4 Crystal Structures Derived from the Packings of the Spheres of
Different Sizes 43
2.4.5 Selected Crystal Structures with Complex Structural Patterns 44
2.5 Quasicrystals 48
2.5.1 Introduction 48
2.5.2 Quasiperiodic Structures in Direct and Reciprocal Space 50
2.5.3 Formation and Stability 52
2.5.4 Structures of Decagonal Quasicrystals (DQCs) 53
2.5.5 Structures of Icosahedral Quasicrystals 55
2.6 Outlook 59
References 60
3 Solidification and Crown in Defects 63
Thierry Duffar
3.1 Introduction: the Solid Liquid Interface 63
3.1.1 Structure of the Solid Liquid Interface 63
3.1.2 Kinetics of the Solid Liquid Interface 65
3.1.3 Chemistry of the Solid Liquid Interface: the Segregation
Problem 67
3.1.4 Temperature of the Solid Liquid Interface 69
3.2 Solidification Structures 70
3.2.1 The Interface Stability and Cell Periodicity 71
3.2.2 Dendrites 74
3.2.2.1 Different Types of Dendrites 75
3.2.2.2 Kinetics of Columnar Dendrites 78
3.2.2.3 Kinetics of Equiaxed Dendrites 81
3.2.2.4 Characteristic Dimensions of the Dendrite 83
3.2.2.5 Microsegregation 85
3.2.3 Rapid Solidification 86
3.2.3.1 Absolute Stability and Diffusionless Solidification 86
3.2.3.2 Nonequilibrium Phase Diagrams 87
3.2.3.3 Structure of the Rapidly Solidified Phase 87
3.2.4 Eutectic Structures 90
3.2.4.1 Size of the Eutectic Structure 90
3.3 Defects in Single and Polycrystals 93
3.3.1 Defects in Single Crystals 94
Contents VII
3.3.1.1 Point Defects 94
3.3.1.2 Twins 97
3.3.1.3 Grains 98
3.3.2 Grain Structure of an Alloy 101
3.3.2.1 Equiaxed Growth in Presence of Refining Particles 103
3.3.2.2 Columnar to Equiaxed Transition 107
3.3.3 Macro and Mesosegregation 110
3.4 Outlook 114
References 117
4 Lattice Statics and Lattice Dynamics 119
Veronique Pierron Bohnes and Tank Mehaddene
4.1 Introduction: The Binding and Atomic Interaction Energies 119
4.2 Elasticity of Crystalline Lattices 124
4.2.1 Linear Elasticity 125
4.2.2 Elastic Constants 125
4.2.3 Cases of Cubic and Tetragonal Lattices 127
4.2.4 Usual Elastic Moduli 128
4.2.5 Link with Sound Propagation 130
4.3 Lattice Dynamics and Thermal Properties of Alloys 132
4.3.1 Normal Modes of Vibration in the Harmonic Approximation 133
4.3.1.1 Classical Theory 133
4.3.1.2 Diatomic Linear Chain 136
4.3.1.3 Quantum Theory 138
4.3.1.4 Phonon Density of States 141
4.3.1.5 Lattice Specific Heat 143
4.3.1.6 Debye s Model 144
4.3.1.7 Elastic Waves in Cubic Crystals 146
4.3.1.8 Vibrational Entropy 147
4.4 Beyond the Harmonic Approximation 149
4.4.1 Thermal Expansion 150
4.4.2 Thermal Conductivity 151
4.4.3 Soft Phonon Modes and Structural Phase Transition 253
4.5 Experimental Investigation of the Normal Modes of Vibration 156
4.5.1 Raman Spectroscopy 156
4.5.2 Inelastic Neutron Scattering 157
4.6 Phonon Spectra and Migration Energy 160
4.7 Outlook 165
References 168
5 Point Defects, Atom Jumps, and Diffusion 173
Wolfgang Puschl, Hiroshi Numakura, and Wolfgang Pfeiler
5.1 Point Defects 173
5.1.1 A Brief Overview 173
5.1.1.1 Types of Point Defects 173
VIII Contents
5.1.1.2 Formation of Equilibrium and Nonequilibrium Defects 175
5.1.1.3 Mobility 178
5.1.1.4 Experimental Techniques 179
5.1.2 Point Defects in Pure Metals and Dilute Alloys 187
5.1.2.1 Vacancies 187
5.1.2.2 Self Interstitial Atoms 193
5.1.2.3 Solute Atoms 195
5.1.3 Point Defects in Ordered Alloys 197
5.1.3.1 Point Defects and Properties of the Material 197
5.1.3.2 Statistical Thermodynamics 199
5.1.3.3 Equilibrium Concentrations Examples 208
5.1.3.4 Abundant Vacancies in some Intermetallic Compounds 213
5.2 Defect Migration: Microscopic Diffusion 217
5.2.1 The Single Atom Jump 217
5.2.1.1 Transition State Theory 217
5.2.1.2 Alternative Methods 221
5.2.2 Solid Solutions 222
5.2.2.1 Random Walk 222
5.2.2.2 Correlated Walk the Interaction of Defect and Atom 228
5.2.2.3 Diffusion Walk with Chemical Driving Force 234
5.2.2.4 Diffusion Walk in an Inhomogeneous Crystal 237
5.2.3 Atom Migration in Ordered Alloys 238
5.2.3.1 Experimental Approach to Atom Kinetics in Ordered Alloys 238
5.2.3.2 Jumps Within and Between Sublattices 239
5.2.3.3 Jump Cycles and Cooperative Atom Jumps 246
5.3 Statistical Methods: from Single Jump to Configuration
Changes 252
5.3.1 Master Equation Method 253
5.3.2 Continuum Approaches to Microscopic Diffusion and their
Interrelationship with Atom Jump Statistics 253
5.3.3 Path Probability Method 255
5.3.4 Monte Carlo Simulation Method 255
5.4 Macroscopic Diffusion 256
5.4.1 Formal Description 256
5.4.1.1 Pick s Laws 256
5.4.1.2 Nonreciprocal Diffusion, the Kirkendall Effect 259
5.4.1.3 Nonideal Solutions 261
5.4.2 Phase Transformations as Diffusion Phenomena 263
5.4.2.1 Spinodal Decomposition 263
5.4.2.2 Nucleation, Growth, Coarsening 264
5.4.3 Enhanced Diffusion Paths 265
5.4.3.1 Dislocation Core Diffusion 266
5.4.3.2 Grain Boundary Diffusion 268
5.4.3.3 Diffusion along Interfaces and Surfaces 270
5.5 Outlook 272
References 274
Contents IX
6 Dislocations and Mechanical Properties 281
Daniel Caillard
6.1 Introduction 281
6.2 Thermally Activated Mechanisms 283
6.2.1 Introduction to Thermal Activation 283
6.2.2 Interactions with Solute Atoms 285
6.2.2.1 General Aspects 285
6.2.2.2 Low Temperatures (Domain 2, Interaction with Fixed Solute
Atoms) 286
6.2.2.3 Intermediate Temperatures (Domain 3, Stress Instabilities) 289
6.2.2.4 High Temperatures (Domain 4, Diffusion Controlled Glide) 291
6.2.3 Forest Mechanism 292
6.2.4 Peierls Type Friction Forces 293
6.2.4.1 The Kink Pair Mechanism 293
6.2.4.2 Locking Unlocking Mechanism 295
6.2.4.3 Transition between Kink Pair and Locking Unlocking
Mechanisms 297
6.2.4.4 Observations of Peierls Type Mechanisms 298
6.2.5 Cross Slip in fee Metals and Alloys 305
6.2.5.1 Elastic Calculations 305
6.2.5.2 Atomistic Calculations 307
6.2.5.3 Experimental Results 307
6.2.6 Dislocation Climb 309
6.2.6.1 Emission of Vacancies at Jogs 309
6.2.6.2 Diffusion of Vacancies from Jogs 310
6.2.6.3 Jog Density and Jog Pair Mechanism 311
6.2.6.4 Effect of Over (Under ) Saturations of Vacancies: Chemical
Force 313
6.2.6.5 Stress Dependence of the Dislocation Climb Velocity 314
6.2.6.6 Experimental Results 314
6.2.7 Conclusions on Thermally Activated Mechanisms 316
6.3 Hardening and Recovery 316
6.3.1 Dislocation Multiplication versus Exhaustion 317
6.3.1.1 Dislocation Sources 318
6.3.1.2 Dislocation Exhaustion and Annihilation 320
6.3.2 Dislocation Dislocation Interaction and Internal Stress: the Taylor
Law 321
6.3.3 Hardening Stages in fee Metals and Alloys 323
