Combustion science and engineering:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL [u.a.]
CRC Press, Taylor & Francis
2007
|
Schriftenreihe: | CRC series in computational mechanics and applied analysis
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | LV, 1121 S. |
ISBN: | 0849320712 9780849320712 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021596539 | ||
003 | DE-604 | ||
005 | 20071107 | ||
007 | t | ||
008 | 060529s2007 xxu |||| 00||| eng d | ||
010 | |a 2005050219 | ||
020 | |a 0849320712 |c alk. paper |9 0-8493-2071-2 | ||
020 | |a 9780849320712 |9 978-0-8493-2071-2 | ||
035 | |a (OCoLC)60543325 | ||
035 | |a (DE-599)BVBBV021596539 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-91G |a DE-29T |a DE-83 | ||
050 | 0 | |a TJ254.5 | |
082 | 0 | |a 621.402/3 |2 22 | |
084 | |a VE 6000 |0 (DE-625)147131:253 |2 rvk | ||
084 | |a ZP 3270 |0 (DE-625)157949: |2 rvk | ||
084 | |a ERG 420f |2 stub | ||
100 | 1 | |a Annamalai, Kalyan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Combustion science and engineering |c Kalyan Annamalai ; Ishwar K. Puri |
264 | 1 | |a Boca Raton, FL [u.a.] |b CRC Press, Taylor & Francis |c 2007 | |
300 | |a LV, 1121 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a CRC series in computational mechanics and applied analysis | |
650 | 4 | |a Combustion, Technique de la | |
650 | 4 | |a Combustion engineering | |
650 | 0 | 7 | |a Verbrennung |0 (DE-588)4062656-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verbrennung |0 (DE-588)4062656-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Puri, Ishwar K. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014811934&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014811934 |
Datensatz im Suchindex
_version_ | 1804135376209575936 |
---|---|
adam_text | CRC SERIES IN COMPUTATIONAL MECHANICS AND APPLIED ANALYSIS COMBUSTION
SCIENCE AND ENGINEERING KALYAN ANNAMALAI ISHWAR K. PURI ( R FLP) CRC
PRESS ^ J TAYLOR & FRANCIS GROUP BOCA RATON LONDON NEW YORK CRC PRESS
IS AN IMPRINT OF THE TAYLOR & FRANCIS GROUP, AN INFORMA BUSINESS TABLE
OF CONTENTS PREFACE XXXI THE AUTHORS XXXV RELATIONS/ACCOUNTING EQUATIONS
XXXVII NOMENCLATURE XLIII 1 INTRODUCTION AND REVIEW OF THERMODYNAMICS 1
1.1 INTRODUCTION 1 1.2 COMBUSTION TERMINOLOGY 4 1.3 MATTER AND ITS
PROPERTIES 7 1.3.1 MATTER 8 1.3.2 MIXTURE 8 1.3.3 PROPERTY 10 1.3.4
STATE 11 1.3-5 EQUATION OF STATE 11 1.3.6 STANDARD TEMPERATURE AND
PRESSURE 12 1.3.7 PARTIAL PRESSURE 13 1.3.8 PHASE EQUILIBRIUM 13 1.4
MICROSCOPIC OVERVIEW OF THERMODYNAMICS 15 1.4.1 MATTER 15 1.4.2
INTERMOLECULAR FORCES AND POTENTIAL ENERGY 16 1.4.3 MOLECULAR MOTION 18
1.4.3.1 COLLISION NUMBER AND MEAN FREE PATH 18 1.4.3.2 MOLECULAR
VELOCITY DISTRIBUTION 19 1.4.3-3 AVERAGE, RMS, AND MOST PROBABLE
MOLECULAR SPEEDS 20 1.4.4 TEMPERATURE 21 1.4.5 KNUDSEN NUMBER 21 1.4.6
CHEMICAL POTENTIAL AND DIFFUSION 22 1.4.7 ENTROPY (S) 22 1.4.7.1
OVERVIEW 22 1.4.7.2 ENTROPY S = S (U, V) 23 VII VIII 1.5 CONSERVATION OF
MASS AND ENERGY AND THE FIRST LAW OF THERMODYNAMICS 23 1.5.1 CLOSED
SYSTEM 23 1.5.1.1 MASS CONSERVATION 23 1.5.1.2 ENERGY CONSERVATION 23
1.5.2 OPEN SYSTEMS 28 1.5.2.1 MASS 29 1.5.2.2 FIRST LAW OF
THERMODYNAMICS OR ENERGY CONSERVATION EQUATION 30 1.6 THE SECOND LAW OF
THERMODYNAMICS 34 1.6.1 INTRODUCTION 34 1.6.2 ENTROPY AND SECOND LAW 35
1.6.2.1 MATHEMATICAL DEFINITION 35 1.6.2.2 RELATION BETWEEN DS, Q, AND T
DURING AN IRREVERSIBLE PROCESS 35 1.6.2.3 ENTROPY BALANCE EQUATION FOR A
CLOSED SYSTEM 36 1.6.2.4 ENTROPY BALANCE EQUATION FOR AN OPEN SYSTEM 41
1.6.3 ENTROPY BALANCE IN INTEGRAL AND DIFFERENTIAL FORM 42 1.6.3-1
INTEGRAL FORM 42 1.6.3.2 DIFFERENTIAL FORM 43 1.6.4 COMBINED FIRST AND
SECOND LAWS 43 1.6.4.1 FIXED-MASS SYSTEM 43 1.7 SUMMARY 45 STOICHIOMETRY
AND THERMOCHEMISTRY OF REACTING SYSTEMS 47 2.1 INTRODUCTION 47 2.2
OVERALL REACTIONS 47 2.2.1 STOICHIOMETRIC EQUATION WITH O 2 47 2.2.2
STOICHIOMETRIC EQUATION WITH AIR * 49 2.2.3 REACTION WITH EXCESS AIR
(LEAN COMBUSTION) 51 2.2.4 REACTION WITH EXCESS FUEL (RICH COMBUSTION)
OR DEFICIENT AIR 52 2.2.5 EQUIVALENCE RATIO § AND STOICHIOMETRIC RATIO
(SR) 52 2.3 GAS ANALYSES 55 2.3-1 DEW POINT TEMPERATURE OF PRODUCT
STREAMS 55 2.3.2 GENERALIZED DRY GAS ANALYSIS FOR AIR WITH AR 58 2.3.2.1
EXCESS AIR % FROM MEASURED CO 2 % AND O 2 % ...58 2.3.2.2 GENERALIZED
ANALYSIS FOR FUEL CH H O O N N S S 59 2.3-3 EMISSIONS OF NO X AND OTHER
POLLUTANTS 6L 2.4 GLOBAL CONSERVATION EQUATIONS FOR REACTING SYSTEMS 61
2.4.1 MASS CONSERVATION AND MOLE BALANCE EQUATIONS 6L 2.4.1.1 CLOSED
SYSTEM 6L 2.4.1.2 OPEN SYSTEM 62 IX 2.4.2 ENERGY CONSERVATION EQUATION
IN MOLAR FORM 63 2.4.2.1 OPEN SYSTEM 63 2.4.2.2 DIFFERENTIAL FORM 64
2.4.2.3 UNIT FUEL-FLOW BASIS , 64 2.5 THERMOCHEMISTRY 65 2.5.1 ENTHALPY
OF FORMATION 65 2.5.1.1 ENTHALPY OF FORMATION FROM MEASUREMENTS 66
2.5.1.2 BOND ENERGY AND ENTHALPY OF FORMATION 66 2.5.2 THERMAL OR
SENSIBLE ENTHALPY 67 2.5.3 TOTAL ENTHALPY 67 2.5.4 ENTHALPY OF REACTION
AND COMBUSTION 69 2.5.5 HEATING VALUE (HV), HIGHER HV (HHV) OR GROSS HV
(GHV), AND LOWER HV (LHV) 70 2.5.5.1 HEATING VALUES 70 2.5.6 HEATING
VALUE BASED ON STOICHIOMETRIC OXYGEN 72 2.5.7 APPLICATIONS OF
THERMOCHEMISTRY 77 2.5.7.1 FIRST LAW ANALYSIS OF REACTING SYSTEMS 77
2.5.7.2 ADIABATIC FLAME TEMPERATURE 78 2.5.8 SECOND LAW ANALYSIS OF
CHEMICALLY REACTING SYSTEMS ....83 2.5.8.1 ENTROPY 83 2.5.8.2 ENTROPY
GENERATED DURING ANY CHEMICAL REACTION 83 2.5.8.3 ENTROPY BALANCE
EQUATION 84 2.5.8.4 GIBBS FUNCTION, AND GIBBS FUNCTION OF FORMATION 89
2.6 SUMMARY 91 2.7 APPENDIX 92 2.7.1 DETERMINATION OF H F FROM BOND
ENERGIES 92 REACTION DIRECTION AND EQUILIBRIUM 97 3.1 INTRODUCTION 97
3.2 REACTION DIRECTION AND CHEMICAL EQUILIBRIUM 97 3.2.1 DIRECTION OF
HEAT TRANSFER 97 3.2.2 DIRECTION OF REACTION 98 3.2.3 MATHEMATICAL
CRITERIA FOR A CLOSED SYSTEM 100 3.2.3.1 SPECIFIED VALUES OF U, V, AND M
100 3.2.3.2 SPECIFIED VALUES OF S, V, AND M 100 3.2.3.3 SPECIFIED VALUES
OF S, P, AND M 100 3.2.3.4 SPECIFIED VALUES OF H, P, AND M 100 3.2.3.5
SPECIFIED VALUES OF T, V, AND M 101 3.2.3.6 SPECIFIED VALUES OF T, P,
AND M 101 3.2.4 EVALUATION OF PROPERTIES DURING IRREVERSIBLE REACTIONS
101 3.2.4.1 NONREACTING CLOSED SYSTEM 102 3.2.4.2 REACTING CLOSED SYSTEM
102 3.2.4.3 REACTING OPEN SYSTEM 104 3.2.5 CRITERIA IN TERMS OF CHEMICAL
FORCE POTENTIAL 104 3.2.5.1 SINGLE REACTION 104 3.2.5.2 MULTIPLE
REACTIONS 108 3.2.6 GENERALIZED RELATION FOR THE CHEMICAL POTENTIAL 108
3.2.7 APPROXIMATE METHOD FOR DETERMINING DIRECTION OF REACTION, AG, AND
GIBBS FUNCTION OF FORMATION 112 3-3 CHEMICAL EQUILIBRIUM RELATIONS 115
3-3.1 REAL MIX OF SUBSTANCES 115 3.3.2 IDEAL MIX OF LIQUIDS AND SOLIDS
116 3-3.3 IDEAL GASES 116 3.3.3.1 EQUILIBRIUM CONSTANT AND GIBBS FREE
ENERGY 116 3.3.3-2 CRITERIA FOR DIRECTION OF REACTION AND CHEMICAL
EQUILIBRIUM IN VARIOUS FORMS 117 3.3.4 GAS, LIQUID, AND SOLID MIXTURES
124 3.3.5 DISSOCIATION TEMPERATURES 126 3.3.6 EQUILIBRIUM FOR MULTIPLE
REACTIONS 127 3.4 VANT HOFF EQUATION 130 3.4.1 EFFECT OF TEMPERATURE ON
K(T) 131 3.4.2 EFFECT OF PRESSURE 133 3-5 ADIABATIC FLAME TEMPERATURE
WITH CHEMICAL EQUILIBRIUM 135 3.5.1 STEADY-STATE, STEADY-FLOW (SSSF)
PROCESS 135 3-5.2 CLOSED SYSTEMS 135 3.6 GIBBS MINIMIZATION METHOD 137
3.6.1 GENERAL CRITERIA FOR EQUILIBRIUM 137 3.6.2 G MINIMIZATION USING
LAGRANGE MULTIPLIER METHOD 138 3-7 SUMMARY 142 3.8 APPENDIX 142 3.8.1
EQUILIBRIUM CONSTANT IN TERMS OF ELEMENTS 142 FUELS 145 4.1 INTRODUCTION
145 4.2 GASEOUS FUELS ,/. 146 4.2.1 LOW- AND HIGH-BTU GAS 147 4.2.2
WOBBE NUMBER 147 4.3 LIQUID FUELS 149 4.3.1 OIL FUEL COMPOSITION 149
4.3.2 PARAFFINS 150 4.3.3 OLEFINS 151 4.3.4 DIOLEFINS 152 4.3.5
NAPHTHENES OR CYCLOPARAFFIN 152 4.3.6 AROMATICS 152 4.3.7 ALCOHOLS 153
4.3.8 COMMON LIQUID FUELS 154 4.3.9 API GRAVITY, CHEMICAL FORMULAE,
SOOT, AND FLASH AND FIRE POINTS 154 XI 4.3.9.1 API GRAVITY 154 4.3.9.2
EMPIRICAL FORMULAE AND FORMULAE UNIT FOR COMPLEX FUELS 155 4.3.9.3 SOOT
155 4.3.9.4 FLASH, FIRE, POUR, AND CLOUD POINTS 156 4.4 SOLID FUELS 156
4.4.1 COAL 156 4.4.2 SOLID FUEL ANALYSES 158 4.4.2.1 PROXIMATE ANALYSIS
(ASTM D3172) 158 4.4.2.2 ULTIMATE OR ELEMENTAL ANALYSIS (ASTM D3176) 160
4.4.2.3 COAL CLASSIFICATION, COMPOSITION, AND RANK L6L 4.4.3 COAL
PYROLYSIS 166 4.4.3.1 CHEMICAL FORMULAE FOR VOLATILES 167 4.4.4 ASH AND
LOSS ON IGNITION (LOI) 167 A A A.I PHYSICAL PROPERTIES 168 4.4.5 HEATING
VALUE (ASTM D5865) 168 4.5 OTHER FUELS 173 4.5.1 INDUSTRIAL GASEOUS
FUELS 173 4.5.2 SYNTHETIC LIQUIDS 174 4.5.3 BIOMASS 174 4.5.4 MUNICIPAL
SOLID WASTE (MSW) 179 4.6 SIZE DISTRIBUTIONS OF LIQUID AND SOLID FUELS
180 4.6.1 SIZE DISTRIBUTION 182 4.6.1.1 LOGNORMAL DISTRIBUTION 182
4.6.1.2 ROSIN-RAMMLER RELATION 185 4.6.2 SOME EMPIRICAL RELATIONS 187
4.7 SUMMARY 188 4.8 APPENDIX 188 4.8.1 ASH TRACER METHOD FOR COAL
ANALYSIS 188 4.8.1.1 ASH FRACTION 188 4.8.1.2 BURNED OR GASIFICATION
FRACTION 189 4.8.1.3 FRACTION OF S OR ELEMENT CONVERSION 189 4.8.1.4
IDEAL CONVERSION 190 CHEMICAL KINETICS 191 5.1 INTRODUCTION 191 5.2
REACTION RATES: CLOSED AND OPEN SYSTEMS 191 5.2.1 LAW OF STOICHIOMETRY
194 5.2.2 REACTION RATE EXPRESSION, LAW OF MASS ACTION, AND THE
ARRHENIUS LAW 195 5.3 ELEMENTARY REACTIONS AND MOLECULARITY 195 5.3.1
UNIMOLECULAR REACTION 196 5.3.1.1 CHARACTERISTIC REACTION TIMES (T CHAR
