Advances in evolutionary algorithms: theory, design and practice
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
2006
|
Schriftenreihe: | Studies in computational intelligence
18 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XV, 171 S. graph. Darst. |
ISBN: | 9783540317586 3540317589 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021590106 | ||
003 | DE-604 | ||
005 | 20080605 | ||
007 | t | ||
008 | 060522s2006 gw d||| |||| 00||| eng d | ||
015 | |a 06,N05,1048 |2 dnb | ||
015 | |a 06,A16,0936 |2 dnb | ||
016 | 7 | |a 977877213 |2 DE-101 | |
020 | |a 9783540317586 |c Pp. : EUR 96.25 (freier Pr.), sfr 152.50 (freier Pr.) |9 978-3-540-31758-6 | ||
020 | |a 3540317589 |c Pp. : EUR 96.25 (freier Pr.), sfr 152.50 (freier Pr.) |9 3-540-31758-9 | ||
024 | 3 | |a 9783540317586 | |
028 | 5 | 2 | |a 11543138 |
035 | |a (OCoLC)65207841 | ||
035 | |a (DE-599)BVBBV021590106 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-703 |a DE-83 | ||
050 | 0 | |a QA76.618 | |
082 | 0 | |a 006.3 |2 22 | |
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Ahn, Chang Wook |e Verfasser |0 (DE-588)13143005X |4 aut | |
245 | 1 | 0 | |a Advances in evolutionary algorithms |b theory, design and practice |c Chang Wook Ahn |
264 | 1 | |a Berlin ; Heidelberg |b Springer |c 2006 | |
300 | |a XV, 171 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Studies in computational intelligence |v 18 | |
650 | 4 | |a Evolutionary programming (Computer science) | |
650 | 4 | |a Genetic algorithms | |
650 | 0 | 7 | |a Evolutionärer Algorithmus |0 (DE-588)4366912-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Evolutionärer Algorithmus |0 (DE-588)4366912-8 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Studies in computational intelligence |v 18 |w (DE-604)BV020822171 |9 18 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2754959&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014805604&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014805604 |
Datensatz im Suchindex
_version_ | 1804135366414827520 |
---|---|
adam_text | CHANG WOOK AHN
ADVANCE
S IN EVOLUTIONAR
Y
ALGORITHM
S
THEORY, DESIGN AND PRACTICE
SPRINGE
R
CONTENT
S
1 INTRODUCTIO
N 1
1.1 MOTIVATIO
N 2
1.2 OBJECTIVC
S 3
1.3 OUTLIN
E
4
2 PRACTICA
L GENETI
C ALGORITHM
S 7
2.1 GCIIETIC ALGOIITHMK: SIMPLE T
O OOMPETEN
T 7
2.1.1 OVERVIEW OF GENETI
C ALGORITHM
S 7
2.1.2 DCSIGN-DOCOMPOSITION TLIEORY 9
2.2 PRACTICA
L DESIGN GUIDELINES 11
2.3 PRACTICA
L POPULATION-SIZIN
G MODEL , 14
2.3.1 REVIEW OF POPULATION-SIZIN
G MODELS 14
2.3.2 HARIK
S DECISION MODE
L 15
2.3.3 PRACTICA
L DECISION MODEL 15
2.3.4 PRACTICA
L POPULATION-SIZIN
G MODEL 17
2.3.5 EXPCRIMENTA
L VERIFICATION 19
2.4 SUMMAR
Y 22
3 REAL-WORL
D APPLICATION
: ROUTIN
G PROBLE
M 23
3.1 MOTIVATIO
N 23
3.2 EXISTIN
G GA-BASOD APPROACHE
S 24
3.3 PROPOSC
D GA-BASCD ROUTIN
G ALGORITLIM 26
3.3.1 CHROMOSOM
E REPRESENTATIO
N 26
3.3.2 POPULATIO
N IIIITIALIZATIO
N 27
3.3.3 FITNES
S FUNCTIO
N 28
3.3.1 GENETI
C OPERATOR
S 28
3.3.5 RCPAI
R FUNCTIO
N 31
3.3.6 POPULATIO
N SIZE 33
3.4 EXPERIMENT
S AN
D DISCUSSION 33
3.4.1 R.CSULTS FOR A FIXED NETWORK WIT
H 20 NODE
S 33
3.4.2 R.EWULTS FOR RANDO
M NETWORKS 35
XIV CONTENT
S
3.4.