6.3.3.1 Stage II (Linear Hardening) 324
6.3.3.2 Stage III 329
6.3.3.3 Stage IV 330
6.3.3.4 Strain Hardening in Intermetallic Alloys 330
6.4 Complex Behavior 330
6.4.1 Yield Stress Anomalies 330
6.4.1.1 Dynamic Strain Aging 331
X| Contents
6.4.1.2 Cross Slip Locking 332
6.4.2 Fatigue 333
6.4.2.1 Microstructure of Fatigued Metals and Alloys 334
6.4.2.2 Comparison with Stages II and III of Monotonic Strain
Hardening 335
6.4.2.3 Intrusions, Extrusions and Fracture 335
6.4.2.4 Conclusions 336
6.4.3 Strength of Nanocrystalline Alloys and Thin Layers 336
6.4.3.1 The Hall Petch Law (Grain Size D 20 nm) 337
6.4.3.2 Hall Petch Law Breakdown (Grain Size D 20 nm) 337
6.4.4 Fracture 338
6.4.5 Quasicrystals 339
6.5 Outlook 342
References 342
7 Phase Equilibria and Phase Transformations 347
Brent Fultz and Jeffrey J. Hoyt
7.1 Alloy Phase Diagrams 347
7.1.1 Solid Solutions 347
7.1.2 Free Energy and the Lever Rule 351
7.1.3 Common Tangent Construction 353
7.1.4 Unmixing and Continuous Solid Solubility Phase Diagrams 354
7.1.5 Eutectic and Peritectic Phase Diagrams 356
7.1.6 More Complex Phase Diagrams 357
7.1.7 Atomic Ordering 359
7.1.8 Beyond Simple Models 362
7.1.9 Entropy of Configurations 363
7.1.10 Principles of Phonon Entropy 365
7.1.11 Trends of Phonon Entropy 367
7.1.12 Phonon Entropy at Elevated Temperatures 369
7.2 Kinetics and the Approach to Equilibrium 371
7.2.1 Suppressed Diffusion in the Solid (Nonequilibrium
Compositions) 371
7.2.2 Nucleation Kinetics 373
7.2.3 Suppressed Diffusion in the Liquid (Glasses) 374
7.2.4 Suppressed Diffusion in a Solid Phase (Solid State
Amorphization) 375
7.2.5 Combined Reactions 376
7.2.6 Statistical Kinetics of Phase Transformations 377
7.2.7 Kinetic Pair Approximation 378
7.2.8 Equilibrium State of Order 380
7.2.9 Kinetic Paths 380
7.3 Nucleation and Growth Transformations 382
7.3.1 Definitions 382
Contents I XI
7.3.2 Fluctuations and the Critical Nucleus 384
7.3.3 The Nucleation Rate 387
7.3.4 Time Dependent Nucleation 391
7.3.5 Effect of Elastic Strain 393
7.3.6 Heterogeneous Nucleation 395
7.3.7 The Kolmogorov Johnson Mehl Avrami Growth Equation 397
7.4 Spinodal Decomposition 399
7.4.1 Concentration Fluctuations and the Free Energy of Solution 400
7.4.2 The Diffusion Equation 402
7.4.3 Effects of Elastic Strain Energy 404
7.5 Martensitic Transformations 406
7.5.1 Characteristics of Martensite 406
7.5.2 Massive and Displacive Transformations 411
7.5.3 Bain Strain Mid Lattice Invariant Shear 412
7.5.4 Martensite Crystallography 413
7.5.5 Nucleation and Dislocation Models of Martensite 415
7.5.6 Soft Mode Transitions, the Clapp Lattice Instability Model 417
7.6 Outlook 418
References 420
8 Kinetics in Nonequilibrium Alloys 423
Pascal Bellon and Georges Martin
8.1 Relaxation of Nonequilibrium Alloys 424
8.1.1 Coherent Precipitation: Nothing but Solid State Diffusion 425
8.1.2 Cluster Dynamics, Nucleation Theory, Diffusion Equations: Three
Tools for Describing Kinetic Pathways 426
8.1.3 Cluster Dynamics 427
8.1.3.1 Dilute Alloy at Equilibrium 427
8.1.3.2 Fluctuations in the Gas of Clusters at Equilibrium 429
8.1.3.3 Relaxation of a Nonequilibrium Cluster Gas 429
8.1.4 Classical Nucleation Theory 432
8.1.4.1 Summary of CNT 432
8.1.4.2 Source of Fluctuations Consistent with CNT 433
8.1.4.3 A First Application 435
8.1.5 Kinetics of Concentration Fields 436
8.1.6 Conclusion 438
8.2 Driven Alloys 438
8.2.1 Examples of Driven Alloys 439
8.2.1.1 Alloys Subjected to Sustained Irradiation 439
8.2.1.2 Alloys Subjected to Sustained Plastic Deformation 447
8.2.1.3 Alloys Subjected to Sustained Electrochemical Exchanges 449
8.2.2 Identification of the Relevant Control Parameters: Toward a
Dynamical Equilibrium Phase Diagram 450
8.2.3 Theoretical Approaches and Simulation Techniques 454
XII I Contents
8.2.3.1 Molecular Dynamics Simulations 455
8.2.3.2 Microscopic Master Equation 456
8.2.3.3 Kinetic Monte Carlo Simulations 458
8.2.3.4 Kinetics of Concentration Fields under Irradiation 460
8.2.3.5 Nucleation Theory under Irradiation 466
8.2.4 Self Organization in Driven Alloys: Role of Length Scales of the
External Forcing 468
8.2.4.1 Compositional Patterning under Irradiation 469
8.2.4.2 Patterning of Chemical Order under Irradiation 478
8.2.4.3 Compositional Patterning under Plastic Deformation 480
8.2.5 Practical Applications and Extensions 481
8.2.5.1 Tribochemical Reactions 481
8.2.5.2 Pharmaceutical Compounds Synthesized by Mechanical
Activation 483
8.3 Outlook 484
References 484
9 Change of Alloy Properties under Dimensional Restrictions 491
Hirotaro Mori and Jung Coo Lee
9.1 Introduction 491
9.2 Instrumentation for in situ Observation of Phase Transformation of
Nanometer Sized Alloy Particles 492
9.3 Depression of the Eutectic Temperature and its Relevant
Phenomena 494
9.3.1 Atomic Diffusivity in Nanometer Sized Particles 494
9.3.2 Eutectic Temperature in Nanometer Sized Alloy Particles 496
9.3.3 Structural Instability 500
9.3.4 Thermodynamic Discussion 503
9.3.4.1 Gibbs Free Energy in Nanometer Sized Alloy Systems 503
9.3.4.2 Result of Calculations 505
9.4 Solid/Liquid Two Phase Microstructure 508
9.4.1 Solid Liquid Phase Transition 508
9.4.2 Two Phase Microstructure 514
9.5 Solid Solubility in Nanometer Sized Alloy Particles 518
9.6 Summary and Future Perspectives 521
References 522
10 Statistical Thermodynamics and Model Calculations 525
Tetsuo Mohri
10.1 Introduction 525
10.2 Statistical Thermodynamics on a Discrete Lattice 527
10.2.1 Description of Atomic Configuration 527
10.2.2 Internal Energy 534
10.2.3 Entropy and Cluster Variation Method 536
Contents XIII
10.2.4 Free Energy 542
10.2.5 Relative Stability and Intrinsic Stability 544
10.2.6 Atomistic Kinetics by the Path Probability Method 549
10.3 Statistical Thermodynamics on Continuous Media 552
10.3.1 Ginzburg Landau Free Energy 552
10.3.2 Diffusion Equation and Time Dependent Ginzburg Landau
Equation 554
10.3.3 Width of an Interface 557
10.3.4 Interface Velocity 559
10.4 Model Calculations 560
10.4.1 Calculation of a Phase Diagram 561
10.4.1.1 Ground State Analysis 561
10.4.1.2 Effective Cluster Interaction Energy 564
10.4.1.3 Phase Diagram 568
10.4.2 Microstructural Evolution Calculated by the Phase Field Method 572
10.4.2.1 Hybrid Model 572
10.4.2.2 Toward the First Principles Phase Field Calculation 576
10.5 Future Scope and Outlook 580
Appendix: C ALP HAD Free Energy 582
References 585
11 Ab lnitio Methods and Applications 589
Stefan Miiller, Walter Wolf and Raimund Podloucky