) 197 5.3.2 BIMOLECULAR REACTION 199 5.3.2.1 CHARACTERISTIC REACTION
TIMES (T CHAR ) 199 XII 5.3.3 TRIMOLECULAR REACTIONS 200 5.3.3.1
CHARACTERISTIC REACTION TIMES (T CHAR ) 201 5.4 MULTIPLE REACTION TYPES
201 5.4.1 CONSECUTIVE OR SERIES REACTIONS 201 5.4.2 COMPETITIVE PARALLEL
REACTIONS 201 5.4.3 OPPOSING OR BACKWARD REACTIONS 201 5.4.4 EXCHANGE OR
SHUFFLE REACTIONS 202 5.4.5 SYNTHESIS 204 5.4.6 DECOMPOSITION 204 5.5
CHAIN REACTIONS AND REACTION MECHANISMS 204 5.5.1 CHAIN INITIATION
REACTIONS 205 5.5.2 CHAIN PROPAGATING REACTIONS 205 5.5.3 CHAIN
BRANCHING REACTIONS 205 5.5.4 CHAIN BREAKING REACTIONS 206 5.5.5 CHAIN
TERMINATING REACTIONS 206 5.5.6 OVERALL REACTION RATE EXPRESSION 206
5.5.7 STEADY-STATE RADICAL HYPOTHESIS 207 5.5.8 CATALYTIC REACTIONS 208
5.6 GLOBAL MECHANISMS FOR REACTIONS 209 5.6.1 ZELDOVICH MECHANISM FOR
NOX FROM N 2 209 5.6.2 NO 2 CONVERSION TO NO 210 5.6.3 HYDROCARBON
GLOBAL REACTIONS 211 5.6.3.1 GENERIC APPROACHES 211 5.6.3-2 REDUCED
KINETICS 211 5.6.4 THE H 2 -O 2 SYSTEM 213 5.6.5 CARBON MONOXIDE
OXIDATION 214 5.7 REACTION RATE THEORY AND THE ARRHENIUS LAW 215 5.7.1
COLLISION THEORY 215 5.7.1.1 COLLISION NUMBER AND MEAN FREE PATH *
SIMPLE THEORY 215 5.7.1.2 COLLISION NUMBER, REACTION RATE, AND ARRHENIUS
LAW 216 5.7.2 AN APPLICATION .....219 5.7.3 DETERMINATION OF KINETICS
CONSTANTS IN ARRHENIUS LAW 221 5.8 SECOND LAW AND GLOBAL AND BACKWARD
REACTIONS 224 5.8.1 BACKWARD REACTION RATE AND SECOND LAW 224 5.8.2
EQUILIBRIUM CONSTANTS AND ESTIMATION OF BACKWARD REACTION RATE CONSTANTS
225 5.8.2.1 EQUIMOLECULARITY OF PRODUCTS AND REACTANTS....225 5.8.2.2
GENERAL REACTION OF ANY MOLECULARITY 229 5.9 THE PARTIAL EQUILIBRIUM AND
REACTION RATE EXPRESSION 230 5.9.1 PARTIAL EQUILIBRIUM 230 5.9.2
REACTION RATE 231 5.10 TIMESCALES FOR REACTION 234 5.10.1 PHYSICAL DELAY
234 5.10.2 INDUCTION TIME (T IND ) 234 XIII 5.10.3 IGNITION TIME (T IGN
) 234 5.10.4 CHARACTERISTIC REACTION OR CHEMICAL/COMBUSTION TIMES 235
5.10.5 HALF-LIFE TIME AND TIME CONSTANTS (T 1/2 ) 235 5.10.6 TOTAL
COMBUSTION TIME 237 5.11 SOLID-GAS (HETEROGENEOUS) REACTIONS AND
PYROLYSIS OF SOLID FUELS 237 5.11.1 SOLID-GAS (HETEROGENEOUS) REACTIONS
237 5.11.2 HETEROGENEOUS REACTIONS 237 5.11.2.1 DESORPTION CONTROL 239
5.11.2.2 ABSORPTION CONTROL 239 5.11.2.3 GLOBAL REACTION 240 5.11.3
FORWARD AND BACKWARD REACTION RATES 240 5.11.4 PYROLYSIS OF SOLIDS 242
5.11.4.1 SINGLE REACTION MODEL (AT ANY INSTANT OF TIME) 243 5.11.4.2
COMPETING REACTION MODEL 244 5.11.4.3 PARALLEL REACTION MODEL 247 5.12
SUMMARY 249 5.13 APPENDIX 249 5.13.1 MULTISTEP REACTIONS 249 5.13.2
SIMPLIFIED CH 4 REACTIONS 250 5.13-3 CONVERSION OF REACTION RATE
EXPRESSIONS 251 5.13-3.1 CONVERSION OF LAW OF MASS ACTION FROM MOLAR
FORM (KMOL/M 3 ) TO MASS FORM (CONCENTRATION IN KG/M 3 ) 251 5.13-3.2
CONVERSION OF LAW OF MASS ACTION FROM MASS FORM TO MOLAR FORM 252
5.13.3.3 SUMMARY ON CONVERSIONS 252 5.13.4 SOME APPROXIMATIONS IN
KINETICS INTEGRALS 253 MASS TRANSFER 255 6.1 INTRODUCTION 255 6.2 HEAT
TRANSFER AND THE FOURIER LAW 255 6.3 MASS TRANSFER AND FICK S LAW 257
6.3.1 FICK S LAW 257 6.3.2 DEFINITIONS 258 6.4 MOLECULAR THEORY 267
6.4.1 APPROXIMATE METHOD FOR TRANSPORT PROPERTIES OF SINGLE COMPONENT
267 6.4.1.1 ABSOLUTE VISCOSITY 267 6.4.1.2 ANY PROPERTY A 268 6.4.2
RIGOROUS METHOD FOR TRANSPORT PROPERTIES OF SINGLE COMPONENT 269 6.4.2.1
ABSOLUTE VISCOSITY 269 6.4.2.2 THERMAL CONDUCTIVITY 269 6.4.2.3
SELF-DIFFUSION COEFFICIENT 270 XIV 6.4.3 TRANSPORT PROPERTIES OF
MULTIPLE COMPONENTS 270 6.4.3.1 ABSOLUTE VISCOSITY 270 6.4.3.2 THERMAL
CONDUCTIVITY 271 6.4.3.3 DIFFUSION IN MULTICOMPONENT SYSTEMS 272 6.5
GENERALIZED FORM OF FOURIER S AND FICK S LAWS FOR A MIXTURE, WITH
SIMPLIFICATIONS 274 6.5.1 GENERALIZED LAW: MULTICOMPONENT HEAT FLUX
VECTOR 274 6.5.2 GENERALIZED LAW: MULTICOMPONENT DIFFUSION 275 6.6
SUMMARY 279 6.7 APPENDIX: RIGOROUS DERIVATION FOR MULTICOMPONENT
DIFFUSION 279 FIRST LAW APPLICATIONS 283 7.1 INTRODUCTION 283 7.2
GENERALIZED RELATIONS IN MOLAR FORM 283 7.2.1 MASS CONSERVATION AND
MOLAR BALANCE 283 7.2.2 FIRST LAW 284 7.3 CLOSED-SYSTEM COMBUSTION 284
7.3.1 SIMPLE TREATMENT 284 7.3.1.1 CONSTANT-VOLUME REACTOR 285 7.3.1.2
CONSTANT-PRESSURE REACTOR 289 7.3.2 RIGOROUS FORMULATION 290 7.3-3
APPLICATIONS OF RIGOROUS TREATMENT 294 7.3.3.1 CONSTANT PRESSURE 294
7.3.3.2 ISOBARIC AND ISOTHERMAL 294 7.3.3-3 CONSTANT VOLUME 294 7.3.3.4
CONSTANT VOLUME AND ISOTHERMAL 295 7.4 OPEN SYSTEMS 297 7.4.1 DAMKOHLER
NUMBERS 298 7.4.2 PLUG FLOW REACTOR (PFR) 298 7.4.3 NONISOTHERMAL
REACTOR AND IGNITION 305 7.4.4 PERFECTLY STIRRED REACTOR (PSR) I..306
7.4.4.1 WHAT IS A PSR? 306 7.4.4.2 SIMPLIFIED METHOD 309 7.4.4.3
RIGOROUS FORMULATION FROM MASS AND ENERGY EQUATIONS 310 7.5 SOLID CARBON
COMBUSTION 319 7.5.1 DIFFUSION RATE OF OXYGEN 320 7.5.2 BURN RATE 321
7.5.3 SHERWOOD NUMBER RELATIONS FOR MASS TRANSFER 329 7.5.4 CARBON
TEMPERATURE DURING COMBUSTION 331 7.6 DROPLET BURNING 332 7.7 SUMMARY ,
335 XV 8 CONSERVATION RELATIONS 337 8.1 INTRODUCTION 337 8.2 SIMPLE
DIFFUSIVE TRANSPORT CONSTITUTIVE RELATIONS 337 8.2.1 DIFFUSIVE MOMENTUM
TRANSFER (NEWTON S LAW) 337 8.2.2 DIFFUSIVE HEAT TRANSFER (FOURIER S
LAW) 338 8.2.3 DIFFUSIVE SPECIES TRANSFER (FICK S LAW) 338 8.3
CONSERVATION EQUATIONS 338 8.3.1 OVERALL MASS 338 8.3.2 SPECIES
CONSERVATION 340 8.4 GENERALIZED TRANSPORT 343 8.4.1 ENERGY 344 8.4.1.1
TOTAL ENTHALPY FORM 344 8.4.1.2 THERMAL ENTHALPY FORM 346 8.4.2 SPECIES
347 8.4.3 MOMENTUM 347 8.4.4 ELEMENT 347 8.5 SIMPLIFIED
BOUNDARY-LAYER-TYPE PROBLEMS 349 8.5.1 GOVERNING EQUATIONS 350 8.5.2
GENERAL SOLUTION 351 8.5.3 MIXTURE FRACTION 351 8.5.3-1 DEFINITION 351
8.5.3.2 LOCAL EQUIVALENCE RATIO 353 8.5.3-3 RELATION BETWEEN MIXTURE
FRACTION, ELEMENT FRACTION, AND TOTAL ENTHALPY 353 8.6 SHVAB-ZELDOVICH
FORMULATION 355 8.6.1 BOUNDARY-LAYER PROBLEMS 355 8.6.1.1 SINGLE-STEP
REACTION 355 8.6.1.2 FUEL HAVING TWO COMPONENTS 359 8.6.2 RELATION
BETWEEN MIXTURE FRACTION (F M ) AND AN SZ VARIABLE 362 8.6.3 PLUG FLOW
REACTOR (PFR) 362 8.6.4 COMBUSTION OF LIQUIDS AND SOLIDS 364 8.6.4.1
INTERFACE CONSERVATION EQUATIONS 364 8.6.4.2 NUMERICAL SOLUTION 369
8.6.4.3 THNVFLAME OR FLAME SURFACE APPROXIMATION 370 8.6 A A BURN RATE,
ANALOGY TO HEAT TRANSFER AND RESISTANCE CONCEPT 372 8.7 TURBULENT FLOWS
377 8.8 SUMMARY 378 8.9 APPENDIX 379 8.9.1 VECTOR AND TENSORS 379 8.9.2
MODIFIED CONSTITUTIVE EQUATIONS 381 8.9.2.1 DIFFUSIVE MOMENTUM FLUXES
AND PRESSURE TENSOR 381 8.9.2.2 GENERALIZED RELATION FOR HEAT TRANSFER
384 XVI 8.9-3 RIGOROUS FORMULATION OF THE CONSERVATION RELATIONS 385
8.9.3.1 MOMENTUM 385 8.9.3.2 KINETIC ENERGY (V 2 /2) 385 8.9.3.3
INTERNAL AND KINETIC ENERGIES 386 8.9-4 ENTHALPY 386 8.9.5 STAGNATION
ENTHALPY 386 8.9-6 FILM THEORY AND MASS TRANSFER 386 COMBUSTION OF SOLID
FUELS, CARBON, AND CHAR 389 9.1 INTRODUCTION 389 9.2 CARBON REACTIONS
390 9.2.1 REACTIONS 390 9.2.2 IDENTITIES INVOLVING CARBON REACTIONS 391
9.3 CONSERVATION EQUATIONS FOR A SPHERICAL PARTICLE 391 9.3.1 PHYSICAL
PROCESSES 391 9.3.2 DIMENSIONAL FORM AND BOUNDARY CONDITIONS 392 9.4
NONDIMENSIONAL CONSERVATION EQUATIONS AND BOUNDARY CONDITIONS 393 9.4.1
GAS-PHASE PROFILES 396 9.5 INTERFACIAL CONSERVATION EQUATIONS OR BCS 396
9.5.1 GENERAL SYSTEM WITH ARBITRARY SURFACE 396 9.5.1.1 MASS AND SPECIES
396 9.5.1.2 ENERGY 399 9.5.2 SPHERICAL PARTICLE 400 9.6 SOLUTIONS FOR
CARBON PARTICLE COMBUSTION 401 9.6.1 REACTION I ALONG WITH GAS PHASE
REACTION V 401 9.6.1.1 FINITE KINETICS GAS PHASE AND HETEROGENEOUS
KINETICS 401 9.6.1.2 FINITE KINETICS HETEROGENEOUS CHEMISTRY AND FROZEN
GAS PHASE (I.E., SFM) 403 9.6.1.3 FAST HETEROGENEOUS KINETICS AND FROZEN
GAS PHASE (I.E., SFM) 405 9.6.2 OTHER CARBON REACTIONS 406 9.6.3
BOUDOUARD AND SURFACE OXIDATION REACTIONS WITH FROZEN GAS PHASE (I.E.,
SFM) 408 9.6.3.1 BURN RATE 408 9.6.3.2 CO MASS FRACTION 409 9.6.3.3
CARBON SURFACE TEMPERATURE T W 410 9.6.4 BOUDOUARD AND SURFACE OXIDATION
REACTIONS ALONG WITH GAS PHASE OXIDATION (I.E., DFM) 411 9.6.4.1 FINITE
CHEMISTRY 411 9.6.5 FAST CHEMISTRY.... 413 9.6.5.1 CO MASS FRACTION 413
9.6.5.2 SURFACE TEMPERATURE 413 9.6.5.3 FLAME LOCATION 414 XVII 9.6.5.4
FLAME TEMPERATURE * DFM 417 9.6.5.5 CO 2 MASS FRACTION IN FLAME 417 9.7
THERMAL NO X FROM BURNING CARBON PARTICLES 419 9.8 NON-QUASI-STEADY
NATURE OF COMBUSTION OF PARTICLE 421 9-9 ELEMENT CONSERVATION AND CARBON
COMBUSTION 422 9.10 POROUS CHAR 424 9.11 SUMMARY 432 9.12 APPENDIX: D
LAW AND STEFAN FLOW APPROXIMATION 432 9.12.1 D LAW FOR
KINETIC-CONTROLLED COMBUSTION (I.E., SFM)....432 9.12.2 STEFAN FLOW
APPROXIMATION 433 10 DIFFUSION FLAMES * LIQUID FUELS 435 10.1
INTRODUCTION 435 10.2 EVAPORATION, COMBUSTION, AND D 2 LAW 436 10.3
MODEL/PHYSICAL PROCESSES 436 10.3.1 MODEL 436 10.3.2
DIFFUSION-CONTROLLED COMBUSTION 438 10.4 GOVERNING EQUATIONS 438 10.4.1
ASSUMPTIONS 438 10.4.2 CONSERVATION EQUATIONS: DIMENSIONAL FORM 439
10.4.2.1 ENERGY 440 10.4.3 CONSERVATION EQUATIONS NONDIMENSIONAL FORM
440 10.4.4 BOUNDARY CONDITIONS 441 10.4.5 SOLUTIONS 441 10.4.5.1 SZ
VARIABLE 441 10.4.5.2 INTERFACE BOUNDARY CONDITIONS 442 10.5 SOLUTIONS
444 10.5.1 BURN RATE 444 10.5.1.1 THICK FLAMES 444 10.5.1.2 THIN FLAMES
445 10.5.1.3 PHYSICAL MEANING OF TRANSFER NUMBER B 446 10.5.2 D 2 LAW !