3 EXPERIMENTA
L VCIIFICATIO
N OF TH
C POPULATIOMSIZHI
G
MODE
L 3
9
3.5 SUMMAR
Y 4
2
4 ELITIS
T COMPAC
T GENETI
C ALGORITHM
S 4
5
4.
1 A FAMIL
Y OF COMPACT
. GCNCTI
C ALGORITHM
S 4
6
4.
2 COMPAC
T GENETI
C ALGORITH
M AN
D ELITIS
M 4
8
4.2.
1 COMPAC
T GENETI
C ALGORITH
M 4
8
4.2.
2 ELITIS
M 4
9
4.
3 ELITISM-BA.SC
D COMPAC
T GENETI
C ALGORITHM
S 5
0
4.3.
1 PERSISTEN
T ELITIS
T COMPAC
T GENETI
C ALGORITH
M 50
4.3.
2 NONPERSISTEII
T ELIL.IS
T COMPAC
T GCNCTI
C ALGORITH
M 5
3
4.
4 SPCEDN
P MODE
L 5
5
1.5 EXPERIMENTA
L RESULT
S AN
D DISCUSSIO
N 5
9
4.5.
1 RESULT
S FOR TH
C PROBLEM
S IIIVOLVIN
G LOWC
R ORDE
R BB
S . . 6
0
1.5.2 RESULT
S FOR TH
C PROBLEM
S INVOLVIN
G HIGHE
R ORDE
R BB
S . . 6
4
4.5.
3 RESULT
S FOR COIITINUOU
S AN
D MULTIMODA
L PROBLEM
S 68
4.5.
4 COMPARISO
N RESULT
S WIT
H EVOLUTIOIIAR
Y STRATEGIE
S 7
3
4.5.
5 EFFECT
S OF TH
E SCOP
E OF INHERITANE
E 75
4.5.
6 REAL-WORL
D APPLICATIONS
: ISIN
G SPIN-GLASSE
S (ISG
)
SYSTEM
S G
0
4.
6 SUMMAR
Y $[
5 REAL-CODC
D BAYESIA
N OPTIMIZATIO
N ALGORITH
M 8
5
5.1 ESTIRNATIO
N OF DISTRIBUTIO
N ALGORITHM
S 8
6
5.2 HCAL-CODE
D BAYESIA
N OPTIMIZATIO
N ALGORITH
M 8
9
5.
3 LEARNIN
G OF PROBABILISTI
C MODEI
S 9
1
5.3.
1 MODE
L SELECTIO
N 9
1
5.3.
2 MODE
L EITTIN
G 94
5.4 SAMPLIN
G OF PROBABILISTI
C MODEL
S 9
9
5.5 SCALABILIT
Y ANALYSI
S 9
9
5.5.
1 PRELIMINARIE
S 9
9
5.5.
2 POPULATIO
N COMPLEXIT
Y 10
1
5.5.
3 CONVERGEUE
E TIM
E COMPLEXIT
Y 10
8
5.5.
4 SCALABILIT
Y OF RBO
A 109
5.6 REABVALUE
D TES
T PROBLEM
S 10
9
5.6.1 DEEOMPOSABL
E PROBLEM
S 109
5.6.
2 TRADITIONA
L OPTIMIZATIO
N BCII(4IMARK
S H
L
5.
7 EXPERIMENTA
L RESULT
S AN
D DISCUSSIO
N 11
3
5.7.
1 EXPERIMEN
T SETU
P 11
3
5.7.
2 RESULT
S FOR TH
E RBO
A PERFORMANC
E 114
5.7.