11.1 Introduction 589
11.2 Theoretical Background 590
11.2.1 Density Functional Theory 590
11.2.2 Computational Methods 594
11.2.3 Elastic Properties 598
11.2.4 Vibrational Properties 601
11.3 Applications 606
11.3.1 Structural and Phase Stability 606
11.3.2 Point Defects 612
11.3.3 Diffusion Processes 616
11.3.4 Impurity Effects on Grain Boundary Cohesion 622
11.3.5 Toward Multiscale Modeling: Cluster Expansion 625
11.3.6 Search for Ground State Structures 639
11.3.7 Ordering and Decomposition Phenomena in Binary Alloys 641
11.4 Outlook 648
References 649
12 Simulation Techniques 653
Ferdinand Haider, Rafal Kozubski, and T.A. Abinandanan
12.1 Introduction 653
12.2 Molecular Dynamics Simulations 654
XIV Contents
12.2.1 Basic Ideas 654
12.2.2 Atomic Interaction, Potential Models 656
12.2.2.1 Pairwise Interaction 656
12.2.2.2 Many Body Potentials, the EAM Method 657
12.2.3 Practical Considerations 659
12.2.4 Different Thermodynamic Ensembles: Thermostats, Barostats 659
12.2.5 Implementation of MD Algorithms 661
12.2.6 Practical Aspects: Time Steps 662
12.2.7 Evaluation of Data: Use of Correlation Functions 662
12.2.8 Applications to Alloys, Alloy Dynamics, and Alloy Kinetics 664
12.3 Monte Carlo Simulations 667
12.3.1 Foundations of Stochastic Processes Markov Chains and the Master
Equation 667
12.3.2 The Idea of Sampling 668
12.3.3 Markov Chains as a Tool for Importance Sampling 670
12.3.4 General Applicability 671
12.3.4.1 Simulation and Characterization of System Properties in
Thermodynamic Equilibrium 671
12.3.4.2 Simulation of Relaxation Processes Toward Equilibrium 673
12.3.4.3 Simulation of Nonequilibrium Processes and Transport
Phenomena 673
12.3.5 Limitations: Finite Size Effects and Boundary Conditions 674
12.3.6 Numerical Implementation of MC 675
12.3.6.1 Classical Realization of Markov Chains 675
12.3.6.2 Residence Time Algorithm 676
12.3.6.3 The Problem of Time Scales 677
12.3.7 Applications to Alloys 678
12.3.7.1 General Assumptions 678
12.3.7.2 Physical Model of an Alloy 679
12.3.8 Practical Aspects 681
12.3.9 Review of Current Applications in Studies of Alloys 682
12.3.9.1 Computation of Phase Diagrams using Grandcanonical
Ensemble 683
12.3.9.2 Reverse and Inverse Monte Carlo Methods: from Experimental SRO
Parameters to Atomic Interaction Energies 683
12.3.10 Going beyond the Ising Model and Rigid Lattice Simulations 685
12.3.11 Monte Carlo Simulations in View of other Techniques of Alloy
Modeling 686
12.4 Phase Field Models 686
12.4.1 Introduction 686
12.4.2 Cahn Hilliard Model 687
12.4.2.1 Energetics 687
12.4.2.2 Interfacial Energy and Width 689
12.4.2.3 Dynamics 693
12.4.3 Numerical Implementation 691
Contents XV
12 A A Application: Spinodal Decomposition 693
12.4.5 Cahn Allen Model 694
12.4.5.1 Kinetics 695
12.4.6 Generalized Phase Field Models 696
12.4.6.1 Key Features of Phase Field Models 696
12.4.6.2 Precipitation of an Ordered Phase 697
12.4.6.3 Grain Growth in Polycrystals 698
12.4.6.4 Solidification 700
12.4.7 Other Topics 700
12.4.7.1 Anisotropy in Interfacial Energy 700
12.4.7.2 Elastic Strain Energy 701
12.5 Outlook 702
Appendix 702
References 703
13 High Resolution Experimental Methods 707
13.1 High Resolution Scattering Methods and Time Resolved
Diffraction 707
Bogdan Sepiol and Karl F. Ludwig
13.1.1 Introduction: Theoretical Concepts, X Ray, and Neutron Scattering
Methods 707
13.1.2 Magnetic Scattering 710
13.1.2.1 Magnetic Neutron Scattering 710
13.1.2.2 Magnetic X Ray Scattering 715
13.1.3 Spectroscopy 721
13.1.3.1 Coherent Time Resolved X Ray Scattering 722
13.1.3.1.1 Homodyne X Ray Studies of Equilibrium Fluctuation Dynamics 723
13.1.3.1.2 Heterodyne X Ray Studies of Equilibrium Fluctuation Dynamics 725
13.1.3.1.3 Studies of Critical Fluctuations with Microbeams 726
13.1.3.1.4 Coherent X Ray Studies of the Kinetics of Nonequilibrium
Systems 726
13.1.3.1.5 Coherent X Ray Studies of Microscopic Reversibility 729
13.1.3.2 Phonon Excitations 729
13.1.3.2.1 Inelastic X Ray Scattering 730
13.1.3.2.2 Nuclear Inelastic Scattering 732
13.1.3.3 Quasielastic Scattering: Diffusion 733
13.1.3.3.1 Quasielastic Methods: Mossbauer Spectroscopy and Neutron
Scattering 738
13.1.3.3.2 Nuclear Resonant Scattering of Synchrotron Radiation 741
13.1.3.3.3 Pure Metals and Dilute Alloys 743
13.1.3.3.4 Ordered Alloys 744
13.1.3.3.5 Amorphous Materials 745
13.1.4 Time Resolved Scattering 749
XVI Contents
13.1.4.1 Technical Capabilities 750
13.1.4.2 Time Resolved Studies Examples 751
13.1.5 Diffuse Scattering from Disordered Alloys 756
13.1.5.1 Metallic Glasses and Liquids 757
13.1.5.2 Diffuse Scattering from Disordered Crystalline Alloys 759
13.1.6 Surface Scattering Atomic Segregation and Ordering near
Surfaces 762
13.1.7 Scattering from Quasicrystals 763
13.1.8 Outlook 764
References 765
13.2 High Resolution Microscopy 774
Cuido Schmitz and James M. Howe
13.2.1 Surface Analysis by Scanning Probe Microscopy 775
13.2.1.1 Functional Principle of Scanning Tunneling and Atomic Force
Microscopy 776
13.2.1.2 Modes of Measurement in AFM 779
13.2.1.3 Cantilever Design for the AFM 781
13.2.1.4 Exemplary Studies by Scanning Probe Microscopy 783
13.2.1.4.1 Chemical Contrast by STM and Surface Ordering 783
13.2.1.4.2 Microstructure Characterization and Surface Topology by AFM 785
13.2.1.4.3 Imaging of Nanomagnets by Magnetic Force Microscopy 789
13.2.2 High Resolution Transmission Electron Microscopy and Related
Techniques 791
13.2.2.1 Principles of Image Formation in and Practical Aspects of High
Resolution Transmission Electron Microscopy 793
13.2.2.1.1 Principles of Image Formation 793
13.2.2.1.2 Practical Aspects of HRTEM 796
13.2.2.2 In Situ Hot Stage High Resolution Transmission Electron
Microscopy 797
13.2.2.3 Examples of HRTEM Studies of Dislocation and Interphase
Boundaries 799
13.2.2.3.1 Disclinations in Mechanically Milled Fe Powder 799
13.2.2.3.2 Interphase Boundaries in Metal Alloys 802
13.2.2.3.3 Diffuse Interface in Cu Au 802
13.2.2.3.4 Partly Coherent Interfaces in Al Cu 807
13.2.2.3.5 Incoherent Interfaces in Ti Al 811
13.2.3 Local Analysis by Atom Probe Tomography 817
13.2.3.1 The Functional Principle of Atom Probe Tomography 819
13.2.3.2 Two Dimensional Single Ion Detector Systems 823
13.2.3.3 Ion Trajectories and Image Magnification 827
13.2.3.4 Tomographic Reconstruction 830
13.2.3.5 Accuracy of the Reconstruction 833
13.2.3.6 Specimen Preparation 836
13.2.3.7 Examples of Studies by Atom Probe Tomography 837
Contents XVII