447 10.5.3 BURNING TIME. 448 10.5.4 EXACT SOLUTION FOR T W 450 10.5.4.1
SPECIES: FUEL (F) 450 10.5.4.2 THIN-FLAME RESULTS 452 10.5.4.3 MASS
FRACTIONS OF CO 2 AND H 2 0 454 10.5.4.4 EXACT PROCEDURE FOR DROP
TEMPERATURE AND BURN RATE 455 10.5.5 FLAME STRUCTURE AND FLAME LOCATION,
R F 455 10.5.5.1 FLAME TEMPERATURE 457 10.5.5.2 RELATION BETWEEN FLAME
AND ADIABATIC FLAME TEMPERATURES 457 10.5.6 EXTENSION TO COMBUSTION OF
PLASTICS 461 10.5.7 EXTENSION TO COMBUSTION OF COAL AND BIOMASS 461
IVIII 10.5.8 EXTENSION OF COMBUSTION ANALYSES TO PURE
VAPORIZATION/GASIFICATION 46L 10.5.9 MASS TRANSFER CORRECTION 462
10.5.10 EVAPORATION AND COMBUSTION INSIDE A SHELL OF RADIUS B AND THE
DIAMETER LAW 463 10.6 CONVECTION EFFECTS 463 10.6.1 DRAG COEFFICIENT C D
, NU AND SH NUMBERS 463 10.6.2 BURN RATES 464 10.6.3 WAKE FLAMES 465
10.7 TRANSIENT AND STEADY-COMBUSTION RESULTS 465 10.8
MULTICOMPONENT-ISOLATED-DROP EVAPORATION AND COMBUSTION ...466 10.8.1
EVAPORATION 467 10.8.1.1 GOVERNING EQUATIONS 467 10.8.1.2 INTERFACE
CONSERVATION EQUATIONS 467 10.8.1.3 SOLUTIONS 468 10.8.2 COMBUSTION OF
MULTICOMPONENT DROP 472 10.8.2.1 NONVOLATILE (B) AND VOLATILE (A)
COMPONENTS 472 10.8.2.2 COMBUSTIBLE VOLATILE COMPONENTS 472 10.8.2.3
COMBUSTIBLE AND NONCOMBUSTIBLE COMPONENTS 476 10.9 SUMMARY 478 11
COMBUSTION IN BOUNDARY LAYERS 479 11.1 INTRODUCTION 479 11.2
PHENOMENOLOGICAL ANALYSES 481 11.2.1 MOMENTUM 481 11.2.2 ENERGY 483
11.2.3 MASS 483 11.2 A GROWTHS OF BLS AND DIMENSIONLESS NUMBERS 484
11.2.5 COMBUSTION 484 11.3 GENERALIZED CONSERVATION EQUATIONS AND
BOUNDARY CONDITIONS ^....484 11.3.1 CONSERVATION EQUATIONS IN
COMPRESSIBLE FORM 485 11.3.1.1 MASS 485 11.3.1.2 MOMENTUM CONSERVATION
485 11.3.1.3 SPECIES CONSERVATION 486 11.3.1.4 ENERGY CONSERVATION
(THERMAL ENTHALPY FORM) 486 11.3.1.5 ENERGY (TOTAL ENTHALPY FORM) 486
11.3.1.6 GENERAL PROPERTY 487 11.3.1.7 SZ FORMULATION 487 11.3.2
BOUNDARY CONDITIONS 487 11.3.3 TRANSFORMATION VARIABLES FOR CONVERSION
TO INCOMPRESSIBLE FORM 488 11.3 A CONSERVATION EQUATIONS IN
INCOMPRESSIBLE FORM 489 11.3.4.1 MASS . 489 XIX 11.3.4.2 MOMENTUM 489
11.3.4.3 SPECIES 489 11.3.4.4 THERMAL ENTHALPY 489 11.3.4.5 TOTAL
ENTHALPY 489 11.3.4.6 GENERAL PROPERTY B 490 11.3.4.7 SZ VARIABLE 490
11.3-4.8 NORMALIZED SZ (NSZ) VARIABLE 490 11.3.4.9 BOUNDARY CONDITIONS
(BCS) 490 11.4 INTERFACE BOUNDARY CONDITIONS 491 11.4.1 SPECIES AND
ENERGY 491 11.5 GENERALIZED NUMERICAL SOLUTION PROCEDURE FOR BL
EQUATIONS IN PARTIAL DIFFERENTIAL FORM 492 11.6 NORMALIZED VARIABLES AND
CONSERVATION EQUATIONS 492 11.6.1 NORMALIZED VARIABLES 492 11.6.2
NORMALIZED CONSERVATION EQUATIONS 493 11.6.2.1 MASS 493 11.6.2.2
MOMENTUM (X DIRECTION) 493 11.6.2.3 SPECIES 494 11.6.2.4 THERMAL
ENTHALPY 494 11.6.2.5 GENERIC PROPERTY B 495 11.6.2.6 NORMALIZED SZ
VARIABLE 495 11.6.2.7 REFERENCE CONDITIONS 495 11.7 SIMILARITY
SOLUTIONS-BL EQUATIONS 495 11.7.1 STREAM FUNCTIONS AND SIMILARITY
VARIABLE 495 11.7.2 CONSERVATION EQUATIONS IN TERMS OF SIMILARITY
VARIABLE 496 11.7.2.1 MOMENTUM 496 11.7.2.2 SPECIES AND SZ 496 11.7.2.3
FINITE CHEMISTRY 498 11.7.3 BOUNDARY AND INTERFACE CONDITIONS IN TERMS
OF SIMILARITY VARIABLE 498 11.8 APPLICATIONS OF GENERALIZED SIMILARITY
EQUATIONS TO VARIOUS FLOW SYSTEMS 499 11.8.1 FORCED CONVECTION OVER FLAT
PLATE, INCLINED PLATE, AND CURVED SURFACES 499 11.8.2 2-D STAGNATION
FLOW SYSTEMS (K = 0) 501 11.8.2.1 INFINITE CHEMISTRY 501 11.8.2.2 FINITE
CHEMISTRY 501 11.8.3 AXISYMMETRIC STAGNATION FLOW SYSTEMS (K = 1) 501
11.8.3.1 SPECIES AND ENERGY FOR AXISYMMETRIC JET WITH FINITE CHEMISTRY
501 11.8.3-2 INFINITE CHEMISTRY OR SZ 501 11.8.4 FREE CONVECTION 502
11.8.4.1 FINITE CHEMISTRY 502 11.8.4.2 INFINITE CHEMISTRY OR SZ 502 11.9
SOLUTIONS FOR BOUNDARY LAYER COMBUSTION OF TOTALLY GASIFYING FUELS 502
XX 11.9.1 EXACT NUMERICAL SOLUTION PROCEDURE FOR VARIOUS FLOW SYSTEMS
502 11.9.1.1 FLAME LOCATION 503 11.9.1.2 FORCED CONVECTION...: 504
11.9.1.3 FREE CONVECTION 504 11.9.1.4 STAGNATION FLOWS 506 11.9.2
APPROXIMATE RESULTS 507 11.9.2.1 SIMPLIFIED SOLUTIONS FROM FLUID
MECHANICS AND HEAT TRANSFER FOR LIQUIDS, SOLIDS, AND PLASTICS 507
11.9.2.2 CONVENTIONAL AND NONCONVENTIONAL INTEGRAL TECHNIQUE 509
11.10 COMBUSTION RESULTS FOR FUELS BURNING UNDER CONVECTION 513 11.10.1
CHEMICAL REACTIONS INVOLVING NONPYROLYZING SOLIDS 515 11.10.1.1 CHEMICAL
VAPOR DEPOSITION 515 11.10.1.2 BOUNDARY LAYER COMBUSTION OF CARBON...518
11.10.1.3 DOUBLE-FILM LAYER 520 11.10.2 FREE CONVECTION 526 11.10.2.1
PHYSICS OF FREE CONVECTION 526 11.10.2.2 SIMPLIFIED SOLUTIONS FROM FLUID
MECHANICS AND HEAT TRANSFER 527 11.10.2.3 INTEGRAL SOLUTIONS FOR
FREE-CONVECTIVE BURNING 527 11.10.2.4 COMBUSTION OF LIQUIDS AND
PYROLYZING SOLIDS OVER VERTICAL WALLS 530 11.10.3 STAGNATION FLOWS 530
11.11 EXCESS FUEL AND EXCESS AIR UNDER CONVECTION 531 11.11.1 CLOSED
(ENVELOPED) AND OPEN FLAMES 531 11.11.2 EXCESS FUEL 532 11.12 SUMMARY
535 12 COMBUSTION OF GAS JETS 537 12.1 INTRODUCTION 537 12.2
BURKE-SCHUMANN (B-S) FLAME 537 12.2.1 OVERVIEW 537 12.2.2 ASSUMPTIONS
538 12.2.3 GOVERNING EQUATIONS 539 12.2.3.1 MASS 539 12.2.3.2 SPECIES
AND ENERGY CONSERVATION EQUATION 539 12.2.3.3 BOUNDARY CONDITIONS 540
12.2.4 NORMALIZED CONSERVATION EQUATIONS 541 12.2.5 SOLUTION 542
12.2.5.1 NORMALIZED SZ VARIABLE 542 12.2.5.2 FLAME STRUCTURE 542 XXI
12.2.5.3 FLAME PROFILE 542 12.2.5.4 OVER- AND UNDERVENTILATED FLAMES *
CRITERIA 542 12.2.5.5 FLAME HEIGHTS 543 12.3 MODIFICATION TO B-S
ANALYSES 545 12.3.1 FLAMES IN INFINITE SURROUNDINGS WITH EQUAL FUEL AND
AIR VELOCITY 545 12.3.2 MASS FLUX AS FUNCTION OF AXIAL DISTANCE 545 12.4
LAMINAR JETS 546 12.4.1 INTRODUCTION 546 12.4.2 TERMINOLOGY OF JETS 547
12.4.2.1 POTENTIAL CORE 547 12.4.2.2 MIXING LAYER 548 12.4.2.3 GLOBAL
CHEMICAL REACTION AND THIN FLAMES 549 12.5 PLANAR LAMINAR JETS 549
12.5.1 OVERVIEW 549 12.5.2 SIMPLIFIED ANALYSIS OF 2-D LAMINAR JETS 550
12.5.3 GOVERNING DIFFERENTIAL EQUATIONS FOR PLANAR JETS 551 12.5.4
NORMALIZED CONSERVATION EQUATIONS 551 12.5.5 BOUNDARY CONDITIONS FOR
PLANAR JETS 552 12.5.6 NORMALIZED BOUNDARY CONDITION 553 12.5.7
SIMILARITY VARIABLES FOR PLANAR JETS 553 12.5.8 MOMENTUM EQUATION IN
SIMILARITY COORDINATES 554 12.5.9 MOMENTUM SOLUTIONS FOR PLANAR JETS 555
12.5.9.1 VELOCITIES (MOMENTUM EQUATION) 555 12.5.9.2 JET HALF WIDTH (Y*
1/2 ) 556 12.5.10 SPECIES, TEMPERATURE, AND O EQUATIONS IN SIMILARITY
COORDINATES 556 12.5.11 SOLUTIONS FOR NORMALIZED SZ AND SCALAR
PROPERTIES ...556 12.5.12 MASS FLOW OF GAS AND AIR AND A:F AT ANY X 557
12.5.13 SOLUTIONS FOR PURE MIXING PROBLEMS (CHEMICALLY FROZEN FLOW) ,
558 12.5.14 SOLUTIONS FOR COMBUSTION 558 12.5.14.1 NORMALIZED SZ
VARIABLE 558 12.5.14.2 FLAME PROFILE AND STRUCTURE 558 12.5.14.3 FLAME
HEIGHTS 559 12.5.14.4 MASS FLOW OF GAS, AIR AND A:F AT ANY X 560 12.6
CIRCULAR JETS 562 12.6.1 SIMPLIFIED RELATIONS FOR CIRCULAR LAMINAR JETS
562 12.6.2 GOVERNING DIFFERENTIAL EQUATIONS FOR CIRCULAR JETS 562 12.6.3
BOUNDARY CONDITIONS FOR CIRCULAR JETS 563 12.6 A NORMALIZATION 563
12.6.5 NORMALIZATION OF GOVERNING DIFFERENTIAL EQUATIONS 564 12.6.6
SIMILARITY VARIABLES FOR CIRCULAR JETS 565 XXII 12.6.7 MOMENTUM EQUATION
IN SIMILARITY COORDINATES 565 12.6.8 SOLUTION TO MOMENTUM EQUATION 565
12.6.8.1 VELOCITIES 565 12.6.9 NSZ EQUATION IN SIMILARITY COORDINATES
566 12.6.10 SOLUTIONS FOR SPECIES, TEMPERATURE, AND D 567 12.6.11
SOLUTIONS FOR COMBUSTION AND PURE MIXING 567 12.6.11.1 SOLUTIONS FOR
COMBUSTION 567 12.6.11.2 SOLUTIONS FOR MIXING 568 12.6.12 MASS FLOW OF
GAS, AIR, AND A:F AT ANY X 571 12.7 SUMMARY OF SOLUTIONS FOR 2-D AND
CIRCULAR JETS 574 12.8 STOICHIOMETRIC CONTOURS FOR 2-D AND CIRCULAR
JETS, LIFTOFF, AND BLOW-OFF 574 12.8.1 A:F CONTOURS 574 12.8.2
STOICHIOMETRIC CONTOURS 576 12.8.3 LIFTOFF DISTANCE 576 12.8.4 ANCHORING
OF FLAMES 579 12.9 JETS IN COFLOWING AIR: JET FLAME STRUCTURE IN
STRONGLY COFLOWING AIR FOR 2-D AND CIRCULAR JETS 581 12.9.1 GOVERNING
EQUATIONS 581 12.9.2 BOUNDARY CONDITIONS 582 12.9.3 SOLUTIONS 582
12.9.3.1 PLANAR JET IN COFLOWING AIR 582 12.9.3.2 CYLINDRICAL SYSTEM 583
12.10 TURBULENT DIFFUSION FLAMES 583 12.10.1 TURBULENT PLANAR JETS 584
12.10.1.1 EMPIRICAL VISCOSITY 584 12.10.1.2 CONSERVATION EQUATIONS 584
12.10.1.3 NORMALIZED CONSERVATION EQUATIONS 585 12.10.1.4 SOLUTIONS FOR
TURBULENT PLANAR JETS 586 12.10.2 TURBULENT CIRCULAR JETS 588 12.10.2.1
SOLUTIONS 588 12.11 PARTIALLY PREMIXED FLAME 589 12.12 SUMMARY ,....590
13 IGNITION AND EXTINCTION 591 13.1 INTRODUCTION..,. 591 13.2 MODES OF
IGNITION 591 13-3 IGNITION OF GAS MIXTURES IN RIGID SYSTEMS: UNIFORM
SYSTEM 593 13.3.1 SOLUTION FOR IGNITION 594 13.3.1.1 NUMERICAL SOLUTION
594 13-3.1.2 STEADY-STATE APPROXIMATE SOLUTION 598 13.3.2 IGNITION