3 VERIFICATIO
N OF RBO
A SCALABILIT
Y 120
5.8 SUMMAR
Y 12
3
CONTENT.S XV
6 MULTIOBJECTIV
E REAL-CODE
D BAYESIA
N OPTIMIZATIO
N
ALGORITH
M 12
J
6.1 MULTIOBJECTIV
E OPTIMIZATIO
N 126
6.2 MULTIOBJECTIV
E GENETI
C AN
D KVOHITIOIIARY ALGORITHM
S 127
6.3 MULTIOBJECTIV
E REAL-CODE
D
BAYESIAN OPTIMIZATIO
N ALGORITH
M 129
6.4 SEFECTIOII STRATEG
Y . 131
6.4.1 RANKIN
G 131
6.4.2 ADAPTIV
E SHARIN
G 132
6.4.3 DYNAMI
C CIOWDIN
G 133
6.1.4 FITNES
S ASSIGNMENT 135
6.4.5 ELITIS
M 136
6.5 REAL-VALUCD MULTIOBJECTIV
E OPTIMIZATIO
N PROBLEM
S 136
6.5.1 DCCOMPOSABL
C MULTIOBJECTIV
E OPTIMIZATIO
N PROBLEM
S . . 136
6.5.2 TRADITIONA
L MULTIOBJECTIV
E OPTIMIZATIO
N PROBLEM
S 139
6.6 EXPERIMENTA
L RESULT
S AN
D DISCUSSION 140
6.6.1 PERFORMANCE MEASURC
S 140
6.6.2 EXPERIMEN
T SETU
P 142
6.6.3 RESULT
S AN
D DISCUSSION 143
6.7 SUMMAR
Y 151
7 CONCLUSION
S 153
7.1 SUMMAR
Y 153
7.2 FUTUR
E WORK 155
7.2.1 LNCORPORATIN
G EMEIENCY-ENHANCEMEN
T TCCHNIQUES 155
7.2.2 CHALLENGIN
G L
O HIERARCHICA
L DIFFIEULTY 156
7.3 CONCLUDIN
G REMARK
S 156
REFCRENCE
S 159
INDE
X
167
|
adam_txt |
CHANG WOOK AHN
ADVANCE
S IN EVOLUTIONAR
Y
ALGORITHM
S
THEORY, DESIGN AND PRACTICE
SPRINGE
R
CONTENT
S
1 INTRODUCTIO
N 1
1.1 MOTIVATIO
N 2
1.2 OBJECTIVC
S 3
1.3 OUTLIN
E
4
2 PRACTICA
L GENETI
C ALGORITHM
S 7
2.1 GCIIETIC ALGOIITHMK: SIMPLE T
O OOMPETEN
T 7
2.1.1 OVERVIEW OF GENETI
C ALGORITHM
S 7
2.1.2 DCSIGN-DOCOMPOSITION TLIEORY 9
2.2 PRACTICA
L DESIGN GUIDELINES 11
2.3 PRACTICA
L POPULATION-SIZIN
G MODEL , 14
2.3.1 REVIEW OF POPULATION-SIZIN
G MODELS 14
2.3.2 HARIK'
S DECISION MODE
L 15
2.3.3 PRACTICA
L DECISION MODEL 15
2.3.4 PRACTICA
L POPULATION-SIZIN
G MODEL 17
2.3.5 EXPCRIMENTA
L VERIFICATION 19
2.4 SUMMAR
Y 22
3 REAL-WORL
D APPLICATION
: ROUTIN
G PROBLE
M 23
3.1 MOTIVATIO
N 23
3.2 EXISTIN
G GA-BASOD APPROACHE
S 24
3.3 PROPOSC
D GA-BASCD ROUTIN
G ALGORITLIM 26
3.3.1 CHROMOSOM
E REPRESENTATIO
N 26
3.3.2 POPULATIO
N IIIITIALIZATIO
N 27
3.3.3 FITNES
S FUNCTIO
N 28
3.3.1 GENETI
C OPERATOR
S 28
3.3.5 RCPAI
R FUNCTIO
N 31
3.3.6 POPULATIO
N SIZE 33
3.4 EXPERIMENT
S AN
D DISCUSSION 33
3.4.1 R.CSULTS FOR A FIXED NETWORK WIT
H 20 NODE
S 33
3.4.2 R.EWULTS FOR RANDO
M NETWORKS 35
XIV CONTENT
S
3.4.
3 EXPERIMENTA
L VCIIFICATIO
N OF TH
C POPULATIOMSIZHI
G
MODE
L 3
9
3.5 SUMMAR
Y 4
2
4 ELITIS
T COMPAC
T GENETI
C ALGORITHM
S 4
5
4.
1 A FAMIL
Y OF COMPACT
. GCNCTI
C ALGORITHM
S 4
6
4.
2 COMPAC
T GENETI
C ALGORITH
M AN
D ELITIS
M 4
8
4.2.
1 COMPAC
T GENETI
C ALGORITH
M 4
8
4.2.
2 ELITIS
M 4
9
4.
3 ELITISM-BA.SC
D COMPAC
T GENETI
C ALGORITHM
S 5
0
4.3.
1 PERSISTEN
T ELITIS
T COMPAC
T GENETI
C ALGORITH
M 50
4.3.