13.2.3.7.1 Decomposition in Supersaturated Alloys 837
13.2.3.7.2 Nucleation of the First Product Phase 843
13.2.3.7.3 Diffusion in Nanocrystalline Thin Films 847
13.2.3.7.4 Thermal Stability of GMR Sensor Layers 850
13.2.4 Future Development and Outlook 853
References 857
14 Materials and Process Design 861
14.1 Soft and Hard Magnets 861
Roland Crossinger
14.1.1 What do Soft and Hard Magnetic Mean? 861
14.1.1.1 Intrinsic Properties Determining the Hysteresis Loop (Anisotropy,
Magnetostriction) 863
14.1.1.2 Extrinsic Properties Microstructure 864
14.1.2 Soft Magnetic Materials 865
14.1.2.1 Pure Fe and Fe Si 867
U.I.2.2 Ni Fe Alloys 868
14.1.2.3 Soft Magnetic Ferrites 869
14.1.2.4 Amorphous Materials 871
14.1.2.5 Nanocrystalline Materials 872
14.1.3 Hard Magnetic Materials 873
14.1.3.1 AlNiCo 876
14.1.3.2 Ferrites 877
14.1.3.3 Sm Co 878
14.1.3.4 Nd Fe B 879
14.1.3.5 Nanocrystalline Materials 880
14.1.3.6 Industrial Nanocrystalline Hard Magnetic Materials 882
14.1.4 Outlook 883
References 883
14.2 Invar Alloys 885
Peter Mohn
14.2.1 Introduction and General Remarks 885
14.2.2 Spontaneous Volume Magnetostriction 888
14.2.3 The Modeling of Invar Properties 889
14.2.4 A Microscopic Model 893
14.2.5 Outlook 894
References 895
14.3 Magnetic Media 895
Laurent Ranno
14.3.1 Data Storage 895
14.3.1.1 Information Storage 895
XVIII Contents
14.3.1.2 Competing Physical Effects 896
14.3.1.3 Magnetic Storage 897
14.3.2 Magnetic Recording Media 905
14.3.2.1 Particulate Media 905
14.3.2.2 Continuous Media Film Media 906
14.3.2.3 Perpendicular Recording 907
14.3.3 Outlook 909
Further Reading 910
14.4 Spin Electronics (Spintronics) 911
Laurent Rcmno
14.4.1 Electrical Transport in Conductors 911
14.4.1.1 Conventional Transport 911
14.4.1.2 Role of Disorder 913
14.4.1.3 Transport in Magnetic Conductors 914
14.4.2 Magnetoresistance 915
14.4.2.1 Cyclotron Magnetoresistance 916
14.4.2.2 Anisotropic Magnetoresistance (AMR) 916
14.4.2.3 Giant MR (GMR) and Tunnel MR (TMR) 916
14.4.2.4 Magnetic Field Sensors 918
14.4.2.5 Magnetic RAM 920
14.4.3 Outlook 921
Further Reading 921
14.5 Phase Change Media 921
Takeo Ohta
14.5.1 Electrically and Optically Induced Writing and Erasing
Processes 921
14.5.2 Phase Change Dynamic Model 925
14.5.3 Alternative Functions 933
USA Outlook 938
References 938
14.6 Superconductors 939
Harold W. Weber
14.6.1 Fundamentals 939
14.6.2 Superconducting Materials 944
14.6.3 Technical Superconductors 946
14.6.4 Applications 952
Further Reading 953
Index 955
|
adam_txt |
Contents
Preface XIX
Foreword XXI
by Robert W. Cahn
Motto XXIII
List of Contributors XXV
1 Introduction 1
Wolfgang Pfeiler
1.1 The Importance of Alloys at the Beginning of the Third
Millennium 1
1.2 Historical Development 5
1.2.1 Historical Perspective 5
1.2.2 The Development of Modern Alloy Science 9
1.3 Atom Kinetics 12
1.4 The Structure of this Book 13
References 18
2 Crystal Structure and Chemical Bonding 19
Yuri Grin, Ulrich Schwarz, and Walter Steurer
2.1 Introduction 19
2.2 Factors Governing Formation, Composition and Crystal Structure of
Intermetallic Phases 20
2.2.1 Mappings of Crystal Structure Types 21
2.3 Models of Chemical Bonding in Intermetallic Phases 25
2.3.1 Models Based on the Valence (or Total) Electron Numbers 25
2.3.2 Quantum Mechanical Models for Metallic Structures 29
2.3.3 Electronic Closed Shell Configurations and Two Center Two Electron
Bonds in Intermetallic Compounds 31
2.3.3.1 Zintl Klemm Approach 32
Alloy Physics: A Comprehensive Reference. Edited by Wolfgang Pfeiler
Copyright © 2007 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 978 3 527 31321 1
VI I Contents
2.3.3.2 Extended 8 N Rule 33
2.3.3.3 Bonding Models in Direct Space 34
2.4 Structure Types of Intermetallic Compounds 36
2.4.1 Classification of the Crystal Structures of Intermetallic
Compounds 37
2.4.2 Crystal Structures Derived from the Closest Packings of Equal
Spheres 37
2.4.3 Crystal Structures Derived from the Close Packings of Equal
Spheres 40
2.4.4 Crystal Structures Derived from the Packings of the Spheres of
Different Sizes 43
2.4.5 Selected Crystal Structures with Complex Structural Patterns 44
2.5 Quasicrystals 48
2.5.1 Introduction 48
2.5.2 Quasiperiodic Structures in Direct and Reciprocal Space 50
2.5.3 Formation and Stability 52
2.5.4 Structures of Decagonal Quasicrystals (DQCs) 53
2.5.5 Structures of Icosahedral Quasicrystals 55
2.6 Outlook 59
References 60
3 Solidification and Crown in Defects 63
Thierry Duffar
3.1 Introduction: the Solid Liquid Interface 63
3.1.1 Structure of the Solid Liquid Interface 63
3.1.2 Kinetics of the Solid Liquid Interface 65
3.1.3 Chemistry of the Solid Liquid Interface: the Segregation
Problem 67
3.1.4 Temperature of the Solid Liquid Interface 69
3.2 Solidification Structures 70
3.2.1 The Interface Stability and Cell Periodicity 71
3.2.2 Dendrites 74
3.2.2.1 Different Types of Dendrites 75
3.2.2.2 Kinetics of Columnar Dendrites 78
3.2.2.3 Kinetics of Equiaxed Dendrites 81
3.2.2.4 Characteristic Dimensions of the Dendrite 83
3.2.2.5 Microsegregation 85
3.2.3 Rapid Solidification 86
3.2.3.1 Absolute Stability and Diffusionless Solidification 86
3.2.3.2 Nonequilibrium Phase Diagrams 87
3.2.3.3 Structure of the Rapidly Solidified Phase 87
3.2.4 Eutectic Structures 90
3.2.4.1 Size of the Eutectic Structure 90
3.3 Defects in Single and Polycrystals 93
3.3.1 Defects in Single Crystals 94
Contents VII
3.3.1.1 Point Defects 94
3.3.1.2 Twins 97
3.3.1.3 Grains 98
3.3.2 Grain Structure of an Alloy 101
3.3.2.1 Equiaxed Growth in Presence of Refining Particles 103
3.3.2.2 Columnar to Equiaxed Transition 107
3.3.3 Macro and Mesosegregation 110
3.4 Outlook 114
References 117
4 Lattice Statics and Lattice Dynamics 119
Veronique Pierron Bohnes and Tank Mehaddene
4.1 Introduction: The Binding and Atomic Interaction Energies 119
4.2 Elasticity of Crystalline Lattices 124
4.2.1 Linear Elasticity 125
4.2.2 Elastic Constants 125
4.2.3 Cases of Cubic and Tetragonal Lattices 127
4.2.4 Usual Elastic Moduli 128
4.2.5 Link with Sound Propagation 130
4.3 Lattice Dynamics and Thermal Properties of Alloys 132
4.3.1 Normal Modes of Vibration in the Harmonic Approximation 133
4.3.1.1 Classical Theory 133
4.3.1.2 Diatomic Linear Chain 136
4.3.1.3 Quantum Theory 138
4.3.1.4 Phonon Density of States 141
4.3.1.5 Lattice Specific Heat 143
4.3.1.6 Debye's Model 144
4.3.1.7 Elastic Waves in Cubic Crystals 146
4.3.1.8 Vibrational Entropy 147
4.4 Beyond the Harmonic Approximation 149