ENERGY 603 13.4 CONSTANT-PRESSURE SYSTEMS 604 13.4.1 ANALYSIS 604 13.4.2
IGNITION OF COMBUSTIBLE GAS MIXTURE IN STAGNATION POINT FLOW 606 XXIII
13.5 IGNITION OF SOLID PARTICLE 608 13.5.1 CARBON/CHAR PARTICLE 608
13.5.1.1 NUMERICAL METHOD 609 13-5.1.2 EXPLICIT SOLUTIONS WHEN Y O2 AT
CHAR SURFACE IS THE SAME AS FREE-STREAM MASS FRACTION 610 13.5.1.3
IMPLICIT STEADY-STATE SOLUTIONS WHEN Y O2 ,W * Y O2 ~ 614 13.5.1.4
APPROXIMATE EXPLICIT SOLUTION WITH RADIATION HEAT LOSS 6L6 13.5.2 COAL
IGNITION 619 13.5.2.1 HETEROGENEOUS IGNITION OF COAL 620 13.5.3 IGNITION
OF PLASTICS 620 13.6 IGNITION OF NONUNIFORM TEMPERATURE SYSTEMS *
STEADY-STATE SOLUTIONS 621 13.6.1 SLAB 621 13.6.1.1 PHYSICAL PROCESSES
622 13-6.1.2 NORMALIZED GOVERNING EQUATIONS 624 13.6.1.3 SOLUTION FOR
IGNITION 625 13.6.2 GENERALIZED GEOMETRY 628 13.6.3 SOME APPLICATIONS
630 13.6.4 BIOLOGICAL SYSTEMS 630 13.7 SUMMARY 631 14 DEFLAGRATION AND
DETONATION 633 14.1 INTRODUCTION 633 14.2 CONSERVATION EQUATIONS 635
14.2.1 MASS 635 14.2.2 MOMENTUM 635 14.2.3 ENERGY 635 14.2.4 THE
EQUATION OF STATE 637 14.3 SOLUTIONS FOR RAYLEIGH AND HUGONIOT CURVES
637 14.3.1 RAYLEIGH LINES 637 14.3.2 HUGONIOT CURVES 638 14.3.3 ENTROPY
640 14.4 FLAME PROPAGATION INTO UNBURNED MIXTURE 641 14A.I GENERAL
REMARKS 641 14.4.2 DETONATION BRANCH 641 14.4.3 PHYSICAL EXPLANATION FOR
DETONATION 642 14.4.4 DEFLAGRATION BRANCH 643 14.4.5 CJ WAVES 644
14.4.5.1 EXPLICIT RESULTS FOR CJ WAVES 644 14.5 SUMMARY 646 14.6
APPENDIX I: SPREADSHEET PROGRAM FOR CJ WAVES 646 14.7 APPENDIX II: THE
SOLUTIONS FOR V TO AT A GIVEN V 0 OR M OR M* 647 XXIV 15 FLAME
PROPAGATION AND FLAMMABILITY LIMITS 649 15.1 INTRODUCTION 649 15.2
PHEMENOLOGICAL ANALYSIS 651 15.2.1 HOMOGENEOUS MIXTURES 651 15.2.1.1
SPACE HEATING RATE (SHR) 654 15.2.1.2 EFFECT OF VARIOUS PARAMETERS ON V
0 OR S 654 15.2.2 HETEROGENEOUS LIQUID MIXTURES 655 15.2.2.1 MICRONIZED
DROPS 655 15.2.2.2 MEDIUM-SIZED DROPS 655 15.2.3 HETEROGENEOUS
PULVERIZED COAL: AIR MIXTURES 655 15.2.3.1 MICRONIZED PARTICLES 655
15.2.3.2 MEDIUM-SIZED PARTICLES 655 15.3 RIGOROUS ANALYSIS 656 15.3-1
CONSERVATION EQUATIONS 656 15.3.1.1 MASS 656 15.3.1.2 MOMENTUM 656
15.3.1.3 SPECIES 656 15.3.1.4 ENERGY 657 15.3.2 GENERAL SOLUTION 657
15.3.3 EXPLICIT SOLUTIONS 657 15.3.3.1 SZ VARIABLE 658 15.3.3-2 PRODUCT
TEMPERATURE FOR LEAN MIXTURE 658 15.3.3-3 RELATION BETWEEN Y F AND T
PROFILES FOR LEAN MIXTURES 658 15.3.3.4 PRODUCT TEMPERATURE FOR RICH
MIXTURE 659 15.3.3.5 RELATION BETWEEN Y O2 AND T PROFILES FOR RICH
MIXTURES 659 15.3.4 RELATION BETWEEN FLUX RATIO AND TEMPERATURE 659
15.3.5 SOLUTION FOR FLAME VELOCITY FOR LEAN MIXTURES 660 15.3.6 EFFECTS
OF THERMOPHYSICAL AND CHEMICAL PROPERTIES OF MIXTURE ON FLAME VELOCITY
661 15.3.6.1 TRANSPORT PROPERTIES.. 661 15.3.6.2 ORDER OF REACTION 662
15.3.7 NUMERICAL SIMULATION 662 15.4 FLAME STRETCHING 664 15.5
DETERMINATION OF FLAME VELOCITY 665 15.6 FLAMMABILITY LIMITS 666 15.6.1
SIMPLIFIED ANALYSES 667 15.6.2 RIGOROUS ANALYSES 669 15.6.2.1 SPECIES B
OR O 2 IN EXCESS FOR LEAN FLAMMABILITY LIMIT (LFL) 670 15.6.2.2 FUEL (A)
IN EXCESS FOR RICH FLAMMABILITY LIMIT (RFL) 674 15.6.2.3 SPALDING S
EXPLICIT RESULTS 675 XXV 15.6.3 EMPIRICAL METHODS 675 15.6.4 TEMPERATURE
AND PRESSURE DEPENDENCIES 676 15.6.5 FLAMMABILITY LIMIT OF MULTIPLE FUEL
AND INERT MIXTURES 676 15.7 QUENCHING DIAMETER 677 15.7.1 DEFINITION 677
15.7.2 SIMPLIFIED ANALYSES 677 15.7.3 EFFECT OF PHYSICAL AND CHEMICAL
PROPERTIES 679 15.8 MINIMUM IGNITION ENERGY FOR SPARK IGNITION 679 15.9
STABILITY OF FLAME IN A PREMIXED GAS BURNER 683 15.9.1 FLASH-BACK
CRITERIA 684 15.9-2 BLOW-OFF 686 15.10 TURBULENT FLAME PROPAGATION 691
15.11 SUMMARY 692 16 INTERACTIVE EVAPORATION AND COMBUSTION 693 16.1
INTRODUCTION 693 16.2 SIMPLIFIED ANALYSES 694 16.2.1 INTERACTIVE
PROCESSES 694 16.2.2 COMBUSTION 695 16.2.3 EVAPORATION 697 16.2.4
CORRECTION FACTOR 698 16.3 ARRAYS AND POINT SOURCE METHOD 698 16.3.1
EVAPORATION OF ARRAYS 698 16.3.1.1 NON-STEFAN FLOW (NSF) PROBLEMS 698
16.3.1.2 STEFAN FLOW (SF) PROBLEMS 701 16.3.1.3 DIAMETER LAW AND
EVAPORATION TIME 705 16.3.2 COMBUSTION OF ARRAYS 706 16.3.2.1 COMBUSTION
UNDER NSF 707 16.3-2.2 SF IN COMBUSTION 707 16.4 COMBUSTION OF CLOUDS OF
DROPS AND CARBON PARTICLES 710 16.4.1 CONSERVATION EQUATIONS 710
16.4.1.1 OVERALL MASS 710 16.4.1.2 GROUP COMBUSTION FOR SIMPLE
GEOMETRIES 713 16.5 TERMINOLOGY 713 16.5.1 ISOLATED-DROP COMBUSTION
(ISOC) 713 16.5.2 INDIVIDUAL FLAME COMBUSTION (IFC) 713 16.5.3 INCIPIENT
GROUP COMBUSTION (IGC) 715 16.5.4 PARTIAL GROUP COMBUSTION (PGC) 715
16.5.5 CRITICAL GROUP COMBUSTION (CGC) 716 16.5.6 TOTAL GROUP COMBUSTION
OR GROUP COMBUSTION (GC) 716 1(5.5.7 SHEATH COMBUSTION (SC) 716 XXVI
16.6 GOVERNING EQUATIONS FOR SPHERICAL CLOUD 716 16.6.1 MASS 718 16.6.2
FUEL SPECIES 718 16.6.3 MODIFIED SZ VARIABLE 718 16.7 RESULTS 721 16.7.1
G NUMBER 721 16.7.2 NONDIMENSIONAL MASS FLOW RATE 722 16.7.3 NSZ
VARIABLE 722 16.7.4 CLOUD MASS-LOSS RATE AND CORRECTION FACTOR 722
16.7.5 NSZ VARIABLE AT CLOUD CENTER 724 16.7.6 FLAME RADIUS 725 16.7.7
SPRAY CLASSIFICATION 726 16.8 RELATION BETWEEN GROUP COMBUSTION AND DROP
ARRAY STUDIES 727 16.9 INTERACTIVE CHAR/CARBON COMBUSTION 728 16.9.1
TERMINOLOGY 728 16.9.1.1 SFM 729 16.9-1.2 ISOC 729 16.9.1.3 IFC 729
16.9.1.4 IGC 729 16.9.1.5 PGC/CGC/GC 729 16.9.1.6 SC 729 16.9.2 MODEL
730 16.9-3 RESULTS 730 16.9.4 ANALOGY BETWEEN POROUS CHAR PARTICLE
COMBUSTION AND CLOUD COMBUSTION OF CHAR PARTICLES 730 16.10
MULTICOMPONENT ARRAY EVAPORATION 731 16.10.1 ARRAY OF ARBITRARY
COMPOSITION 731 16.10.2 ARRAY OF DROPS OF VOLATILE (A) AND NONVOLATILE
(B) COMPONENTS 733 16.10.3 BINARY ARRAY OF DROPS OF VOLATILE COMPONENTS
735 16.10.3.1 BINARY ARRAY OF DROPS OF VOLATILE AND NONVOLATILE
COMPONENTS 735 16.10.3.2 EXPERIMENTAL DATA BINARY ARRAY 735 16.11
SUMMARY.... 737 17 POLLUTANTS FORMATION AND DESTRUCTION 739 17.1
INTRODUCTION 739 17.2 EMISSION-LEVEL EXPRESSIONS AND REPORTING 740
17.2.1 REPORTING AS PPM 740 17.2.2 O 2 NORMALIZATION OR CORRECTED PPM
CONCENTRATIONS 741 17.2.3 EMISSION INDEX (G/KG OF FUEL) 742 17.2.4
EMISSIONS IN MASS UNITS PER UNIT HEAT VALUE (G/GJ) 743 17.2.5 REPORTING
AS KG PER MILLION M 3 OF GAS 744 XXVII 17.2.6 CONVERSION OF NO TO MG OF
NO 2 /M 3 744 17.2.7 FUEL N CONVERSION EFFICIENCY 745 17.3 EFFECTS OF
POLLUTANTS ON ENVIRONMENT AND BIOLOGICAL SYSTEMS 745 17.3.1 HEALTH
EFFECTS 745 17.3.2 NO AND OZONE DESTRUCTION 746 17.3-3 PHOTOCHEMICAL
SMOG 748 17.3.4 ACID RAIN 749 17.3-5 CO 2 GREENHOUSE EFFECT 750 17.3.6
PANICULATE MATTER 750 17.4 POLLUTION REGULATIONS 752 17.5 NO X SOURCES
AND PRODUCTION MECHANISMS 755 17.5.1 NITROGEN OXIDE COMPOUNDS 755 17.5.2
SOURCES OF NO X 755 17.5.2.1 MECHANISMS OF PRODUCTION OF NO X 755
17.5.2.2 FUEL NO X 759 17.5.2.3 PROMPT NO X 763 17.6 NO X FORMATION
PARAMETERS 764 17.6.1 TYPE OF FACILITY 764 17.6.2 OPERATIONAL CONDITIONS
765 17.6.3 FUEL 765 17.7 STATIONARY SOURCE NO X CONTROL 766 17.7.1
COMBUSTION MODIFICATIONS 766 17.7.2 POSTCOMBUSTION EXHAUST GAS TREATMENT
OR FLUE GAS DENITRIFICATION 771 17.7.2.1 SELECTIVE NON-CATALYTIC
REDUCTION (SNCR) 771 17.7.2.2 SELECTIVE CATALYTIC REDUCTION (SCR) 774
17.7.2.3 REBURN METHODOLOGY 774 17.8 CO 2 SEQUESTRATION 777 17.9 CARBON
MONOXIDE: CO 778 17.10 SO X FORMATION AND DESTRUCTION 779 17.10.1
ELEMENTS OF SO X FORMATION FROM COAL 779 17.10.1.1 SIMPLIFIED SCHEMES
781 17.10.2 SO X REDUCTION METHODS 782 17.11 SOOT 784 17.12 MERCURY
EMISSIONS 786 17.12.1 MERCURY SOURCES 786 17.12.2 MERCURY FORMS AND
EFFECT OF CL 787 17.12.3 DETERMINATION OF HG 788 17.12.4 REACTIONS WITH
HG 788 17.13 SUMMARY 789 XXVIII 18 AN INTRODUCTION TO TURBULENT
COMBUSTION 791 18.1 INTRODUCTION 791 18.2 TURBULENCE CHARACTERISTICS 791
18.3 AVERAGING TECHNIQUES 792 18.3.1 RELATION BETWEEN FAVRE AVERAGING
AND REYNOLDS AVERAGING 795 18.3.2 A FEW RULES OF AVERAGING 795 18.4
INSTANTANEOUS AND AVERAGE GOVERNING EQUATIONS 795 18.4.1 MASS 796 18.4.2
MOMENTUM 796 18.4.3 ENTHALPY, KINETIC ENERGY, AND STAGNATION ENTHALPY
797 18.4.3.1 KINETIC ENERGY 798 18.4.3.2 STAGNATION ENTHALPY 800 18.4.4
REYNOLDS STRESS TRANSPORT 800 18.4.5 TURBULENT KINETIC ENERGY (K =
(1/2)^. ) 803 18.4.6 SPECIES 804 18.4.7 TURBULENCE MODELS 804 18.4.7.1
ALGEBRAIC MODELS 804 18.4.7.2 HIGHER-ORDER MODELS 805 18.4.7.3 THE (K-E)
MODEL 805 18.5 GOVERNING DIFFERENTIAL EQUATIONS: AXISYMMETRIC CASE AND
MIXTURE-FRACTION PDF COMBUSTION MODEL 806 18.5.1 CHEMICAL KINETICS IN
TURBULENT FLAMES 808 18.5.2 KINETICS IN LOW TURBULENCE 808 18.5.2.1 SLOW
KINETICS 808 18.5.2.2 FAST KINETICS 809 18.5.2.3 INTERMEDIATE KINETICS
809 18.6 TURBULENT COMBUSTION MODELING (DIFFUSION FLAMES) 810 18.7
PROBABILITY DENSITY FUNCTION 812 18.7.1 PROPERTY Q AND AVERAGE Q 813
18.7.2 REACTION RATE EXPRESSION 815 18.7.3 QUALITATIVE PDFS FOR A FEW