2 NONPERSISTEII
T ELIL.IS
T COMPAC
T GCNCTI
C ALGORITH
M 5
3
4.
4 SPCEDN
P MODE
L 5
5
1.5 EXPERIMENTA
L RESULT
S AN
D DISCUSSIO
N 5
9
4.5.
1 RESULT
S FOR TH
C PROBLEM
S IIIVOLVIN
G LOWC
R ORDE
R BB
S . . 6
0
1.5.2 RESULT
S FOR TH
C PROBLEM
S INVOLVIN
G HIGHE
R ORDE
R BB
S . . 6
4
4.5.
3 RESULT
S FOR COIITINUOU
S AN
D MULTIMODA
L PROBLEM
S 68
4.5.
4 COMPARISO
N RESULT
S WIT
H EVOLUTIOIIAR
Y STRATEGIE
S 7
3
4.5.
5 EFFECT
S OF TH
E SCOP
E OF INHERITANE
E 75
4.5.
6 REAL-WORL
D APPLICATIONS
: ISIN
G SPIN-GLASSE
S (ISG
)
SYSTEM
S G
0
4.
6 SUMMAR
Y $[
5 REAL-CODC
D BAYESIA
N OPTIMIZATIO
N ALGORITH
M 8
5
5.1 ESTIRNATIO
N OF DISTRIBUTIO
N ALGORITHM
S 8
6
5.2 HCAL-CODE
D BAYESIA
N OPTIMIZATIO
N ALGORITH
M 8
9
5.
3 LEARNIN
G OF PROBABILISTI
C MODEI
S 9
1
5.3.
1 MODE
L SELECTIO
N 9
1
5.3.
2 MODE
L EITTIN
G 94
5.4 SAMPLIN
G OF PROBABILISTI
C MODEL
S 9
9
5.5 SCALABILIT
Y ANALYSI
S 9
9
5.5.
1 PRELIMINARIE
S 9
9
5.5.
2 POPULATIO
N COMPLEXIT
Y 10
1
5.5.
3 CONVERGEUE
E TIM
E COMPLEXIT
Y 10
8
5.5.
4 SCALABILIT
Y OF RBO
A 109
5.6 REABVALUE
D TES
T PROBLEM
S 10
9
5.6.1 DEEOMPOSABL
E PROBLEM
S 109
5.6.
2 TRADITIONA
L OPTIMIZATIO
N BCII(4IMARK
S H
L
5.
7 EXPERIMENTA
L RESULT
S AN
D DISCUSSIO
N 11
3
5.7.
1 EXPERIMEN
T SETU
P 11
3
5.7.
2 RESULT
S FOR TH
E RBO
A PERFORMANC
E 114
5.7.
3 VERIFICATIO
N OF RBO
A SCALABILIT
Y 120
5.8 SUMMAR
Y 12
3
CONTENT.S XV
6 MULTIOBJECTIV
E REAL-CODE
D BAYESIA
N OPTIMIZATIO
N
ALGORITH
M 12
J
6.1 MULTIOBJECTIV
E OPTIMIZATIO
N 126
6.2 MULTIOBJECTIV
E GENETI
C AN
D KVOHITIOIIARY ALGORITHM
S 127
6.3 MULTIOBJECTIV
E REAL-CODE
D
BAYESIAN OPTIMIZATIO
N ALGORITH
M 129
6.4 SEFECTIOII STRATEG
Y . "131
6.4.1 RANKIN
G 131
6.4.2 ADAPTIV
E SHARIN
G 132
6.4.3 DYNAMI
C CIOWDIN
G 133
6.1.4 FITNES
S ASSIGNMENT 135
6.4.5 ELITIS
M 136
6.5 REAL-VALUCD MULTIOBJECTIV
E OPTIMIZATIO
N PROBLEM
S 136
6.5.1 DCCOMPOSABL
C MULTIOBJECTIV
E OPTIMIZATIO
N PROBLEM
S . . 136
6.5.2 TRADITIONA
L MULTIOBJECTIV
E OPTIMIZATIO
N PROBLEM
S 139
6.6 EXPERIMENTA
L RESULT
S AN
D DISCUSSION 140
6.6.1 PERFORMANCE MEASURC
S 140
6.6.2 EXPERIMEN
T SETU
P 142
6.6.3 RESULT
S AN
D DISCUSSION 143
6.7 SUMMAR
Y 151
7 CONCLUSION
S 153
7.1 SUMMAR
Y 153
7.2 FUTUR
E WORK 155
7.2.1 LNCORPORATIN
G EMEIENCY-ENHANCEMEN
T TCCHNIQUES 155
7.2.2 CHALLENGIN
G L
O HIERARCHICA
L DIFFIEULTY 156
7.3 CONCLUDIN
G REMARK
S 156
REFCRENCE
S 159
INDE
X
167 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Ahn, Chang Wook |
author_GND | (DE-588)13143005X |
author_facet | Ahn, Chang Wook |
author_role | aut |
author_sort | Ahn, Chang Wook |
author_variant | c w a cw cwa |
building | Verbundindex |
bvnumber | BV021590106 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.618 |
callnumber-search | QA76.618 |
callnumber-sort | QA 276.618 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 134 ST 301 |
ctrlnum | (OCoLC)65207841 (DE-599)BVBBV021590106 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02037nam a2200505 cb4500</leader><controlfield tag="001">BV021590106</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080605 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060522s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N05,1048</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,A16,0936</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977877213</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540317586</subfield><subfield code="c">Pp. : EUR 96.25 (freier Pr.), sfr 152.50 (freier Pr.)</subfield><subfield code="9">978-3-540-31758-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540317589</subfield><subfield code="c">Pp. : EUR 96.25 (freier Pr.), sfr 152.50 (freier Pr.)