4.4.1 Thermal Expansion 150
4.4.2 Thermal Conductivity 151
4.4.3 Soft Phonon Modes and Structural Phase Transition 253
4.5 Experimental Investigation of the Normal Modes of Vibration 156
4.5.1 Raman Spectroscopy 156
4.5.2 Inelastic Neutron Scattering 157
4.6 Phonon Spectra and Migration Energy 160
4.7 Outlook 165
References 168
5 Point Defects, Atom Jumps, and Diffusion 173
Wolfgang Puschl, Hiroshi Numakura, and Wolfgang Pfeiler
5.1 Point Defects 173
5.1.1 A Brief Overview 173
5.1.1.1 Types of Point Defects 173
VIII Contents
5.1.1.2 Formation of Equilibrium and Nonequilibrium Defects 175
5.1.1.3 Mobility 178
5.1.1.4 Experimental Techniques 179
5.1.2 Point Defects in Pure Metals and Dilute Alloys 187
5.1.2.1 Vacancies 187
5.1.2.2 Self Interstitial Atoms 193
5.1.2.3 Solute Atoms 195
5.1.3 Point Defects in Ordered Alloys 197
5.1.3.1 Point Defects and Properties of the Material 197
5.1.3.2 Statistical Thermodynamics 199
5.1.3.3 Equilibrium Concentrations Examples 208
5.1.3.4 Abundant Vacancies in some Intermetallic Compounds 213
5.2 Defect Migration: Microscopic Diffusion 217
5.2.1 The Single Atom Jump 217
5.2.1.1 Transition State Theory 217
5.2.1.2 Alternative Methods 221
5.2.2 Solid Solutions 222
5.2.2.1 Random Walk 222
5.2.2.2 Correlated Walk the Interaction of Defect and Atom 228
5.2.2.3 Diffusion Walk with Chemical Driving Force 234
5.2.2.4 Diffusion Walk in an Inhomogeneous Crystal 237
5.2.3 Atom Migration in Ordered Alloys 238
5.2.3.1 Experimental Approach to Atom Kinetics in Ordered Alloys 238
5.2.3.2 Jumps Within and Between Sublattices 239
5.2.3.3 Jump Cycles and Cooperative Atom Jumps 246
5.3 Statistical Methods: from Single Jump to Configuration
Changes 252
5.3.1 Master Equation Method 253
5.3.2 Continuum Approaches to Microscopic Diffusion and their
Interrelationship with Atom Jump Statistics 253
5.3.3 Path Probability Method 255
5.3.4 Monte Carlo Simulation Method 255
5.4 Macroscopic Diffusion 256
5.4.1 Formal Description 256
5.4.1.1 Pick's Laws 256
5.4.1.2 Nonreciprocal Diffusion, the Kirkendall Effect 259
5.4.1.3 Nonideal Solutions 261
5.4.2 Phase Transformations as Diffusion Phenomena 263
5.4.2.1 Spinodal Decomposition 263
5.4.2.2 Nucleation, Growth, Coarsening 264
5.4.3 Enhanced Diffusion Paths 265
5.4.3.1 Dislocation Core Diffusion 266
5.4.3.2 Grain Boundary Diffusion 268
5.4.3.3 Diffusion along Interfaces and Surfaces 270
5.5 Outlook 272
References 274
Contents IX
6 Dislocations and Mechanical Properties 281
Daniel Caillard
6.1 Introduction 281
6.2 Thermally Activated Mechanisms 283
6.2.1 Introduction to Thermal Activation 283
6.2.2 Interactions with Solute Atoms 285
6.2.2.1 General Aspects 285
6.2.2.2 Low Temperatures (Domain 2, Interaction with Fixed Solute
Atoms) 286
6.2.2.3 Intermediate Temperatures (Domain 3, Stress Instabilities) 289
6.2.2.4 High Temperatures (Domain 4, Diffusion Controlled Glide) 291
6.2.3 Forest Mechanism 292
6.2.4 Peierls Type Friction Forces 293
6.2.4.1 The Kink Pair Mechanism 293
6.2.4.2 Locking Unlocking Mechanism 295
6.2.4.3 Transition between Kink Pair and Locking Unlocking
Mechanisms 297
6.2.4.4 Observations of Peierls Type Mechanisms 298
6.2.5 Cross Slip in fee Metals and Alloys 305
6.2.5.1 Elastic Calculations 305
6.2.5.2 Atomistic Calculations 307
6.2.5.3 Experimental Results 307
6.2.6 Dislocation Climb 309
6.2.6.1 Emission of Vacancies at Jogs 309
6.2.6.2 Diffusion of Vacancies from Jogs 310
6.2.6.3 Jog Density and Jog Pair Mechanism 311
6.2.6.4 Effect of Over (Under ) Saturations of Vacancies: Chemical
Force 313
6.2.6.5 Stress Dependence of the Dislocation Climb Velocity 314
6.2.6.6 Experimental Results 314
6.2.7 Conclusions on Thermally Activated Mechanisms 316
6.3 Hardening and Recovery 316
6.3.1 Dislocation Multiplication versus Exhaustion 317
6.3.1.1 Dislocation Sources 318
6.3.1.2 Dislocation Exhaustion and Annihilation 320
6.3.2 Dislocation Dislocation Interaction and Internal Stress: the Taylor
Law 321
6.3.3 Hardening Stages in fee Metals and Alloys 323
6.3.3.1 Stage II (Linear Hardening) 324
6.3.3.2 Stage III 329
6.3.3.3 Stage IV 330
6.3.3.4 Strain Hardening in Intermetallic Alloys 330
6.4 Complex Behavior 330
6.4.1 Yield Stress Anomalies 330
6.4.1.1 Dynamic Strain Aging 331
X| Contents
6.4.1.2 Cross Slip Locking 332
6.4.2 Fatigue 333
6.4.2.1 Microstructure of Fatigued Metals and Alloys 334
6.4.2.2 Comparison with Stages II and III of Monotonic Strain
Hardening 335
6.4.2.3 Intrusions, Extrusions and Fracture 335
6.4.2.4 Conclusions 336
6.4.3 Strength of Nanocrystalline Alloys and Thin Layers 336
6.4.3.1 The Hall Petch Law (Grain Size D 20 nm) 337
6.4.3.2 Hall Petch Law Breakdown (Grain Size D 20 nm) 337
6.4.4 Fracture 338
6.4.5 Quasicrystals 339
6.5 Outlook 342
References 342
7 Phase Equilibria and Phase Transformations 347
Brent Fultz and Jeffrey J. Hoyt
7.1 Alloy Phase Diagrams 347
7.1.1 Solid Solutions 347
7.1.2 Free Energy and the Lever Rule 351
7.1.3 Common Tangent Construction 353
7.1.4 Unmixing and Continuous Solid Solubility Phase Diagrams 354
7.1.5 Eutectic and Peritectic Phase Diagrams 356
7.1.6 More Complex Phase Diagrams 357
7.1.7 Atomic Ordering 359
7.1.8 Beyond Simple Models 362
7.1.9 Entropy of Configurations 363
7.1.10 Principles of Phonon Entropy 365
7.1.11 Trends of Phonon Entropy 367
7.1.12 Phonon Entropy at Elevated Temperatures 369
7.2 Kinetics and the Approach to Equilibrium 371
7.2.1 Suppressed Diffusion in the Solid (Nonequilibrium
Compositions) 371
7.2.2 Nucleation Kinetics 373
7.2.3 Suppressed Diffusion in the Liquid (Glasses) 374
7.2.4 Suppressed Diffusion in a Solid Phase (Solid State
Amorphization) 375
7.2.5 Combined Reactions 376
7.2.6 Statistical Kinetics of Phase Transformations 377
7.2.7 Kinetic Pair Approximation 378
7.2.8 Equilibrium State of Order 380
7.2.9 Kinetic Paths 380
7.3 Nucleation and Growth Transformations 382
7.3.1 Definitions 382
Contents I XI
7.3.2 Fluctuations and the Critical Nucleus 384
7.3.3 The Nucleation Rate 387
7.3.4 Time Dependent Nucleation 391
7.3.5 Effect of Elastic Strain 393
7.3.6 Heterogeneous Nucleation 395
7.3.7 The Kolmogorov Johnson Mehl Avrami Growth Equation 397
7.4 Spinodal Decomposition 399
7.4.1 Concentration Fluctuations and the Free Energy of Solution 400
7.4.2 The Diffusion Equation 402
7.4.3 Effects of Elastic Strain Energy 404
7.5 Martensitic Transformations 406
7.5.1 Characteristics of Martensite 406
7.5.2 Massive and Displacive Transformations 411
7.5.3 Bain Strain Mid Lattice Invariant Shear 412
7.5.4 Martensite Crystallography 413