PROBLEMS 815 18.7.4 MIXTURE FRACTION GOVERNING EQUATIONS 816 18.7.4.1
SINGLE MIXTURE FRACTION 816 18.7.4.2 MIXTURE FRACTION WITH SOURCE TERMS
817 18.7.4.3 FAVRE AVERAGING 819 18.7.5 EQUILIBRIUM CHEMISTRY 819 18.7.6
TWO-MIXTURE FRACTION MODEL 821 18.7.7 THREE-MIXTURE FRACTION:
CALCULATION OF TIME-MEAN REACTION RATES 822 18.8 PREMIXED AND PARTIALLY
PREMIXED TURBULENT FLAMES: MODELING APPROACHES 826 18.8.1 FAST KINETICS
826 18.8.2 FINITE-RATE KINETICS 827 XXIX 18.9 SUMMARY 828 18.10 APPENDIX
I: CYLINDRICAL COORDINATE SYSTEM WITH PARTICLE-LADEN FLOW 828 18.10.1
FAVRE-AVERAGED GOVERNING EQUATIONS 829 18.10.2 K-E TURBULENCE MODEL 830
PROBLEMS 833 FORMULAE 929 APPENDIX A 981 APPENDIX B 1063 REFERENCES 1069
INDEX 1085
|
adam_txt |
CRC SERIES IN COMPUTATIONAL MECHANICS AND APPLIED ANALYSIS COMBUSTION
SCIENCE AND ENGINEERING KALYAN ANNAMALAI ISHWAR K. PURI ( R FLP) CRC
PRESS ^ J TAYLOR & FRANCIS GROUP BOCA RATON LONDON NEW YORK CRC PRESS
IS AN IMPRINT OF THE TAYLOR & FRANCIS GROUP, AN INFORMA BUSINESS TABLE
OF CONTENTS PREFACE XXXI THE AUTHORS XXXV RELATIONS/ACCOUNTING EQUATIONS
XXXVII NOMENCLATURE XLIII 1 INTRODUCTION AND REVIEW OF THERMODYNAMICS 1
1.1 INTRODUCTION 1 1.2 COMBUSTION TERMINOLOGY 4 1.3 MATTER AND ITS
PROPERTIES 7 1.3.1 MATTER 8 1.3.2 MIXTURE 8 1.3.3 PROPERTY 10 1.3.4
STATE 11 1.3-5 EQUATION OF STATE 11 1.3.6 STANDARD TEMPERATURE AND
PRESSURE 12 1.3.7 PARTIAL PRESSURE 13 1.3.8 PHASE EQUILIBRIUM 13 1.4
MICROSCOPIC OVERVIEW OF THERMODYNAMICS 15 1.4.1 MATTER 15 1.4.2
INTERMOLECULAR FORCES AND POTENTIAL ENERGY 16 1.4.3 MOLECULAR MOTION 18
1.4.3.1 COLLISION NUMBER AND MEAN FREE PATH 18 1.4.3.2 MOLECULAR
VELOCITY DISTRIBUTION 19 1.4.3-3 AVERAGE, RMS, AND MOST PROBABLE
MOLECULAR SPEEDS 20 1.4.4 TEMPERATURE 21 1.4.5 KNUDSEN NUMBER 21 1.4.6
CHEMICAL POTENTIAL AND DIFFUSION 22 1.4.7 ENTROPY (S) 22 1.4.7.1
OVERVIEW 22 1.4.7.2 ENTROPY S = S (U, V) 23 VII VIII 1.5 CONSERVATION OF
MASS AND ENERGY AND THE FIRST LAW OF THERMODYNAMICS 23 1.5.1 CLOSED
SYSTEM 23 1.5.1.1 MASS CONSERVATION 23 1.5.1.2 ENERGY CONSERVATION 23
1.5.2 OPEN SYSTEMS 28 1.5.2.1 MASS 29 1.5.2.2 FIRST LAW OF
THERMODYNAMICS OR ENERGY CONSERVATION EQUATION 30 1.6 THE SECOND LAW OF
THERMODYNAMICS 34 1.6.1 INTRODUCTION 34 1.6.2 ENTROPY AND SECOND LAW 35
1.6.2.1 MATHEMATICAL DEFINITION 35 1.6.2.2 RELATION BETWEEN DS, Q, AND T
DURING AN IRREVERSIBLE PROCESS 35 1.6.2.3 ENTROPY BALANCE EQUATION FOR A
CLOSED SYSTEM 36 1.6.2.4 ENTROPY BALANCE EQUATION FOR AN OPEN SYSTEM 41
1.6.3 ENTROPY BALANCE IN INTEGRAL AND DIFFERENTIAL FORM 42 1.6.3-1
INTEGRAL FORM 42 1.6.3.2 DIFFERENTIAL FORM 43 1.6.4 COMBINED FIRST AND
SECOND LAWS 43 1.6.4.1 FIXED-MASS SYSTEM 43 1.7 SUMMARY 45 STOICHIOMETRY
AND THERMOCHEMISTRY OF REACTING SYSTEMS 47 2.1 INTRODUCTION 47 2.2
OVERALL REACTIONS 47 2.2.1 STOICHIOMETRIC EQUATION WITH O 2 47 2.2.2
STOICHIOMETRIC EQUATION WITH AIR * 49 2.2.3 REACTION WITH EXCESS AIR
(LEAN COMBUSTION) 51 2.2.4 REACTION WITH EXCESS FUEL (RICH COMBUSTION)
OR DEFICIENT AIR 52 2.2.5 EQUIVALENCE RATIO § AND STOICHIOMETRIC RATIO
(SR) 52 2.3 GAS ANALYSES 55 2.3-1 DEW POINT TEMPERATURE OF PRODUCT
STREAMS 55 2.3.2 GENERALIZED DRY GAS ANALYSIS FOR AIR WITH AR 58 2.3.2.1
EXCESS AIR % FROM MEASURED CO 2 % AND O 2 % .58 2.3.2.2 GENERALIZED
ANALYSIS FOR FUEL CH H O O N N S S 59 2.3-3 EMISSIONS OF NO X AND OTHER
POLLUTANTS 6L 2.4 GLOBAL CONSERVATION EQUATIONS FOR REACTING SYSTEMS 61
2.4.1 MASS CONSERVATION AND MOLE BALANCE EQUATIONS 6L 2.4.1.1 CLOSED
SYSTEM 6L 2.4.1.2 OPEN SYSTEM 62 IX 2.4.2 ENERGY CONSERVATION EQUATION
IN MOLAR FORM 63 2.4.2.1 OPEN SYSTEM 63 2.4.2.2 DIFFERENTIAL FORM 64
2.4.2.3 UNIT FUEL-FLOW BASIS , 64 2.5 THERMOCHEMISTRY 65 2.5.1 ENTHALPY
OF FORMATION 65 2.5.1.1 ENTHALPY OF FORMATION FROM MEASUREMENTS 66
2.5.1.2 BOND ENERGY AND ENTHALPY OF FORMATION 66 2.5.2 THERMAL OR
SENSIBLE ENTHALPY 67 2.5.3 TOTAL ENTHALPY 67 2.5.4 ENTHALPY OF REACTION
AND COMBUSTION 69 2.5.5 HEATING VALUE (HV), HIGHER HV (HHV) OR GROSS HV
(GHV), AND LOWER HV (LHV) 70 2.5.5.1 HEATING VALUES 70 2.5.6 HEATING
VALUE BASED ON STOICHIOMETRIC OXYGEN 72 2.5.7 APPLICATIONS OF
THERMOCHEMISTRY 77 2.5.7.1 FIRST LAW ANALYSIS OF REACTING SYSTEMS 77
2.5.7.2 ADIABATIC FLAME TEMPERATURE 78 2.5.8 SECOND LAW ANALYSIS OF
CHEMICALLY REACTING SYSTEMS .83 2.5.8.1 ENTROPY 83 2.5.8.2 ENTROPY
GENERATED DURING ANY CHEMICAL REACTION 83 2.5.8.3 ENTROPY BALANCE
EQUATION 84 2.5.8.4 GIBBS FUNCTION, AND GIBBS FUNCTION OF FORMATION 89
2.6 SUMMARY 91 2.7 APPENDIX 92 2.7.1 DETERMINATION OF H F FROM BOND
ENERGIES 92 REACTION DIRECTION AND EQUILIBRIUM 97 3.1 INTRODUCTION 97
3.2 REACTION DIRECTION AND CHEMICAL EQUILIBRIUM 97 3.2.1 DIRECTION OF
HEAT TRANSFER 97 3.2.2 DIRECTION OF REACTION 98 3.2.3 MATHEMATICAL
CRITERIA FOR A CLOSED SYSTEM 100 3.2.3.1 SPECIFIED VALUES OF U, V, AND M
100 3.2.3.2 SPECIFIED VALUES OF S, V, AND M 100 3.2.3.3 SPECIFIED VALUES
OF S, P, AND M 100 3.2.3.4 SPECIFIED VALUES OF H, P, AND M 100 3.2.3.5
SPECIFIED VALUES OF T, V, AND M 101 3.2.3.6 SPECIFIED VALUES OF T, P,
AND M 101 3.2.4 EVALUATION OF PROPERTIES DURING IRREVERSIBLE REACTIONS
101 3.2.4.1 NONREACTING CLOSED SYSTEM 102 3.2.4.2 REACTING CLOSED SYSTEM
102 3.2.4.3 REACTING OPEN SYSTEM 104 3.2.5 CRITERIA IN TERMS OF CHEMICAL
FORCE POTENTIAL 104 3.2.5.1 SINGLE REACTION 104 3.2.5.2 MULTIPLE
REACTIONS 108 3.2.6 GENERALIZED RELATION FOR THE CHEMICAL POTENTIAL 108
3.2.7 APPROXIMATE METHOD FOR DETERMINING DIRECTION OF REACTION, AG, AND
GIBBS FUNCTION OF FORMATION 112 3-3 CHEMICAL EQUILIBRIUM RELATIONS 115
3-3.1 REAL MIX OF SUBSTANCES 115 3.3.2 IDEAL MIX OF LIQUIDS AND SOLIDS
116 3-3.3 IDEAL GASES 116 3.3.3.1 EQUILIBRIUM CONSTANT AND GIBBS FREE
ENERGY 116 3.3.3-2 CRITERIA FOR DIRECTION OF REACTION AND CHEMICAL
EQUILIBRIUM IN VARIOUS FORMS 117 3.3.4 GAS, LIQUID, AND SOLID MIXTURES
124 3.3.5 DISSOCIATION TEMPERATURES 126 3.3.6 EQUILIBRIUM FOR MULTIPLE
REACTIONS 127 3.4 VANT HOFF EQUATION 130 3.4.1 EFFECT OF TEMPERATURE ON
K(T) 131 3.4.2 EFFECT OF PRESSURE 133 3-5 ADIABATIC FLAME TEMPERATURE
WITH CHEMICAL EQUILIBRIUM 135 3.5.1 STEADY-STATE, STEADY-FLOW (SSSF)
PROCESS 135 3-5.2 CLOSED SYSTEMS 135 3.6 GIBBS MINIMIZATION METHOD 137
3.6.1 GENERAL CRITERIA FOR EQUILIBRIUM 137 3.6.2 G MINIMIZATION USING
LAGRANGE MULTIPLIER METHOD 138 3-7 SUMMARY 142 3.8 APPENDIX 142 3.8.1
EQUILIBRIUM CONSTANT IN TERMS OF ELEMENTS 142 FUELS 145 4.1 INTRODUCTION
145 4.2 GASEOUS FUELS ,/. 146 4.2.1 LOW- AND HIGH-BTU GAS 147 4.2.2
WOBBE NUMBER 147 4.3 LIQUID FUELS 149 4.3.1 OIL FUEL COMPOSITION 149
4.3.2 PARAFFINS 150 4.3.3 OLEFINS 151 4.3.4 DIOLEFINS 152 4.3.5
NAPHTHENES OR CYCLOPARAFFIN 152 4.3.6 AROMATICS 152 4.3.7 ALCOHOLS 153
4.3.8 COMMON LIQUID FUELS 154 4.3.9 API GRAVITY, CHEMICAL FORMULAE,
SOOT, AND FLASH AND FIRE POINTS 154 XI 4.3.9.1 API GRAVITY 154 4.3.9.2
EMPIRICAL FORMULAE AND FORMULAE UNIT FOR COMPLEX FUELS 155 4.3.9.3 SOOT
155 4.3.9.4 FLASH, FIRE, POUR, AND CLOUD POINTS 156 4.4 SOLID FUELS 156
4.4.1 COAL 156 4.4.2 SOLID FUEL ANALYSES 158 4.4.2.1 PROXIMATE ANALYSIS
(ASTM D3172) 158 4.4.2.2 ULTIMATE OR ELEMENTAL ANALYSIS (ASTM D3176) 160
4.4.2.3 COAL CLASSIFICATION, COMPOSITION, AND RANK L6L 4.4.3 COAL
PYROLYSIS 166 4.4.3.1 CHEMICAL FORMULAE FOR VOLATILES 167 4.4.4 ASH AND
LOSS ON IGNITION (LOI) 167 A A A.I PHYSICAL PROPERTIES 168 4.4.5 HEATING
VALUE (ASTM D5865) 168 4.5 OTHER FUELS 173 4.5.1 INDUSTRIAL GASEOUS
FUELS 173 4.5.2 SYNTHETIC LIQUIDS 174 4.5.3 BIOMASS 174 4.5.4 MUNICIPAL
SOLID WASTE (MSW) 179 4.6 SIZE DISTRIBUTIONS OF LIQUID AND SOLID FUELS
180 4.6.1 SIZE DISTRIBUTION 182 4.6.1.1 LOGNORMAL DISTRIBUTION 182
4.6.1.2 ROSIN-RAMMLER RELATION 185 4.6.2 SOME EMPIRICAL RELATIONS 187
4.7 SUMMARY 188 4.8 APPENDIX 188 4.8.1 ASH TRACER METHOD FOR COAL
ANALYSIS 188 4.8.1.1 ASH FRACTION 188 4.8.1.2 BURNED OR GASIFICATION
FRACTION 189 4.8.1.3 FRACTION OF S OR ELEMENT CONVERSION 189 4.8.1.4
IDEAL CONVERSION 190 CHEMICAL KINETICS 191 5.1 INTRODUCTION 191 5.2
REACTION RATES: CLOSED AND OPEN SYSTEMS 191 5.2.1 LAW OF STOICHIOMETRY
194 5.2.2 REACTION RATE EXPRESSION, LAW OF MASS ACTION, AND THE
ARRHENIUS LAW 195 5.3 ELEMENTARY REACTIONS AND MOLECULARITY 195 5.3.1
UNIMOLECULAR REACTION 196 5.3.1.1 CHARACTERISTIC REACTION TIMES (T CHAR
) 197 5.3.2 BIMOLECULAR REACTION 199 5.3.2.1 CHARACTERISTIC REACTION
TIMES (T CHAR ) 199 XII 5.3.3 TRIMOLECULAR REACTIONS 200 5.3.3.1
CHARACTERISTIC REACTION TIMES (T CHAR ) 201 5.4 MULTIPLE REACTION TYPES
201 5.4.1 CONSECUTIVE OR SERIES REACTIONS 201 5.4.2 COMPETITIVE PARALLEL
REACTIONS 201 5.4.3 OPPOSING OR BACKWARD REACTIONS 201 5.4.4 EXCHANGE OR
SHUFFLE REACTIONS 202 5.4.5 SYNTHESIS 204 5.4.6 DECOMPOSITION 204 5.5
CHAIN REACTIONS AND REACTION MECHANISMS 204 5.5.1 CHAIN INITIATION