</subfield><subfield code="9">3-540-31758-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540317586</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11543138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)65207841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021590106</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.618</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ahn, Chang Wook</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13143005X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in evolutionary algorithms</subfield><subfield code="b">theory, design and practice</subfield><subfield code="c">Chang Wook Ahn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 171 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">18</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary programming (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionärer Algorithmus</subfield><subfield code="0">(DE-588)4366912-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolutionärer Algorithmus</subfield><subfield code="0">(DE-588)4366912-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">18</subfield><subfield code="w">(DE-604)BV020822171</subfield><subfield code="9">18</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2754959&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014805604&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014805604</subfield></datafield></record></collection> |
id | DE-604.BV021590106 |
illustrated | Illustrated |
index_date | 2024-07-02T14:44:11Z |
indexdate | 2024-07-09T20:39:22Z |
institution | BVB |
isbn | 9783540317586 3540317589 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014805604 |
oclc_num | 65207841 |
open_access_boolean | |
owner | DE-703 DE-83 |
owner_facet | DE-703 DE-83 |
physical | XV, 171 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | Studies in computational intelligence |
series2 | Studies in computational intelligence |
spelling | Ahn, Chang Wook Verfasser (DE-588)13143005X aut Advances in evolutionary algorithms theory, design and practice Chang Wook Ahn Berlin ; Heidelberg Springer 2006 XV, 171 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Studies in computational intelligence 18 Evolutionary programming (Computer science) Genetic algorithms Evolutionärer Algorithmus (DE-588)4366912-8 gnd rswk-swf Evolutionärer Algorithmus (DE-588)4366912-8 s DE-604 Studies in computational intelligence 18 (DE-604)BV020822171 18 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2754959&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014805604&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ahn, Chang Wook Advances in evolutionary algorithms theory, design and practice Studies in computational intelligence Evolutionary programming (Computer science) Genetic algorithms Evolutionärer Algorithmus (DE-588)4366912-8 gnd |
subject_GND | (DE-588)4366912-8 |
title | Advances in evolutionary algorithms theory, design and practice |
title_auth | Advances in evolutionary algorithms theory, design and practice |
title_exact_search | Advances in evolutionary algorithms theory, design and practice |
title_exact_search_txtP | Advances in evolutionary algorithms theory, design and practice |
title_full | Advances in evolutionary algorithms theory, design and practice Chang Wook Ahn |
title_fullStr | Advances in evolutionary algorithms theory, design and practice Chang Wook Ahn |
title_full_unstemmed | Advances in evolutionary algorithms theory, design and practice Chang Wook Ahn |
title_short | Advances in evolutionary algorithms |
title_sort | advances in evolutionary algorithms theory design and practice |
title_sub | theory, design and practice |
topic | Evolutionary programming (Computer science) Genetic algorithms Evolutionärer Algorithmus (DE-588)4366912-8 gnd |
topic_facet | Evolutionary programming (Computer science) Genetic algorithms Evolutionärer Algorithmus |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2754959&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014805604&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV020822171 |
work_keys_str_mv | AT ahnchangwook advancesinevolutionaryalgorithmstheorydesignandpractice |