7.5.5 Nucleation and Dislocation Models of Martensite 415
7.5.6 Soft Mode Transitions, the Clapp Lattice Instability Model 417
7.6 Outlook 418
References 420
8 Kinetics in Nonequilibrium Alloys 423
Pascal Bellon and Georges Martin
8.1 Relaxation of Nonequilibrium Alloys 424
8.1.1 Coherent Precipitation: Nothing but Solid State Diffusion 425
8.1.2 Cluster Dynamics, Nucleation Theory, Diffusion Equations: Three
Tools for Describing Kinetic Pathways 426
8.1.3 Cluster Dynamics 427
8.1.3.1 Dilute Alloy at Equilibrium 427
8.1.3.2 Fluctuations in the Gas of Clusters at Equilibrium 429
8.1.3.3 Relaxation of a Nonequilibrium Cluster Gas 429
8.1.4 Classical Nucleation Theory 432
8.1.4.1 Summary of CNT 432
8.1.4.2 Source of Fluctuations Consistent with CNT 433
8.1.4.3 A First Application 435
8.1.5 Kinetics of Concentration Fields 436
8.1.6 Conclusion 438
8.2 Driven Alloys 438
8.2.1 Examples of Driven Alloys 439
8.2.1.1 Alloys Subjected to Sustained Irradiation 439
8.2.1.2 Alloys Subjected to Sustained Plastic Deformation 447
8.2.1.3 Alloys Subjected to Sustained Electrochemical Exchanges 449
8.2.2 Identification of the Relevant Control Parameters: Toward a
Dynamical Equilibrium Phase Diagram 450
8.2.3 Theoretical Approaches and Simulation Techniques 454
XII I Contents
8.2.3.1 Molecular Dynamics Simulations 455
8.2.3.2 Microscopic Master Equation 456
8.2.3.3 Kinetic Monte Carlo Simulations 458
8.2.3.4 Kinetics of Concentration Fields under Irradiation 460
8.2.3.5 Nucleation Theory under Irradiation 466
8.2.4 Self Organization in Driven Alloys: Role of Length Scales of the
External Forcing 468
8.2.4.1 Compositional Patterning under Irradiation 469
8.2.4.2 Patterning of Chemical Order under Irradiation 478
8.2.4.3 Compositional Patterning under Plastic Deformation 480
8.2.5 Practical Applications and Extensions 481
8.2.5.1 Tribochemical Reactions 481
8.2.5.2 Pharmaceutical Compounds Synthesized by Mechanical
Activation 483
8.3 Outlook 484
References 484
9 Change of Alloy Properties under Dimensional Restrictions 491
Hirotaro Mori and Jung Coo Lee
9.1 Introduction 491
9.2 Instrumentation for in situ Observation of Phase Transformation of
Nanometer Sized Alloy Particles 492
9.3 Depression of the Eutectic Temperature and its Relevant
Phenomena 494
9.3.1 Atomic Diffusivity in Nanometer Sized Particles 494
9.3.2 Eutectic Temperature in Nanometer Sized Alloy Particles 496
9.3.3 Structural Instability 500
9.3.4 Thermodynamic Discussion 503
9.3.4.1 Gibbs Free Energy in Nanometer Sized Alloy Systems 503
9.3.4.2 Result of Calculations 505
9.4 Solid/Liquid Two Phase Microstructure 508
9.4.1 Solid Liquid Phase Transition 508
9.4.2 Two Phase Microstructure 514
9.5 Solid Solubility in Nanometer Sized Alloy Particles 518
9.6 Summary and Future Perspectives 521
References 522
10 Statistical Thermodynamics and Model Calculations 525
Tetsuo Mohri
10.1 Introduction 525
10.2 Statistical Thermodynamics on a Discrete Lattice 527
10.2.1 Description of Atomic Configuration 527
10.2.2 Internal Energy 534
10.2.3 Entropy and Cluster Variation Method 536
Contents XIII
10.2.4 Free Energy 542
10.2.5 Relative Stability and Intrinsic Stability 544
10.2.6 Atomistic Kinetics by the Path Probability Method 549
10.3 Statistical Thermodynamics on Continuous Media 552
10.3.1 Ginzburg Landau Free Energy 552
10.3.2 Diffusion Equation and Time Dependent Ginzburg Landau
Equation 554
10.3.3 Width of an Interface 557
10.3.4 Interface Velocity 559
10.4 Model Calculations 560
10.4.1 Calculation of a Phase Diagram 561
10.4.1.1 Ground State Analysis 561
10.4.1.2 Effective Cluster Interaction Energy 564
10.4.1.3 Phase Diagram 568
10.4.2 Microstructural Evolution Calculated by the Phase Field Method 572
10.4.2.1 Hybrid Model 572
10.4.2.2 Toward the First Principles Phase Field Calculation 576
10.5 Future Scope and Outlook 580
Appendix: C ALP HAD Free Energy 582
References 585
11 Ab lnitio Methods and Applications 589
Stefan Miiller, Walter Wolf and Raimund Podloucky
11.1 Introduction 589
11.2 Theoretical Background 590
11.2.1 Density Functional Theory 590
11.2.2 Computational Methods 594
11.2.3 Elastic Properties 598
11.2.4 Vibrational Properties 601
11.3 Applications 606
11.3.1 Structural and Phase Stability 606
11.3.2 Point Defects 612
11.3.3 Diffusion Processes 616
11.3.4 Impurity Effects on Grain Boundary Cohesion 622
11.3.5 Toward Multiscale Modeling: Cluster Expansion 625
11.3.6 Search for Ground State Structures 639
11.3.7 Ordering and Decomposition Phenomena in Binary Alloys 641
11.4 Outlook 648
References 649
12 Simulation Techniques 653
Ferdinand Haider, Rafal Kozubski, and T.A. Abinandanan
12.1 Introduction 653
12.2 Molecular Dynamics Simulations 654
XIV Contents
12.2.1 Basic Ideas 654
12.2.2 Atomic Interaction, Potential Models 656
12.2.2.1 Pairwise Interaction 656
12.2.2.2 Many Body Potentials, the EAM Method 657
12.2.3 Practical Considerations 659
12.2.4 Different Thermodynamic Ensembles: Thermostats, Barostats 659
12.2.5 Implementation of MD Algorithms 661
12.2.6 Practical Aspects: Time Steps 662
12.2.7 Evaluation of Data: Use of Correlation Functions 662
12.2.8 Applications to Alloys, Alloy Dynamics, and Alloy Kinetics 664
12.3 Monte Carlo Simulations 667
12.3.1 Foundations of Stochastic Processes Markov Chains and the Master
Equation 667
12.3.2 The Idea of Sampling 668
12.3.3 Markov Chains as a Tool for Importance Sampling 670
12.3.4 General Applicability 671
12.3.4.1 Simulation and Characterization of System Properties in
Thermodynamic Equilibrium 671
12.3.4.2 Simulation of Relaxation Processes Toward Equilibrium 673
12.3.4.3 Simulation of Nonequilibrium Processes and Transport
Phenomena 673
12.3.5 Limitations: Finite Size Effects and Boundary Conditions 674
12.3.6 Numerical Implementation of MC 675
12.3.6.1 Classical Realization of Markov Chains 675
12.3.6.2 "Residence Time" Algorithm 676
12.3.6.3 The Problem of Time Scales 677
12.3.7 Applications to Alloys 678
12.3.7.1 General Assumptions 678
12.3.7.2 Physical Model of an Alloy 679
12.3.8 Practical Aspects 681
12.3.9 Review of Current Applications in Studies of Alloys 682
12.3.9.1 Computation of Phase Diagrams using Grandcanonical
Ensemble 683
12.3.9.2 Reverse and Inverse Monte Carlo Methods: from Experimental SRO
Parameters to Atomic Interaction Energies 683
12.3.10 Going beyond the Ising Model and Rigid Lattice Simulations 685
12.3.11 Monte Carlo Simulations in View of other Techniques of Alloy
Modeling 686
12.4 Phase Field Models 686