REACTIONS 205 5.5.2 CHAIN PROPAGATING REACTIONS 205 5.5.3 CHAIN
BRANCHING REACTIONS 205 5.5.4 CHAIN BREAKING REACTIONS 206 5.5.5 CHAIN
TERMINATING REACTIONS 206 5.5.6 OVERALL REACTION RATE EXPRESSION 206
5.5.7 STEADY-STATE RADICAL HYPOTHESIS 207 5.5.8 CATALYTIC REACTIONS 208
5.6 GLOBAL MECHANISMS FOR REACTIONS 209 5.6.1 ZELDOVICH MECHANISM FOR
NOX FROM N 2 209 5.6.2 NO 2 CONVERSION TO NO 210 5.6.3 HYDROCARBON
GLOBAL REACTIONS 211 5.6.3.1 GENERIC APPROACHES 211 5.6.3-2 REDUCED
KINETICS 211 5.6.4 THE H 2 -O 2 SYSTEM 213 5.6.5 CARBON MONOXIDE
OXIDATION 214 5.7 REACTION RATE THEORY AND THE ARRHENIUS LAW 215 5.7.1
COLLISION THEORY 215 5.7.1.1 COLLISION NUMBER AND MEAN FREE PATH *
SIMPLE THEORY 215 5.7.1.2 COLLISION NUMBER, REACTION RATE, AND ARRHENIUS
LAW 216 5.7.2 AN APPLICATION .219 5.7.3 DETERMINATION OF KINETICS
CONSTANTS IN ARRHENIUS LAW 221 5.8 SECOND LAW AND GLOBAL AND BACKWARD
REACTIONS 224 5.8.1 BACKWARD REACTION RATE AND SECOND LAW 224 5.8.2
EQUILIBRIUM CONSTANTS AND ESTIMATION OF BACKWARD REACTION RATE CONSTANTS
225 5.8.2.1 EQUIMOLECULARITY OF PRODUCTS AND REACTANTS.225 5.8.2.2
GENERAL REACTION OF ANY MOLECULARITY 229 5.9 THE PARTIAL EQUILIBRIUM AND
REACTION RATE EXPRESSION 230 5.9.1 PARTIAL EQUILIBRIUM 230 5.9.2
REACTION RATE 231 5.10 TIMESCALES FOR REACTION 234 5.10.1 PHYSICAL DELAY
234 5.10.2 INDUCTION TIME "(T IND ) 234 XIII 5.10.3 IGNITION TIME (T IGN
) 234 5.10.4 CHARACTERISTIC REACTION OR CHEMICAL/COMBUSTION TIMES 235
5.10.5 HALF-LIFE TIME AND TIME CONSTANTS (T 1/2 ) 235 5.10.6 TOTAL
COMBUSTION TIME 237 5.11 SOLID-GAS (HETEROGENEOUS) REACTIONS AND
PYROLYSIS OF SOLID FUELS 237 5.11.1 SOLID-GAS (HETEROGENEOUS) REACTIONS
237 5.11.2 HETEROGENEOUS REACTIONS 237 5.11.2.1 DESORPTION CONTROL 239
5.11.2.2 ABSORPTION CONTROL 239 5.11.2.3 GLOBAL REACTION 240 5.11.3
FORWARD AND BACKWARD REACTION RATES 240 5.11.4 PYROLYSIS OF SOLIDS 242
5.11.4.1 SINGLE REACTION MODEL (AT ANY INSTANT OF TIME) 243 5.11.4.2
COMPETING REACTION MODEL 244 5.11.4.3 PARALLEL REACTION MODEL 247 5.12
SUMMARY 249 5.13 APPENDIX 249 5.13.1 MULTISTEP REACTIONS 249 5.13.2
SIMPLIFIED CH 4 REACTIONS 250 5.13-3 CONVERSION OF REACTION RATE
EXPRESSIONS 251 5.13-3.1 CONVERSION OF LAW OF MASS ACTION FROM MOLAR
FORM (KMOL/M 3 ) TO MASS FORM (CONCENTRATION IN KG/M 3 ) 251 5.13-3.2
CONVERSION OF LAW OF MASS ACTION FROM MASS FORM TO MOLAR FORM 252
5.13.3.3 SUMMARY ON CONVERSIONS 252 5.13.4 SOME APPROXIMATIONS IN
KINETICS INTEGRALS 253 MASS TRANSFER 255 6.1 INTRODUCTION 255 6.2 HEAT
TRANSFER AND THE FOURIER LAW 255 6.3 MASS TRANSFER AND FICK'S LAW 257
6.3.1 FICK'S LAW 257 6.3.2 DEFINITIONS 258 6.4 MOLECULAR THEORY 267
6.4.1 APPROXIMATE METHOD FOR TRANSPORT PROPERTIES OF SINGLE COMPONENT
267 6.4.1.1 ABSOLUTE VISCOSITY 267 6.4.1.2 ANY PROPERTY A 268 6.4.2
RIGOROUS METHOD FOR TRANSPORT PROPERTIES OF SINGLE COMPONENT 269 6.4.2.1
ABSOLUTE VISCOSITY 269 6.4.2.2 THERMAL CONDUCTIVITY 269 6.4.2.3
SELF-DIFFUSION COEFFICIENT 270 XIV 6.4.3 TRANSPORT PROPERTIES OF
MULTIPLE COMPONENTS 270 6.4.3.1 ABSOLUTE VISCOSITY 270 6.4.3.2 THERMAL
CONDUCTIVITY 271 6.4.3.3 DIFFUSION IN MULTICOMPONENT SYSTEMS 272 6.5
GENERALIZED FORM OF FOURIER'S AND FICK'S LAWS FOR A MIXTURE, WITH
SIMPLIFICATIONS 274 6.5.1 GENERALIZED LAW: MULTICOMPONENT HEAT FLUX
VECTOR 274 6.5.2 GENERALIZED LAW: MULTICOMPONENT DIFFUSION 275 6.6
SUMMARY 279 6.7 APPENDIX: RIGOROUS DERIVATION FOR MULTICOMPONENT
DIFFUSION 279 FIRST LAW APPLICATIONS 283 7.1 INTRODUCTION 283 7.2
GENERALIZED RELATIONS IN MOLAR FORM 283 7.2.1 MASS CONSERVATION AND
MOLAR BALANCE 283 7.2.2 FIRST LAW 284 7.3 CLOSED-SYSTEM COMBUSTION 284
7.3.1 SIMPLE TREATMENT 284 7.3.1.1 CONSTANT-VOLUME REACTOR 285 7.3.1.2
CONSTANT-PRESSURE REACTOR 289 7.3.2 RIGOROUS FORMULATION 290 7.3-3
APPLICATIONS OF RIGOROUS TREATMENT 294 7.3.3.1 CONSTANT PRESSURE 294
7.3.3.2 ISOBARIC AND ISOTHERMAL 294 7.3.3-3 CONSTANT VOLUME 294 7.3.3.4
CONSTANT VOLUME AND ISOTHERMAL 295 7.4 OPEN SYSTEMS 297 7.4.1 DAMKOHLER
NUMBERS 298 7.4.2 PLUG FLOW REACTOR (PFR) 298 7.4.3 NONISOTHERMAL
REACTOR AND IGNITION 305 7.4.4 PERFECTLY STIRRED REACTOR (PSR) I.306
7.4.4.1 WHAT IS A PSR? 306 7.4.4.2 SIMPLIFIED METHOD 309 7.4.4.3
RIGOROUS FORMULATION FROM MASS AND ENERGY EQUATIONS 310 7.5 SOLID CARBON
COMBUSTION 319 7.5.1 DIFFUSION RATE OF OXYGEN 320 7.5.2 BURN RATE 321
7.5.3 SHERWOOD NUMBER RELATIONS FOR MASS TRANSFER 329 7.5.4 CARBON
TEMPERATURE DURING COMBUSTION 331 7.6 DROPLET BURNING 332 7.7 SUMMARY ,
335 XV 8 CONSERVATION RELATIONS 337 8.1 INTRODUCTION 337 8.2 SIMPLE
DIFFUSIVE TRANSPORT CONSTITUTIVE RELATIONS 337 8.2.1 DIFFUSIVE MOMENTUM
TRANSFER (NEWTON'S LAW) 337 8.2.2 DIFFUSIVE HEAT TRANSFER (FOURIER'S
LAW) 338 8.2.3 DIFFUSIVE SPECIES TRANSFER (FICK'S LAW) 338 8.3
CONSERVATION EQUATIONS 338 8.3.1 OVERALL MASS 338 8.3.2 SPECIES
CONSERVATION 340 8.4 GENERALIZED TRANSPORT 343 8.4.1 ENERGY 344 8.4.1.1
TOTAL ENTHALPY FORM 344 8.4.1.2 THERMAL ENTHALPY FORM 346 8.4.2 SPECIES
347 8.4.3 MOMENTUM 347 8.4.4 ELEMENT 347 8.5 SIMPLIFIED
BOUNDARY-LAYER-TYPE PROBLEMS 349 8.5.1 GOVERNING EQUATIONS 350 8.5.2
GENERAL SOLUTION 351 8.5.3 MIXTURE FRACTION 351 8.5.3-1 DEFINITION 351
8.5.3.2 LOCAL EQUIVALENCE RATIO 353 8.5.3-3 RELATION BETWEEN MIXTURE
FRACTION, ELEMENT FRACTION, AND TOTAL ENTHALPY 353 8.6 SHVAB-ZELDOVICH
FORMULATION 355 8.6.1 BOUNDARY-LAYER PROBLEMS 355 8.6.1.1 SINGLE-STEP
REACTION 355 8.6.1.2 FUEL HAVING TWO COMPONENTS 359 8.6.2 RELATION
BETWEEN MIXTURE FRACTION (F M ) AND AN SZ VARIABLE 362 8.6.3 PLUG FLOW
REACTOR (PFR) 362 8.6.4 COMBUSTION OF LIQUIDS AND SOLIDS 364 8.6.4.1
INTERFACE CONSERVATION EQUATIONS 364 8.6.4.2 NUMERICAL SOLUTION 369
8.6.4.3 THNVFLAME OR FLAME SURFACE APPROXIMATION 370 8.6 A A BURN RATE,
ANALOGY TO HEAT TRANSFER AND RESISTANCE CONCEPT 372 8.7 TURBULENT FLOWS
377 8.8 SUMMARY 378 8.9 APPENDIX 379 8.9.1 VECTOR AND TENSORS 379 8.9.2
MODIFIED CONSTITUTIVE EQUATIONS 381 8.9.2.1 DIFFUSIVE MOMENTUM FLUXES
AND PRESSURE TENSOR 381 8.9.2.2 GENERALIZED RELATION FOR HEAT TRANSFER
384 XVI 8.9-3 RIGOROUS FORMULATION OF THE CONSERVATION RELATIONS 385
8.9.3.1 MOMENTUM 385 8.9.3.2 KINETIC ENERGY (V 2 /2) 385 8.9.3.3
INTERNAL AND KINETIC ENERGIES 386 8.9-4 ENTHALPY 386 8.9.5 STAGNATION
ENTHALPY 386 8.9-6 FILM THEORY AND MASS TRANSFER 386 COMBUSTION OF SOLID
FUELS, CARBON, AND CHAR 389 9.1 INTRODUCTION 389 9.2 CARBON REACTIONS
390 9.2.1 REACTIONS 390 9.2.2 IDENTITIES INVOLVING CARBON REACTIONS 391
9.3 CONSERVATION EQUATIONS FOR A SPHERICAL PARTICLE 391 9.3.1 PHYSICAL
PROCESSES 391 9.3.2 DIMENSIONAL FORM AND BOUNDARY CONDITIONS 392 9.4
NONDIMENSIONAL CONSERVATION EQUATIONS AND BOUNDARY CONDITIONS 393 9.4.1
GAS-PHASE PROFILES 396 9.5 INTERFACIAL CONSERVATION EQUATIONS OR BCS 396
9.5.1 GENERAL SYSTEM WITH ARBITRARY SURFACE 396 9.5.1.1 MASS AND SPECIES
396 9.5.1.2 ENERGY 399 9.5.2 SPHERICAL PARTICLE 400 9.6 SOLUTIONS FOR
CARBON PARTICLE COMBUSTION 401 9.6.1 REACTION I ALONG WITH GAS PHASE
REACTION V 401 9.6.1.1 FINITE KINETICS GAS PHASE AND HETEROGENEOUS
KINETICS 401 9.6.1.2 FINITE KINETICS HETEROGENEOUS CHEMISTRY AND FROZEN
GAS PHASE (I.E., SFM) 403 9.6.1.3 FAST HETEROGENEOUS KINETICS AND FROZEN
GAS PHASE (I.E., SFM) 405 9.6.2 OTHER CARBON REACTIONS 406 9.6.3
BOUDOUARD AND SURFACE OXIDATION REACTIONS WITH FROZEN GAS PHASE (I.E.,
SFM) 408 9.6.3.1 BURN RATE 408 9.6.3.2 CO MASS FRACTION 409 9.6.3.3
CARBON SURFACE TEMPERATURE T W 410 9.6.4 BOUDOUARD AND SURFACE OXIDATION
REACTIONS ALONG WITH GAS PHASE OXIDATION (I.E., DFM) 411 9.6.4.1 FINITE
CHEMISTRY 411 9.6.5 FAST CHEMISTRY. 413 9.6.5.1 CO MASS FRACTION 413
9.6.5.2 SURFACE TEMPERATURE 413 9.6.5.3 FLAME LOCATION 414 XVII 9.6.5.4
FLAME TEMPERATURE * DFM 417 9.6.5.5 CO 2 MASS FRACTION IN FLAME 417 9.7
THERMAL NO X FROM BURNING CARBON PARTICLES 419 9.8 NON-QUASI-STEADY
NATURE OF COMBUSTION OF PARTICLE 421 9-9 ELEMENT CONSERVATION AND CARBON
COMBUSTION 422 9.10 POROUS CHAR 424 9.11 SUMMARY 432 9.12 APPENDIX: D
LAW AND STEFAN FLOW APPROXIMATION 432 9.12.1 D LAW FOR
KINETIC-CONTROLLED COMBUSTION (I.E., SFM).432 9.12.2 STEFAN FLOW
APPROXIMATION 433 10 DIFFUSION FLAMES * LIQUID FUELS 435 10.1
INTRODUCTION 435 10.2 EVAPORATION, COMBUSTION, AND D 2 LAW 436 10.3
MODEL/PHYSICAL PROCESSES 436 10.3.1 MODEL 436 10.3.2
DIFFUSION-CONTROLLED COMBUSTION 438 10.4 GOVERNING EQUATIONS 438 10.4.1
ASSUMPTIONS 438 10.4.2 CONSERVATION EQUATIONS: DIMENSIONAL FORM 439
10.4.2.1 ENERGY 440 10.4.3 CONSERVATION EQUATIONS NONDIMENSIONAL FORM
440 10.4.4 BOUNDARY CONDITIONS 441 10.4.5 SOLUTIONS 441 10.4.5.1 SZ
VARIABLE 441 10.4.5.2 INTERFACE BOUNDARY CONDITIONS 442 10.5 SOLUTIONS
444 10.5.1 BURN RATE 444 10.5.1.1 THICK FLAMES 444 10.5.1.2 THIN FLAMES
445 10.5.1.3 PHYSICAL MEANING OF TRANSFER NUMBER B 446 10.5.2 D 2 LAW !