12.4.1 Introduction 686
12.4.2 Cahn Hilliard Model 687
12.4.2.1 Energetics 687
12.4.2.2 Interfacial Energy and Width 689
12.4.2.3 Dynamics 693
12.4.3 Numerical Implementation 691
Contents XV
12 A A Application: Spinodal Decomposition 693
12.4.5 Cahn Allen Model 694
12.4.5.1 Kinetics 695
12.4.6 Generalized Phase Field Models 696
12.4.6.1 Key Features of Phase Field Models 696
12.4.6.2 Precipitation of an Ordered Phase 697
12.4.6.3 Grain Growth in Polycrystals 698
12.4.6.4 Solidification 700
12.4.7 Other Topics 700
12.4.7.1 Anisotropy in Interfacial Energy 700
12.4.7.2 Elastic Strain Energy 701
12.5 Outlook 702
Appendix 702
References 703
13 High Resolution Experimental Methods 707
13.1 High Resolution Scattering Methods and Time Resolved
Diffraction 707
Bogdan Sepiol and Karl F. Ludwig
13.1.1 Introduction: Theoretical Concepts, X Ray, and Neutron Scattering
Methods 707
13.1.2 Magnetic Scattering 710
13.1.2.1 Magnetic Neutron Scattering 710
13.1.2.2 Magnetic X Ray Scattering 715
13.1.3 Spectroscopy 721
13.1.3.1 Coherent Time Resolved X Ray Scattering 722
13.1.3.1.1 Homodyne X Ray Studies of Equilibrium Fluctuation Dynamics 723
13.1.3.1.2 Heterodyne X Ray Studies of Equilibrium Fluctuation Dynamics 725
13.1.3.1.3 Studies of Critical Fluctuations with Microbeams 726
13.1.3.1.4 Coherent X Ray Studies of the Kinetics of Nonequilibrium
Systems 726
13.1.3.1.5 Coherent X Ray Studies of Microscopic Reversibility 729
13.1.3.2 Phonon Excitations 729
13.1.3.2.1 Inelastic X Ray Scattering 730
13.1.3.2.2 Nuclear Inelastic Scattering 732
13.1.3.3 Quasielastic Scattering: Diffusion 733
13.1.3.3.1 Quasielastic Methods: Mossbauer Spectroscopy and Neutron
Scattering 738
13.1.3.3.2 Nuclear Resonant Scattering of Synchrotron Radiation 741
13.1.3.3.3 Pure Metals and Dilute Alloys 743
13.1.3.3.4 Ordered Alloys 744
13.1.3.3.5 Amorphous Materials 745
13.1.4 Time Resolved Scattering 749
XVI Contents
13.1.4.1 Technical Capabilities 750
13.1.4.2 Time Resolved Studies Examples 751
13.1.5 Diffuse Scattering from Disordered Alloys 756
13.1.5.1 Metallic Glasses and Liquids 757
13.1.5.2 Diffuse Scattering from Disordered Crystalline Alloys 759
13.1.6 Surface Scattering Atomic Segregation and Ordering near
Surfaces 762
13.1.7 Scattering from Quasicrystals 763
13.1.8 Outlook 764
References 765
13.2 High Resolution Microscopy 774
Cuido Schmitz and James M. Howe
13.2.1 Surface Analysis by Scanning Probe Microscopy 775
13.2.1.1 Functional Principle of Scanning Tunneling and Atomic Force
Microscopy 776
13.2.1.2 Modes of Measurement in AFM 779
13.2.1.3 Cantilever Design for the AFM 781
13.2.1.4 Exemplary Studies by Scanning Probe Microscopy 783
13.2.1.4.1 Chemical Contrast by STM and Surface Ordering 783
13.2.1.4.2 Microstructure Characterization and Surface Topology by AFM 785
13.2.1.4.3 Imaging of Nanomagnets by Magnetic Force Microscopy 789
13.2.2 High Resolution Transmission Electron Microscopy and Related
Techniques 791
13.2.2.1 Principles of Image Formation in and Practical Aspects of High
Resolution Transmission Electron Microscopy 793
13.2.2.1.1 Principles of Image Formation 793
13.2.2.1.2 Practical Aspects of HRTEM 796
13.2.2.2 In Situ Hot Stage High Resolution Transmission Electron
Microscopy 797
13.2.2.3 Examples of HRTEM Studies of Dislocation and Interphase
Boundaries 799
13.2.2.3.1 Disclinations in Mechanically Milled Fe Powder 799
13.2.2.3.2 Interphase Boundaries in Metal Alloys 802
13.2.2.3.3 Diffuse Interface in Cu Au 802
13.2.2.3.4 Partly Coherent Interfaces in Al Cu 807
13.2.2.3.5 Incoherent Interfaces in Ti Al 811
13.2.3 Local Analysis by Atom Probe Tomography 817
13.2.3.1 The Functional Principle of Atom Probe Tomography 819
13.2.3.2 Two Dimensional Single Ion Detector Systems 823
13.2.3.3 Ion Trajectories and Image Magnification 827
13.2.3.4 Tomographic Reconstruction 830
13.2.3.5 Accuracy of the Reconstruction 833
13.2.3.6 Specimen Preparation 836
13.2.3.7 Examples of Studies by Atom Probe Tomography 837
Contents XVII
13.2.3.7.1 Decomposition in Supersaturated Alloys 837
13.2.3.7.2 Nucleation of the First Product Phase 843
13.2.3.7.3 Diffusion in Nanocrystalline Thin Films 847
13.2.3.7.4 Thermal Stability of GMR Sensor Layers 850
13.2.4 Future Development and Outlook 853
References 857
14 Materials and Process Design 861
14.1 Soft and Hard Magnets 861
Roland Crossinger
14.1.1 What do "Soft" and "Hard" Magnetic Mean? 861
14.1.1.1 Intrinsic Properties Determining the Hysteresis Loop (Anisotropy,
Magnetostriction) 863
14.1.1.2 Extrinsic Properties Microstructure 864
14.1.2 Soft Magnetic Materials 865
14.1.2.1 Pure Fe and Fe Si 867
U.I.2.2 Ni Fe Alloys 868
14.1.2.3 Soft Magnetic Ferrites 869
14.1.2.4 Amorphous Materials 871
14.1.2.5 Nanocrystalline Materials 872
14.1.3 Hard Magnetic Materials 873
14.1.3.1 AlNiCo 876
14.1.3.2 Ferrites 877
14.1.3.3 Sm Co 878
14.1.3.4 Nd Fe B 879
14.1.3.5 Nanocrystalline Materials 880
14.1.3.6 Industrial Nanocrystalline Hard Magnetic Materials 882
14.1.4 Outlook 883
References 883
14.2 Invar Alloys 885
Peter Mohn
14.2.1 Introduction and General Remarks 885
14.2.2 Spontaneous Volume Magnetostriction 888
14.2.3 The Modeling of Invar Properties 889
14.2.4 A Microscopic Model 893
14.2.5 Outlook 894
References 895
14.3 Magnetic Media 895
Laurent Ranno
14.3.1 Data Storage 895
14.3.1.1 Information Storage 895
XVIII Contents
14.3.1.2 Competing Physical Effects 896
14.3.1.3 Magnetic Storage 897
14.3.2 Magnetic Recording Media 905
14.3.2.1 Particulate Media 905
14.3.2.2 Continuous Media Film Media 906
14.3.2.3 Perpendicular Recording 907
14.3.3 Outlook 909
Further Reading 910
14.4 Spin Electronics (Spintronics) 911
Laurent Rcmno
14.4.1 Electrical Transport in Conductors 911
14.4.1.1 Conventional Transport 911
14.4.1.2 Role of Disorder 913
14.4.1.3 Transport in Magnetic Conductors 914
14.4.2 Magnetoresistance 915
14.4.2.1 Cyclotron Magnetoresistance 916
14.4.2.2 Anisotropic Magnetoresistance (AMR) 916
14.4.2.3 Giant MR (GMR) and Tunnel MR (TMR) 916
14.4.2.4 Magnetic Field Sensors 918
14.4.2.5 Magnetic RAM 920
14.4.3 Outlook 921
Further Reading 921
14.5 Phase Change Media 921
Takeo Ohta
14.5.1 Electrically and Optically Induced Writing and Erasing
Processes 921
14.5.2 Phase Change Dynamic Model 925
14.5.3 Alternative Functions 933
USA Outlook 938
References 938
14.6 Superconductors 939
Harold W. Weber
14.6.1 Fundamentals 939
14.6.2 Superconducting Materials 944
14.6.3 Technical Superconductors 946
14.6.4 Applications 952
Further Reading 953