447 10.5.3 BURNING TIME. 448 10.5.4 EXACT SOLUTION FOR T W 450 10.5.4.1
SPECIES: FUEL (F) 450 10.5.4.2 THIN-FLAME RESULTS 452 10.5.4.3 MASS
FRACTIONS OF CO 2 AND H 2 0 454 10.5.4.4 EXACT PROCEDURE FOR DROP
TEMPERATURE AND BURN RATE 455 10.5.5 FLAME STRUCTURE AND FLAME LOCATION,
R F 455 10.5.5.1 FLAME TEMPERATURE 457 10.5.5.2 RELATION BETWEEN FLAME
AND ADIABATIC FLAME TEMPERATURES 457 10.5.6 EXTENSION TO COMBUSTION OF
PLASTICS 461 10.5.7 EXTENSION TO COMBUSTION OF COAL AND BIOMASS 461
IVIII 10.5.8 EXTENSION OF COMBUSTION ANALYSES TO PURE
VAPORIZATION/GASIFICATION 46L 10.5.9 MASS TRANSFER CORRECTION 462
10.5.10 EVAPORATION AND COMBUSTION INSIDE A SHELL OF RADIUS B AND THE
DIAMETER LAW 463 10.6 CONVECTION EFFECTS 463 10.6.1 DRAG COEFFICIENT C D
, NU AND SH NUMBERS 463 10.6.2 BURN RATES 464 10.6.3 WAKE FLAMES 465
10.7 TRANSIENT AND STEADY-COMBUSTION RESULTS 465 10.8
MULTICOMPONENT-ISOLATED-DROP EVAPORATION AND COMBUSTION .466 10.8.1
EVAPORATION 467 10.8.1.1 GOVERNING EQUATIONS 467 10.8.1.2 INTERFACE
CONSERVATION EQUATIONS 467 10.8.1.3 SOLUTIONS 468 10.8.2 COMBUSTION OF
MULTICOMPONENT DROP 472 10.8.2.1 NONVOLATILE (B) AND VOLATILE (A)
COMPONENTS 472 10.8.2.2 COMBUSTIBLE VOLATILE COMPONENTS 472 10.8.2.3
COMBUSTIBLE AND NONCOMBUSTIBLE COMPONENTS 476 10.9 SUMMARY 478 11
COMBUSTION IN BOUNDARY LAYERS 479 11.1 INTRODUCTION 479 11.2
PHENOMENOLOGICAL ANALYSES 481 11.2.1 MOMENTUM 481 11.2.2 ENERGY 483
11.2.3 MASS 483 11.2 A GROWTHS OF BLS AND DIMENSIONLESS NUMBERS 484
11.2.5 COMBUSTION 484 11.3 GENERALIZED CONSERVATION EQUATIONS AND
BOUNDARY CONDITIONS ^.484 11.3.1 CONSERVATION EQUATIONS IN
COMPRESSIBLE FORM 485 11.3.1.1 MASS 485 11.3.1.2 MOMENTUM CONSERVATION
485 11.3.1.3 SPECIES CONSERVATION 486 11.3.1.4 ENERGY CONSERVATION
(THERMAL ENTHALPY FORM) 486 11.3.1.5 ENERGY (TOTAL ENTHALPY FORM) 486
11.3.1.6 GENERAL PROPERTY 487 11.3.1.7 SZ FORMULATION 487 11.3.2
BOUNDARY CONDITIONS 487 11.3.3 TRANSFORMATION VARIABLES FOR CONVERSION
TO "INCOMPRESSIBLE" FORM 488 11.3 A CONSERVATION EQUATIONS IN
INCOMPRESSIBLE FORM 489 11.3.4.1 MASS'. 489 XIX 11.3.4.2 MOMENTUM 489
11.3.4.3 SPECIES 489 11.3.4.4 THERMAL ENTHALPY 489 11.3.4.5 TOTAL
ENTHALPY 489 11.3.4.6 GENERAL PROPERTY "B" 490 11.3.4.7 SZ VARIABLE 490
11.3-4.8 NORMALIZED SZ (NSZ) VARIABLE 490 11.3.4.9 BOUNDARY CONDITIONS
(BCS) 490 11.4 INTERFACE BOUNDARY CONDITIONS 491 11.4.1 SPECIES AND
ENERGY 491 11.5 GENERALIZED NUMERICAL SOLUTION PROCEDURE FOR BL
EQUATIONS IN PARTIAL DIFFERENTIAL FORM 492 11.6 NORMALIZED VARIABLES AND
CONSERVATION EQUATIONS 492 11.6.1 NORMALIZED VARIABLES 492 11.6.2
NORMALIZED CONSERVATION EQUATIONS 493 11.6.2.1 MASS 493 11.6.2.2
MOMENTUM (X DIRECTION) 493 11.6.2.3 SPECIES 494 11.6.2.4 THERMAL
ENTHALPY 494 11.6.2.5 GENERIC PROPERTY "B" 495 11.6.2.6 NORMALIZED SZ
VARIABLE 495 11.6.2.7 REFERENCE CONDITIONS 495 11.7 SIMILARITY
SOLUTIONS-BL EQUATIONS 495 11.7.1 STREAM FUNCTIONS AND SIMILARITY
VARIABLE 495 11.7.2 CONSERVATION EQUATIONS IN TERMS OF SIMILARITY
VARIABLE 496 11.7.2.1 MOMENTUM 496 11.7.2.2 SPECIES AND SZ 496 11.7.2.3
FINITE CHEMISTRY 498 11.7.3 BOUNDARY AND INTERFACE CONDITIONS IN TERMS
OF SIMILARITY VARIABLE 498 11.8 APPLICATIONS OF GENERALIZED SIMILARITY
EQUATIONS TO VARIOUS FLOW SYSTEMS 499 11.8.1 FORCED CONVECTION OVER FLAT
PLATE, INCLINED PLATE, AND CURVED SURFACES 499 11.8.2 2-D STAGNATION
FLOW SYSTEMS (K = 0) 501 11.8.2.1 INFINITE CHEMISTRY 501 11.8.2.2 FINITE
CHEMISTRY 501 11.8.3 AXISYMMETRIC STAGNATION FLOW SYSTEMS (K = 1) 501
11.8.3.1 SPECIES AND ENERGY FOR AXISYMMETRIC JET WITH FINITE CHEMISTRY
501 11.8.3-2 INFINITE CHEMISTRY OR SZ 501 11.8.4 FREE CONVECTION 502
11.8.4.1 FINITE CHEMISTRY 502 11.8.4.2 INFINITE CHEMISTRY OR SZ 502 11.9
SOLUTIONS FOR BOUNDARY LAYER COMBUSTION OF TOTALLY GASIFYING FUELS 502
XX 11.9.1 EXACT NUMERICAL SOLUTION PROCEDURE FOR VARIOUS FLOW SYSTEMS
502 11.9.1.1 FLAME LOCATION 503 11.9.1.2 FORCED CONVECTION.: 504
11.9.1.3 FREE CONVECTION 504 11.9.1.4 STAGNATION FLOWS 506 11.9.2
APPROXIMATE RESULTS 507 11.9.2.1 SIMPLIFIED SOLUTIONS FROM FLUID
MECHANICS AND HEAT TRANSFER FOR LIQUIDS, SOLIDS, AND PLASTICS 507
11.9.2.2 "CONVENTIONAL" AND "NONCONVENTIONAL" INTEGRAL TECHNIQUE 509
11.10 COMBUSTION RESULTS FOR FUELS BURNING UNDER CONVECTION 513 11.10.1
CHEMICAL REACTIONS INVOLVING NONPYROLYZING SOLIDS 515 11.10.1.1 CHEMICAL
VAPOR DEPOSITION 515 11.10.1.2 BOUNDARY LAYER COMBUSTION OF CARBON.518
11.10.1.3 DOUBLE-FILM LAYER 520 11.10.2 FREE CONVECTION 526 11.10.2.1
PHYSICS OF FREE CONVECTION 526 11.10.2.2 SIMPLIFIED SOLUTIONS FROM FLUID
MECHANICS AND HEAT TRANSFER 527 11.10.2.3 INTEGRAL SOLUTIONS FOR
FREE-CONVECTIVE BURNING 527 11.10.2.4 COMBUSTION OF LIQUIDS AND
PYROLYZING SOLIDS OVER VERTICAL WALLS 530 11.10.3 STAGNATION FLOWS 530
11.11 EXCESS FUEL AND EXCESS AIR UNDER CONVECTION 531 11.11.1 CLOSED
(ENVELOPED) AND OPEN FLAMES 531 11.11.2 EXCESS FUEL 532 11.12 SUMMARY
535 12 COMBUSTION OF GAS JETS 537 12.1 INTRODUCTION 537 12.2
BURKE-SCHUMANN (B-S) FLAME 537 12.2.1 OVERVIEW 537 12.2.2 ASSUMPTIONS
538 12.2.3 GOVERNING EQUATIONS 539 12.2.3.1 MASS 539 12.2.3.2 SPECIES
AND ENERGY CONSERVATION EQUATION 539 12.2.3.3 BOUNDARY CONDITIONS 540
12.2.4 NORMALIZED CONSERVATION EQUATIONS 541 12.2.5 SOLUTION 542
12.2.5.1 NORMALIZED SZ VARIABLE 542 12.2.5.2 FLAME STRUCTURE 542 XXI
12.2.5.3 FLAME PROFILE 542 12.2.5.4 OVER- AND UNDERVENTILATED FLAMES *
CRITERIA 542 12.2.5.5 FLAME HEIGHTS 543 12.3 MODIFICATION TO B-S
ANALYSES 545 12.3.1 FLAMES IN INFINITE SURROUNDINGS WITH EQUAL FUEL AND
AIR VELOCITY 545 12.3.2 MASS FLUX AS FUNCTION OF AXIAL DISTANCE 545 12.4
LAMINAR JETS 546 12.4.1 INTRODUCTION 546 12.4.2 TERMINOLOGY OF JETS 547
12.4.2.1 POTENTIAL CORE 547 12.4.2.2 MIXING LAYER 548 12.4.2.3 GLOBAL
CHEMICAL REACTION AND THIN FLAMES 549 12.5 PLANAR LAMINAR JETS 549
12.5.1 OVERVIEW 549 12.5.2 SIMPLIFIED ANALYSIS OF 2-D LAMINAR JETS 550
12.5.3 GOVERNING DIFFERENTIAL EQUATIONS FOR PLANAR JETS 551 12.5.4
NORMALIZED CONSERVATION EQUATIONS 551 12.5.5 BOUNDARY CONDITIONS FOR
PLANAR JETS 552 12.5.6 NORMALIZED BOUNDARY CONDITION 553 12.5.7
SIMILARITY VARIABLES FOR PLANAR JETS 553 12.5.8 MOMENTUM EQUATION IN
SIMILARITY COORDINATES 554 12.5.9 MOMENTUM SOLUTIONS FOR PLANAR JETS 555
12.5.9.1 VELOCITIES (MOMENTUM EQUATION) 555 12.5.9.2 JET HALF WIDTH (Y*
1/2 ) 556 12.5.10 SPECIES, TEMPERATURE, AND O EQUATIONS IN SIMILARITY
COORDINATES 556 12.5.11 SOLUTIONS FOR NORMALIZED SZ AND SCALAR
PROPERTIES .556 12.5.12 MASS FLOW OF GAS AND AIR AND A:F AT ANY X 557
12.5.13 SOLUTIONS FOR PURE MIXING PROBLEMS (CHEMICALLY FROZEN FLOW) ,
558 12.5.14 SOLUTIONS FOR COMBUSTION 558 12.5.14.1 NORMALIZED SZ
VARIABLE 558 12.5.14.2 FLAME PROFILE AND STRUCTURE 558 12.5.14.3 FLAME
HEIGHTS 559 12.5.14.4 MASS FLOW OF GAS, AIR AND A:F AT ANY X 560 12.6
CIRCULAR JETS 562 12.6.1 SIMPLIFIED RELATIONS FOR CIRCULAR LAMINAR JETS
562 12.6.2 GOVERNING DIFFERENTIAL EQUATIONS FOR CIRCULAR JETS 562 12.6.3
BOUNDARY CONDITIONS FOR CIRCULAR JETS 563 12.6 A NORMALIZATION 563
12.6.5 NORMALIZATION OF GOVERNING DIFFERENTIAL EQUATIONS 564 12.6.6
SIMILARITY VARIABLES FOR CIRCULAR JETS 565 XXII 12.6.7 MOMENTUM EQUATION
IN SIMILARITY COORDINATES 565 12.6.8 SOLUTION TO MOMENTUM EQUATION 565
12.6.8.1 VELOCITIES 565 12.6.9 NSZ EQUATION IN SIMILARITY COORDINATES
566 12.6.10 SOLUTIONS FOR SPECIES, TEMPERATURE, AND D 567 12.6.11
SOLUTIONS FOR COMBUSTION AND PURE MIXING 567 12.6.11.1 SOLUTIONS FOR
COMBUSTION 567 12.6.11.2 SOLUTIONS FOR MIXING 568 12.6.12 MASS FLOW OF
GAS, AIR, AND A:F AT ANY X 571 12.7 SUMMARY OF SOLUTIONS FOR 2-D AND
CIRCULAR JETS 574 12.8 STOICHIOMETRIC CONTOURS FOR 2-D AND CIRCULAR
JETS, LIFTOFF, AND BLOW-OFF 574 12.8.1 A:F CONTOURS 574 12.8.2
STOICHIOMETRIC CONTOURS 576 12.8.3 LIFTOFF DISTANCE 576 12.8.4 ANCHORING
OF FLAMES 579 12.9 JETS IN COFLOWING AIR: JET FLAME STRUCTURE IN
STRONGLY COFLOWING AIR FOR 2-D AND CIRCULAR JETS 581 12.9.1 GOVERNING
EQUATIONS 581 12.9.2 BOUNDARY CONDITIONS 582 12.9.3 SOLUTIONS 582
12.9.3.1 PLANAR JET IN COFLOWING AIR 582 12.9.3.2 CYLINDRICAL SYSTEM 583
12.10 TURBULENT DIFFUSION FLAMES 583 12.10.1 TURBULENT PLANAR JETS 584
12.10.1.1 EMPIRICAL VISCOSITY 584 12.10.1.2 CONSERVATION EQUATIONS 584
12.10.1.3 NORMALIZED CONSERVATION EQUATIONS 585 12.10.1.4 SOLUTIONS FOR
TURBULENT PLANAR JETS 586 12.10.2 TURBULENT CIRCULAR JETS 588 12.10.2.1
SOLUTIONS 588 12.11 PARTIALLY PREMIXED FLAME 589 12.12 SUMMARY ,.590
13 IGNITION AND EXTINCTION 591 13.1 INTRODUCTION.,. 591 13.2 MODES OF
IGNITION 591 13-3 IGNITION OF GAS MIXTURES IN RIGID SYSTEMS: UNIFORM
SYSTEM 593 13.3.1 SOLUTION FOR IGNITION 594 13.3.1.1 NUMERICAL SOLUTION
594 13-3.1.2 STEADY-STATE APPROXIMATE SOLUTION 598 13.3.2 IGNITION
ENERGY 603 13.4 CONSTANT-PRESSURE SYSTEMS 604 13.4.1 ANALYSIS 604 13.4.2
IGNITION OF COMBUSTIBLE GAS MIXTURE IN STAGNATION" POINT FLOW 606 XXIII
13.5 IGNITION OF SOLID PARTICLE 608 13.5.1 CARBON/CHAR PARTICLE 608
13.5.1.1 NUMERICAL METHOD 609 13-5.1.2 EXPLICIT SOLUTIONS WHEN Y O2 AT
CHAR SURFACE IS THE SAME AS FREE-STREAM MASS FRACTION 610 13.5.1.3
IMPLICIT STEADY-STATE SOLUTIONS WHEN Y O2 ,W * Y O2 ~ 614 13.5.1.4
APPROXIMATE EXPLICIT SOLUTION WITH RADIATION HEAT LOSS 6L6 13.5.2 COAL
IGNITION 619 13.5.2.1 HETEROGENEOUS IGNITION OF COAL 620 13.5.3 IGNITION
OF PLASTICS 620 13.6 IGNITION OF NONUNIFORM TEMPERATURE SYSTEMS *
STEADY-STATE SOLUTIONS 621 13.6.1 SLAB 621 13.6.1.1 PHYSICAL PROCESSES
622 13-6.1.2 NORMALIZED GOVERNING EQUATIONS 624 13.6.1.3 SOLUTION FOR
IGNITION 625 13.6.2 GENERALIZED GEOMETRY 628 13.6.3 SOME APPLICATIONS
630 13.6.4 BIOLOGICAL SYSTEMS 630 13.7 SUMMARY 631 14 DEFLAGRATION AND
DETONATION 633 14.1 INTRODUCTION 633 14.2 CONSERVATION EQUATIONS 635
14.2.1 MASS 635 14.2.2 MOMENTUM 635 14.2.3 ENERGY 635 14.2.4 THE
EQUATION OF STATE 637 14.3 SOLUTIONS FOR RAYLEIGH AND HUGONIOT CURVES
637 14.3.1 RAYLEIGH LINES 637 14.3.2 HUGONIOT CURVES 638 14.3.3 ENTROPY
640 14.4 FLAME PROPAGATION INTO UNBURNED MIXTURE 641 14A.I GENERAL
REMARKS 641 14.4.2 DETONATION BRANCH 641 14.4.3 PHYSICAL EXPLANATION FOR
DETONATION 642 14.4.4 DEFLAGRATION BRANCH 643 14.4.5 CJ WAVES 644
14.4.5.1 EXPLICIT RESULTS FOR CJ WAVES 644 14.5 SUMMARY 646 14.6
APPENDIX I: SPREADSHEET PROGRAM FOR CJ WAVES 646 14.7 APPENDIX II: THE
SOLUTIONS FOR V TO AT A GIVEN V 0 OR M"OR M* 647 XXIV 15 FLAME
PROPAGATION AND FLAMMABILITY LIMITS 649 15.1 INTRODUCTION 649 15.2
PHEMENOLOGICAL ANALYSIS 651 15.2.1 HOMOGENEOUS MIXTURES 651 15.2.1.1
SPACE HEATING RATE (SHR) 654 15.2.1.2 EFFECT OF VARIOUS PARAMETERS ON V
0 OR S 654 15.2.2 HETEROGENEOUS LIQUID MIXTURES 655 15.2.2.1 MICRONIZED
DROPS 655 15.2.2.2 MEDIUM-SIZED DROPS 655 15.2.3 HETEROGENEOUS
PULVERIZED COAL: AIR MIXTURES 655 15.2.3.1 MICRONIZED PARTICLES 655
15.2.3.2 MEDIUM-SIZED PARTICLES 655 15.3 RIGOROUS ANALYSIS 656 15.3-1
CONSERVATION EQUATIONS 656 15.3.1.1 MASS 656 15.3.1.2 MOMENTUM 656
15.3.1.3 SPECIES 656 15.3.1.4 ENERGY 657 15.3.2 GENERAL SOLUTION 657
15.3.3 EXPLICIT SOLUTIONS 657 15.3.3.1 SZ VARIABLE 658 15.3.3-2 PRODUCT
TEMPERATURE FOR LEAN MIXTURE 658 15.3.3-3 RELATION BETWEEN Y F AND T
PROFILES FOR LEAN MIXTURES 658 15.3.3.4 PRODUCT TEMPERATURE FOR RICH
MIXTURE 659 15.3.3.5 RELATION BETWEEN Y O2 AND T PROFILES FOR RICH
MIXTURES 659 15.3.4 RELATION BETWEEN FLUX RATIO AND TEMPERATURE 659
15.3.5 SOLUTION FOR FLAME VELOCITY FOR LEAN MIXTURES 660 15.3.6 EFFECTS
OF THERMOPHYSICAL AND CHEMICAL PROPERTIES OF MIXTURE ON FLAME VELOCITY
661 15.3.6.1 TRANSPORT PROPERTIES. 661 15.3.6.2 ORDER OF REACTION 662
15.3.7 NUMERICAL SIMULATION 662 15.4 FLAME STRETCHING 664 15.5
DETERMINATION OF FLAME VELOCITY 665 15.6 FLAMMABILITY LIMITS 666 15.6.1
SIMPLIFIED ANALYSES 667 15.6.2 RIGOROUS ANALYSES 669 15.6.2.1 SPECIES B
OR O 2 IN EXCESS FOR LEAN FLAMMABILITY LIMIT (LFL) 670 15.6.2.2 FUEL (A)
IN EXCESS FOR RICH FLAMMABILITY LIMIT (RFL) 674 15.6.2.3 SPALDING'S
EXPLICIT RESULTS 675 XXV 15.6.3 EMPIRICAL METHODS 675 15.6.4 TEMPERATURE
AND PRESSURE DEPENDENCIES 676 15.6.5 FLAMMABILITY LIMIT OF MULTIPLE FUEL
AND INERT MIXTURES 676 15.7 QUENCHING DIAMETER 677 15.7.1 DEFINITION 677
15.7.2 SIMPLIFIED ANALYSES 677 15.7.3 EFFECT OF PHYSICAL AND CHEMICAL
PROPERTIES 679 15.8 MINIMUM IGNITION ENERGY FOR SPARK IGNITION 679 15.9
STABILITY OF FLAME IN A PREMIXED GAS BURNER 683 15.9.1 FLASH-BACK
CRITERIA 684 15.9-2 BLOW-OFF 686 15.10 TURBULENT FLAME PROPAGATION 691
15.11 SUMMARY 692 16 INTERACTIVE EVAPORATION AND COMBUSTION 693 16.1
INTRODUCTION 693 16.2 SIMPLIFIED ANALYSES 694 16.2.1 INTERACTIVE
PROCESSES 694 16.2.2 COMBUSTION 695 16.2.3 EVAPORATION 697 16.2.4
CORRECTION FACTOR 698 16.3 ARRAYS AND POINT SOURCE METHOD 698 16.3.1
EVAPORATION OF ARRAYS 698 16.3.1.1 NON-STEFAN FLOW (NSF) PROBLEMS 698
16.3.1.2 STEFAN FLOW (SF) PROBLEMS 701 16.3.1.3 DIAMETER LAW AND
EVAPORATION TIME 705 16.3.2 COMBUSTION OF ARRAYS 706 16.3.2.1 COMBUSTION
UNDER NSF 707 16.3-2.2 SF IN COMBUSTION 707 16.4 COMBUSTION OF CLOUDS OF
DROPS AND CARBON PARTICLES 710 16.4.1 CONSERVATION EQUATIONS 710
16.4.1.1 OVERALL MASS 710 16.4.1.2 GROUP COMBUSTION FOR SIMPLE
GEOMETRIES 713 16.5 TERMINOLOGY 713 16.5.1 ISOLATED-DROP COMBUSTION
(ISOC) 713 16.5.2 INDIVIDUAL FLAME COMBUSTION (IFC) 713 16.5.3 INCIPIENT
GROUP COMBUSTION (IGC) 715 16.5.4 PARTIAL GROUP COMBUSTION (PGC) 715
16.5.5 CRITICAL GROUP COMBUSTION (CGC) 716 16.5.6 TOTAL GROUP COMBUSTION
OR GROUP COMBUSTION (GC) 716 1(5.5.7 SHEATH COMBUSTION (SC) 716 XXVI
16.6 GOVERNING EQUATIONS FOR SPHERICAL CLOUD 716 16.6.1 MASS 718 16.6.2
FUEL SPECIES 718 16.6.3 MODIFIED SZ VARIABLE 718 16.7 RESULTS 721 16.7.1
G NUMBER 721 16.7.2 NONDIMENSIONAL MASS FLOW RATE 722 16.7.3 NSZ
VARIABLE 722 16.7.4 CLOUD MASS-LOSS RATE AND CORRECTION FACTOR 722
16.7.5 NSZ VARIABLE AT CLOUD CENTER 724 16.7.6 FLAME RADIUS 725 16.7.7
SPRAY CLASSIFICATION 726 16.8 RELATION BETWEEN GROUP COMBUSTION AND DROP
ARRAY STUDIES 727 16.9 INTERACTIVE CHAR/CARBON COMBUSTION 728 16.9.1
TERMINOLOGY 728 16.9.1.1 SFM 729 16.9-1.2 ISOC 729 16.9.1.3 IFC 729
16.9.1.4 IGC 729 16.9.1.5 PGC/CGC/GC 729 16.9.1.6 SC 729 16.9.2 MODEL
730 16.9-3 RESULTS 730 16.9.4 ANALOGY BETWEEN POROUS CHAR PARTICLE
COMBUSTION AND CLOUD COMBUSTION OF CHAR PARTICLES 730 16.10
MULTICOMPONENT ARRAY EVAPORATION 731 16.10.1 ARRAY OF ARBITRARY
COMPOSITION 731 16.10.2 ARRAY OF DROPS OF VOLATILE (A) AND NONVOLATILE
(B) COMPONENTS 733 16.10.3 BINARY ARRAY OF DROPS OF VOLATILE COMPONENTS
735 16.10.3.1 BINARY ARRAY OF DROPS OF VOLATILE AND NONVOLATILE
COMPONENTS 735 16.10.3.2 EXPERIMENTAL DATA BINARY ARRAY 735 16.11
SUMMARY. 737 17 POLLUTANTS FORMATION AND DESTRUCTION 739 17.1
INTRODUCTION 739 17.2 EMISSION-LEVEL EXPRESSIONS AND REPORTING 740
17.2.1 REPORTING AS PPM 740 17.2.2 O 2 NORMALIZATION OR CORRECTED PPM
CONCENTRATIONS 741 17.2.3 EMISSION INDEX (G/KG OF FUEL) 742 17.2.4
EMISSIONS IN MASS UNITS PER UNIT HEAT VALUE (G/GJ) 743 17.2.5 REPORTING
AS KG PER MILLION M 3 OF GAS 744 XXVII 17.2.6 CONVERSION OF NO TO MG OF
NO 2 /M 3 744 17.2.7 FUEL N CONVERSION EFFICIENCY 745 17.3 EFFECTS OF
POLLUTANTS ON ENVIRONMENT AND BIOLOGICAL SYSTEMS 745 17.3.1 HEALTH
EFFECTS 745 17.3.2 NO AND OZONE DESTRUCTION 746 17.3-3 PHOTOCHEMICAL
SMOG 748 17.3.4 ACID RAIN 749 17.3-5 CO 2 GREENHOUSE EFFECT 750 17.3.6
PANICULATE MATTER 750 17.4 POLLUTION REGULATIONS 752 17.5 NO X SOURCES
AND PRODUCTION MECHANISMS 755 17.5.1 NITROGEN OXIDE COMPOUNDS 755 17.5.2
SOURCES OF NO X 755 17.5.2.1 MECHANISMS OF PRODUCTION OF NO X 755
17.5.2.2 FUEL NO X 759 17.5.2.3 PROMPT NO X 763 17.6 NO X FORMATION
PARAMETERS 764 17.6.1 TYPE OF FACILITY 764 17.6.2 OPERATIONAL CONDITIONS
765 17.6.3 FUEL 765 17.7 STATIONARY SOURCE NO X CONTROL 766 17.7.1
COMBUSTION MODIFICATIONS 766 17.7.2 POSTCOMBUSTION EXHAUST GAS TREATMENT
OR FLUE GAS DENITRIFICATION 771 17.7.2.1 SELECTIVE NON-CATALYTIC
REDUCTION (SNCR) 771 17.7.2.2 SELECTIVE CATALYTIC REDUCTION (SCR) 774
17.7.2.3 REBURN METHODOLOGY 774 17.8 CO 2 SEQUESTRATION 777 17.9 CARBON
MONOXIDE: CO 778 17.10 SO X FORMATION AND DESTRUCTION 779 17.10.1
ELEMENTS OF SO X FORMATION FROM COAL 779 17.10.1.1 SIMPLIFIED SCHEMES
781 17.10.2 SO X REDUCTION METHODS 782 17.11 SOOT 784 17.12 MERCURY
EMISSIONS 786 17.12.1 MERCURY SOURCES 786 17.12.2 MERCURY FORMS AND
EFFECT OF CL 787 17.12.3 DETERMINATION OF HG 788 17.12.4 REACTIONS WITH
HG 788 17.13 SUMMARY 789 XXVIII 18 AN INTRODUCTION TO TURBULENT
COMBUSTION 791 18.1 INTRODUCTION 791 18.2 TURBULENCE CHARACTERISTICS 791
18.3 AVERAGING TECHNIQUES 792 18.3.1 RELATION BETWEEN FAVRE AVERAGING
AND REYNOLDS AVERAGING 795 18.3.2 A FEW RULES OF AVERAGING 795 18.4
INSTANTANEOUS AND AVERAGE GOVERNING EQUATIONS 795 18.4.1 MASS 796 18.4.2
MOMENTUM 796 18.4.3 ENTHALPY, KINETIC ENERGY, AND STAGNATION ENTHALPY
797 18.4.3.1 KINETIC ENERGY 798 18.4.3.2 STAGNATION ENTHALPY 800 18.4.4
REYNOLDS STRESS TRANSPORT 800 18.4.5 TURBULENT KINETIC ENERGY (K =
(1/2)^.") 803 18.4.6 SPECIES 804 18.4.7 TURBULENCE MODELS 804 18.4.7.1
ALGEBRAIC MODELS 804 18.4.7.2 HIGHER-ORDER MODELS 805 18.4.7.3 THE (K-E)
MODEL 805 18.5 GOVERNING DIFFERENTIAL EQUATIONS: AXISYMMETRIC CASE AND
MIXTURE-FRACTION PDF COMBUSTION MODEL 806 18.5.1 CHEMICAL KINETICS IN
TURBULENT FLAMES 808 18.5.2 KINETICS IN LOW TURBULENCE 808 18.5.2.1 SLOW
KINETICS 808 18.5.2.2 FAST KINETICS 809 18.5.2.3 INTERMEDIATE KINETICS
809 18.6 TURBULENT COMBUSTION MODELING (DIFFUSION FLAMES) 810 18.7
PROBABILITY DENSITY FUNCTION 812 18.7.1 PROPERTY Q AND AVERAGE Q 813
18.7.2 REACTION RATE EXPRESSION 815 18.7.3 QUALITATIVE PDFS FOR A FEW
PROBLEMS 815 18.7.4 MIXTURE FRACTION GOVERNING EQUATIONS 816 18.7.4.1
SINGLE MIXTURE FRACTION 816 18.7.4.2 MIXTURE FRACTION WITH SOURCE TERMS
817 18.7.4.3 FAVRE AVERAGING 819 18.7.5 EQUILIBRIUM CHEMISTRY 819 18.7.6
TWO-MIXTURE FRACTION MODEL 821 18.7.7 THREE-MIXTURE FRACTION:
CALCULATION OF TIME-MEAN REACTION RATES 822 18.8 PREMIXED AND PARTIALLY
PREMIXED TURBULENT FLAMES: MODELING APPROACHES 826 18.8.1 FAST KINETICS
826 18.8.2 FINITE-RATE KINETICS 827 XXIX 18.9 SUMMARY 828 18.10 APPENDIX
I: CYLINDRICAL COORDINATE SYSTEM WITH PARTICLE-LADEN FLOW 828 18.10.1
FAVRE-AVERAGED GOVERNING EQUATIONS 829 18.10.2 K-E TURBULENCE MODEL 830
PROBLEMS 833 FORMULAE 929 APPENDIX A 981 APPENDIX B 1063 REFERENCES 1069
INDEX 1085 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Annamalai, Kalyan |
author_facet | Annamalai, Kalyan |
author_role | aut |
author_sort | Annamalai, Kalyan |
author_variant | k a ka |
building | Verbundindex |
bvnumber | BV021596539 |
callnumber-first | T - Technology |
callnumber-label | TJ254 |
callnumber-raw | TJ254.5 |
callnumber-search | TJ254.5 |
callnumber-sort | TJ 3254.5 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | VE 6000 ZP 3270 |
classification_tum | ERG 420f |
ctrlnum | (OCoLC)60543325 (DE-599)BVBBV021596539 |
dewey-full | 621.402/3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.402/3 |
dewey-search | 621.402/3 |
dewey-sort | 3621.402 13 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Energietechnik, Energiewirtschaft Energietechnik |
discipline_str_mv | Chemie / Pharmazie Energietechnik, Energiewirtschaft Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01648nam a2200445zc 4500</leader><controlfield tag="001">BV021596539</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071107 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060529s2007 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005050219</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0849320712</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-8493-2071-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780849320712</subfield><subfield code="9">978-0-8493-2071-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60543325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021596539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ254.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 6000</subfield><subfield code="0">(DE-625)147131:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3270</subfield><subfield code="0">(DE-625)157949:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 420f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Annamalai, Kalyan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combustion science and engineering</subfield><subfield code="c">Kalyan Annamalai ; Ishwar K. Puri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL [u.a.]</subfield><subfield code="b">CRC Press, Taylor & Francis</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LV, 1121 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">CRC series in computational mechanics and applied analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion, Technique de la</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puri, Ishwar K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014811934&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014811934</subfield></datafield></record></collection> |
id | DE-604.BV021596539 |
illustrated | Not Illustrated |
index_date | 2024-07-02T14:46:21Z |
indexdate | 2024-07-09T20:39:31Z |
institution | BVB |
isbn | 0849320712 9780849320712 |
language | English |
lccn | 2005050219 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014811934 |
oclc_num | 60543325 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-29T DE-83 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-29T DE-83 |
physical | LV, 1121 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | CRC Press, Taylor & Francis |
record_format | marc |
series2 | CRC series in computational mechanics and applied analysis |
spelling | Annamalai, Kalyan Verfasser aut Combustion science and engineering Kalyan Annamalai ; Ishwar K. Puri Boca Raton, FL [u.a.] CRC Press, Taylor & Francis 2007 LV, 1121 S. txt rdacontent n rdamedia nc rdacarrier CRC series in computational mechanics and applied analysis Combustion, Technique de la Combustion engineering Verbrennung (DE-588)4062656-8 gnd rswk-swf Verbrennung (DE-588)4062656-8 s DE-604 Puri, Ishwar K. Sonstige oth HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014811934&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Annamalai, Kalyan Combustion science and engineering Combustion, Technique de la Combustion engineering Verbrennung (DE-588)4062656-8 gnd |
subject_GND | (DE-588)4062656-8 |
title | Combustion science and engineering |
title_auth | Combustion science and engineering |
title_exact_search | Combustion science and engineering |
title_exact_search_txtP | Combustion science and engineering |
title_full | Combustion science and engineering Kalyan Annamalai ; Ishwar K. Puri |
title_fullStr | Combustion science and engineering Kalyan Annamalai ; Ishwar K. Puri |
title_full_unstemmed | Combustion science and engineering Kalyan Annamalai ; Ishwar K. Puri |
title_short | Combustion science and engineering |
title_sort | combustion science and engineering |
topic | Combustion, Technique de la Combustion engineering Verbrennung (DE-588)4062656-8 gnd |
topic_facet | Combustion, Technique de la Combustion engineering Verbrennung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014811934&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT annamalaikalyan combustionscienceandengineering AT puriishwark combustionscienceandengineering |