Index 955 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV021603333 |
callnumber-first | T - Technology |
callnumber-label | TA483 |
callnumber-raw | TA483 |
callnumber-search | TA483 |
callnumber-sort | TA 3483 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UQ 7000 UQ 7600 VE 9650 ZM 4300 |
ctrlnum | (OCoLC)255149312 (DE-599)BVBBV021603333 |
dewey-full | 620.16 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.16 |
dewey-search | 620.16 |
dewey-sort | 3620.16 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Chemie / Pharmazie Physik Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02108nam a2200529 c 4500</leader><controlfield tag="001">BV021603333</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071031 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060601s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA623576</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527313214</subfield><subfield code="9">3-527-31321-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527313211</subfield><subfield code="9">978-3-527-31321-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255149312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021603333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA483</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.16</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 7000</subfield><subfield code="0">(DE-625)146565:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 7600</subfield><subfield code="0">(DE-625)146580:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9650</subfield><subfield code="0">(DE-625)147160:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 4300</subfield><subfield code="0">(DE-625)157036:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Alloy physics</subfield><subfield code="b">a comprehensive reference</subfield><subfield code="c">ed. by Wolfgang Pfeiler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 973 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Legierung - Physikalische Eigenschaft - Aufsatzsammlung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alloys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alloys</subfield><subfield code="x">Microstructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alloys</subfield><subfield code="x">Surfaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Legierung</subfield><subfield code="0">(DE-588)4035035-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metallphysik</subfield><subfield code="0">(DE-588)4169621-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physikalische Eigenschaft</subfield><subfield code="0">(DE-588)4134738-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Metallphysik</subfield><subfield code="0">(DE-588)4169621-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Legierung</subfield><subfield code="0">(DE-588)4035035-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Physikalische Eigenschaft</subfield><subfield code="0">(DE-588)4134738-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pfeiler, Wolfgang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.gbv.de/dms/ilmenau/toc/507951794.PDF</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0801/2007465747-d.html</subfield><subfield code="3">Beschreibung für Leser</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014818643&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014818643</subfield></datafield></record></collection> |
id | DE-604.BV021603333 |
illustrated | Illustrated |
index_date | 2024-07-02T14:48:29Z |
indexdate | 2024-07-09T20:39:41Z |
institution | BVB |
isbn | 3527313214 9783527313211 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014818643 |
oclc_num | 255149312 |
open_access_boolean | |
owner | DE-703 DE-20 DE-M347 DE-19 DE-BY-UBM DE-1102 DE-526 DE-634 DE-83 DE-11 |
owner_facet | DE-703 DE-20 DE-M347 DE-19 DE-BY-UBM DE-1102 DE-526 DE-634 DE-83 DE-11 |
physical | XXVIII, 973 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Alloy physics a comprehensive reference ed. by Wolfgang Pfeiler Weinheim Wiley-VCH 2007 XXVIII, 973 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Legierung - Physikalische Eigenschaft - Aufsatzsammlung Alloys Alloys Microstructure Alloys Surfaces Legierung (DE-588)4035035-6 gnd rswk-swf Metallphysik (DE-588)4169621-9 gnd rswk-swf Physikalische Eigenschaft (DE-588)4134738-9 gnd rswk-swf Metallphysik (DE-588)4169621-9 s DE-604 Legierung (DE-588)4035035-6 s Physikalische Eigenschaft (DE-588)4134738-9 s Pfeiler, Wolfgang Sonstige oth http://www.gbv.de/dms/ilmenau/toc/507951794.PDF Inhaltsverzeichnis http://www.loc.gov/catdir/enhancements/fy0801/2007465747-d.html Beschreibung für Leser HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014818643&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Alloy physics a comprehensive reference Legierung - Physikalische Eigenschaft - Aufsatzsammlung Alloys Alloys Microstructure Alloys Surfaces Legierung (DE-588)4035035-6 gnd Metallphysik (DE-588)4169621-9 gnd Physikalische Eigenschaft (DE-588)4134738-9 gnd |
subject_GND | (DE-588)4035035-6 (DE-588)4169621-9 (DE-588)4134738-9 |
title | Alloy physics a comprehensive reference |
title_auth | Alloy physics a comprehensive reference |
title_exact_search | Alloy physics a comprehensive reference |
title_exact_search_txtP | Alloy physics a comprehensive reference |
title_full | Alloy physics a comprehensive reference ed. by Wolfgang Pfeiler |
title_fullStr | Alloy physics a comprehensive reference ed. by Wolfgang Pfeiler |
title_full_unstemmed | Alloy physics a comprehensive reference ed. by Wolfgang Pfeiler |
title_short | Alloy physics |
title_sort | alloy physics a comprehensive reference |
title_sub | a comprehensive reference |
topic | Legierung - Physikalische Eigenschaft - Aufsatzsammlung Alloys Alloys Microstructure Alloys Surfaces Legierung (DE-588)4035035-6 gnd Metallphysik (DE-588)4169621-9 gnd Physikalische Eigenschaft (DE-588)4134738-9 gnd |
topic_facet | Legierung - Physikalische Eigenschaft - Aufsatzsammlung Alloys Alloys Microstructure Alloys Surfaces Legierung Metallphysik Physikalische Eigenschaft |
url | http://www.gbv.de/dms/ilmenau/toc/507951794.PDF http://www.loc.gov/catdir/enhancements/fy0801/2007465747-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014818643&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pfeilerwolfgang alloyphysicsacomprehensivereference |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis