Quantum information: an introduction ; with 10 tables
Gespeichert in:
Späterer Titel: | Hayashi, Masahito Quantum information theory |
---|---|
1. Verfasser: | |
Format: | Buch |
Sprache: | English Japanese |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XIV, 426 S. Ill. |
ISBN: | 9783540302650 3540302654 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021581729 | ||
003 | DE-604 | ||
005 | 20170613 | ||
007 | t | ||
008 | 060515s2006 gw a||| |||| 00||| eng d | ||
015 | |a 05,N47,0579 |2 dnb | ||
016 | 7 | |a 976892782 |2 DE-101 | |
020 | |a 9783540302650 |9 978-3-540-30265-0 | ||
020 | |a 3540302654 |c Gb. : ca. EUR 64.15 (freier Pr.), ca. sfr 106.00 (freier Pr.) |9 3-540-30265-4 | ||
028 | 5 | 2 | |a 11530770 |
035 | |a (OCoLC)181493454 | ||
035 | |a (DE-599)BVBBV021581729 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h jpn | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T |a DE-91G |a DE-703 |a DE-20 |a DE-1051 |a DE-83 |a DE-11 |a DE-19 | ||
082 | 0 | |a 510 | |
084 | |a ST 152 |0 (DE-625)143596: |2 rvk | ||
084 | |a UG 3000 |0 (DE-625)145624: |2 rvk | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
084 | |a UK 2000 |0 (DE-625)145798: |2 rvk | ||
084 | |a UK 8000 |0 (DE-625)145808: |2 rvk | ||
084 | |a DAT 503f |2 stub | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Hayashi, Masahito |d 1971- |e Verfasser |0 (DE-588)131819313 |4 aut | |
240 | 1 | 0 | |a Ryoshi-jūhū-riron-nyumon |
245 | 1 | 0 | |a Quantum information |b an introduction ; with 10 tables |c Masahito Hayashi |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XIV, 426 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Information theory | |
650 | 4 | |a Quantum communication | |
650 | 4 | |a Quantum computers | |
650 | 0 | 7 | |a Quanteninformatik |0 (DE-588)4705961-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quanteninformatik |0 (DE-588)4705961-8 |D s |
689 | 0 | |5 DE-604 | |
785 | 0 | 0 | |i 2. Aufl. u.d.T.: |a Hayashi, Masahito |t Quantum information theory |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2696688&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014797382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014797382 |
Datensatz im Suchindex
_version_ | 1804135353777389568 |
---|---|
adam_text | MASAHITO HAYASHI
QUANTUM INFORMATION
AN INTRODUCTIO
N
WITH 14 FIGURES AN
D 10 TABLES
4Y SPRINGER
CONTENTS
PROLOGU
E 1
1 MATHEMATICA
L FORMULATION OF QUANTU
M SYSTEM
S
9
1.1 QUANTUM SYSTEMS AND LINEAR ALGEBRA 10
1.2 STATE AND MEASUREMENT IN QUANTUM SYSTEMS 13
1.3 QUANTUM TWO-LEVEL SYSTEMS 17
1.4 COMPOSITE SYSTEMS AND TENSOR PRODUCTS 18
1.5 MATRIX INEQUALITIES AND MATRIX MONOTONE FUNCTIONS 22
2 INFORMATION QUANTITIE
S AND PARAMETE
R ESTIMATIO
N
IN CLASSICAL SYSTEM
S
27
2.1 INFORMATION QUANTITIES IN CLASSICAL SYSTEMS 28
2.1.1 ENTROPY 28
2.1.2 RELATIVE ENTROPY 29
2.1.3 MUTUAL INFORMATION 33
2.1.4 THE INDEPENDENT AND IDENTICAL CONDITION
AND RENYI ENTROPY 36
2.2 EXTENSIONS TO QUANTUM SYSTEMS 40
2.3 GEOMETRY OF PROBABILITY DISTRIBUTION FAMILY 45
2.3.1 INNER PRODUCT FOR RANDOM VARIABLES
AND FISHER INFORMATION 45
2.3.2 EXPONENTIAL FAMILY AND DIVERGENCE 48
2.4 ESTIMATION IN CLASSICAL SYSTEMS 52
2.5 TYPE METHOD AND LARGE DEVIATION EVALUATION 57
2.5.1 TYPE METHOD AND SANOV S THEOREM 57
2.5.2 CRAMER THEOREM AND ITS APPLICATION TO ESTIMATION 59
2.6 RELATED BOOKS 67
3 QUANTU
M HYPOTHESI
S TESTIN
G AND DISCRIMINATIO
N
OF QUANTU
M STATE
S
69
3.1 TWO-STATE DISCRIMINATION IN QUANTUM SYSTEMS 70
XII CONTENTS
3.2 DISCRIMINATION OF PLURAL QUANTUM STATES 72
3.3 ASYMPTOTIC ANALYSIS OF STATE DISCRIMINATION 74
3.4 HYPOTHESIS TESTING AND STEIN S LEMMA 77
3.5 HYPOTHESIS TESTING BY SEPARABLE MEASUREMENTS 82
3.6 PROOF OF DIRECT PAR
T OF STEIN S LEMMA 84
3.7 INFORMATION INEQUALITIES AND PROOF OF CONVERSE PAR
T OF
STEIN S LEMMA 86
3.8 HISTORICAL NOTE 90
*
4 CLASSICAL-QUANTU
M CHANNE
L CODIN
G
(MESSAG
E TRANSMISSION
)
93
4.1 FORMULATION OF TH
E CHANNEL CODING PROCESS
IN QUANTUM SYSTEMS 94
4.1.1 TRANSMISSION INFORMATION IN C-Q CHANNELS
AND ITS PROPERTIES 95
4.1.2 C-Q CHANNEL CODING THEOREM 96
4.2 CODING PROTOCOLS WITH ADAPTIVE DECODING AND FEEDBACK ..
. 99
4.3 CHANNEL CAPACITIES UNDER COST CONSTRAINT 101
4.4 A FUNDAMENTAL LEMMA 102
4.5 PROOF OF DIRECT PAR
T OF C-Q CHANNEL CODING THEOREM 104
4.6 PROOF OF CONVERSE PAR
T OF C-Q CHANNEL CODING THEOREM . . 109
4.7 PSEUDOCLASSICAL CHANNELS 113
4.8 HISTORICAL NOTE 115
5 STAT
E EVOLUTIO
N AN
D TRACE-PRESERVIN
G COMPLETEL
Y
POSITIV
E MAP
S
117
5.1 DESCRIPTION OF STATE EVOLUTION IN QUANTUM SYSTEMS 117
5.2 EXAMPLES OF TRACE-PRESERVING COMPLETELY POSITIVE MAPS . . . 124
5.3 STATE EVOLUTIONS IN QUANTUM TWO-LEVEL SYSTEMS 129
5.4 INFORMATION-PROCESSING INEQUALITIES IN QUANTUM SYSTEMS. . . 133
5.5 ENTROPY INEQUALITIES IN QUANTUM SYSTEMS 137
5.6 HISTORICAL NOTE 143
6 QUANTU
M INFORMATIO
N GEOMETR
Y
AND QUANTU
M ESTIMATIO
N
145
6.1 INNER PRODUCTS IN QUANTUM SYSTEMS 146
6.2 METRIC-INDUCED INNER PRODUCTS 151
6.3 GEODESIES AND DIVERGENCES 157
6.4 QUANTUM STATE ESTIMATION 165
6.5 LARGE DEVIATION EVALUATION 170
6.6 MULTIPARAMETER ESTIMATION 173
6.7 HISTORICAL NOTE 182
7 QUANTU
M MEASUREMENT
S AN
D STAT
E REDUCTIO
N
185
7.1 STAT
E REDUCTION DUE TO QUANTUM MEASUREMENT 185
CONTENTS XIII
7.2 UNCERTAINTY AND MEASUREMENT 192
7.3 MEASUREMENTS WITH NEGLIGIBLE STATE DEMOLITION 200
7.4 HISTORICAL NOTE 204
ENTANGLEMEN
T AND LOCALITY RESTRICTION
S
207
8.1 ENTANGLEMENT AND LOCAL QUANTUM OPERATIONS 209
8.2 FIDELITY AND ENTANGLEMENT 212
8.3 ENTANGLEMENT AND INFORMATION QUANTITIES 219
8.4 ENTANGLEMENT AND MAJORIZATION 224
8.5 DISTILLATION OF MAXIMALLY ENTANGLED STATES 230
8.6 DILUTION OF MAXIMALLY ENTANGLED STATES 237
8.7 UNIFIED APPROACH TO DISTILLATION AND DILUTION 241
8.8 DILUTION WITH ZERO-RATE COMMUNICATION 249
8.9 STATE GENERATION FROM SHARED RANDOMNESS 255
8.10 POSITIVE PARTIAL TRANSPOSE (PPT) OPERATIONS 260
8.11 EXAMPLES 266
8.11.1 2X
2 SYSTEM 266
8.11.2 WERNER STATE 268
8.11.3 ISOTROPIC STATE 270
8.12 HISTORICAL NOTE 273
ANALYSI
S OF QUANTU
M COMMUNICATIO
N PROTOCOL
S
275
9.1 QUANTUM TELEPORTATION 276
9.2 C-Q CHANNEL CODING WITH ENTANGLED INPUTS 277
9.3 C-Q CHANNEL CODING WITH SHARED ENTANGLEMENT 284
9.4 QUANTUM CHANNEL RESOLVABILITY 293
9.5 QUANTUM-CHANNEL COMMUNICATIONS WITH AN EAVESDROPPER . 298
9.5.1 C-Q WIRETAP CHANNEL 298
9.5.2 RELATION TO BB84 PROTOCOL 300
9.5.3 SECRET SHARING 302
9.5.4 DISTILLATION OF CLASSICAL SECRET KEY 302
9.5.5 PROOF OF DIRECT PAR
T
OF C-Q WIRETAP CHANNEL CODING THEOREM 304
9.5.6 PROOF OF CONVERSE PART
OF C-Q WIRETAP CHANNEL CODING THEOREM 305
9.6 CHANNEL CAPACITY FOR QUANTUM-STATE TRANSMISSION 307
9.7 EXAMPLES 313
9.7.1 GROUP COVARIANCE FORMULAS 313
9.7.2 D-DIMENSIONAL DEPOLARIZING CHANNEL 315
9.7.3 TRANSPOSE-DEPOLARIZING CHANNEL 315
9.7.4 GENERALIZED PAULI CHANNEL 316
9.7.5 PNS CHANNEL 316
9.7.6 ERASURE CHANNEL 317
9.7.7 PHASE-DAMPING CHANNEL 318
9.8 HISTORICAL NOTE 319
XIV CONTENTS
1
0 SOURC
E CODIN
G I
N QUANTU
M SYSTEM
S
321
10.1 FOUR KIND
S OF SOURCE CODIN
G SCHEMES
I
N QUANTU
M SYSTEM
S 322
10.2 QUANTU
M FIXED-LENGT
H SOURCE CODIN
G 324
10.3 CONSTRUCTIO
N OF A QUANTU
M FIXED-LENGT
H SOURCE CODE ...
. 327
10.4 UNIVERSAL QUANTU
M FIXED-LENGT
H SOURCE CODES 330
10.5 UNIVERSAL QUANTU
M VARIABLE-LENGT
H SOURCE CODES 331
10.6 MIXED-STAT
E CAS
E 332
10.7 COMPRESSION BY CLASSICAL MEMOR
Y 336
10.8 COMPRESSIO
N BY SHARE
D RANDOMNES
S 339
10.9 RELATIO
N T
O CHANNE
L CAPACITIE
S 342
10.10 HISTORICA
L NOT
E 344
A LIMIT
S AN
D LINEA
R ALGEBR
A
347
A.
I LIMIT
S 347
A.2 SINGULAR VALUE DECOMPOSITIO
N AN
D POLA
R DECOMPOSITIO
N . . . 349
A.3 NORM
S OF MATRICE
S 351
A.4 CONVEX FUNCTION
S AN
D MATRI
X CONVEX FUNCTION
S 353
A.5 PROOF AN
D CONSTRUCTIO
N OF STINESPRIN
G AN
D CHOI-KRAU
S
REPRESENTATION
S 357
B PROOF
S O
F THEOREM
S AN
D LEMMA
S
36
3
B.
I PROO
F OF THEORE
M 3.1 363
B.2 PROO
F OF THEORE
M 8.2 364
B.3 PROOF OF THEORE
M 8.3 367
B.4 PROO
F OF THEORE
M 8.8 FOR MIXED STATE
S 367
B.5 PROOF OF THEORE
M 8.9 FOR MIXED STATE
S 368
B.5.1 PROO
F OF DIREC
T PAR
T 368
B.5.2 PROO
F OF CONVERSE PAR
T 370
B.6 PROO
F OF THEORE
M 9.3 371
B.7 PROOF OF LEMM
A 9.4 374
B.8 PROOF OF LEMM
A 10.3 380
C HINT
S AND BRIEF SOLUTION
S T
O EXERCISE
S
383
REFERENCES
401
INDE
X
423
|
adam_txt |
MASAHITO HAYASHI
QUANTUM INFORMATION
AN INTRODUCTIO
N
WITH 14 FIGURES AN
D 10 TABLES
4Y SPRINGER
CONTENTS
PROLOGU
E 1
1 MATHEMATICA
L FORMULATION OF QUANTU
M SYSTEM
S
9
1.1 QUANTUM SYSTEMS AND LINEAR ALGEBRA 10
1.2 STATE AND MEASUREMENT IN QUANTUM SYSTEMS 13
1.3 QUANTUM TWO-LEVEL SYSTEMS 17
1.4 COMPOSITE SYSTEMS AND TENSOR PRODUCTS 18
1.5 MATRIX INEQUALITIES AND MATRIX MONOTONE FUNCTIONS 22
2 INFORMATION QUANTITIE
S AND PARAMETE
R ESTIMATIO
N
IN CLASSICAL SYSTEM
S
27
2.1 INFORMATION QUANTITIES IN CLASSICAL SYSTEMS 28
2.1.1 ENTROPY 28
2.1.2 RELATIVE ENTROPY 29
2.1.3 MUTUAL INFORMATION 33
2.1.4 THE INDEPENDENT AND IDENTICAL CONDITION
AND RENYI ENTROPY 36
2.2 EXTENSIONS TO QUANTUM SYSTEMS 40
2.3 GEOMETRY OF PROBABILITY DISTRIBUTION FAMILY 45
2.3.1 INNER PRODUCT FOR RANDOM VARIABLES
AND FISHER INFORMATION 45
2.3.2 EXPONENTIAL FAMILY AND DIVERGENCE 48
2.4 ESTIMATION IN CLASSICAL SYSTEMS 52
2.5 TYPE METHOD AND LARGE DEVIATION EVALUATION 57
2.5.1 TYPE METHOD AND SANOV'S THEOREM 57
2.5.2 CRAMER THEOREM AND ITS APPLICATION TO ESTIMATION 59
2.6 RELATED BOOKS 67
3 QUANTU
M HYPOTHESI
S TESTIN
G AND DISCRIMINATIO
N
OF QUANTU
M STATE
S
69
3.1 TWO-STATE DISCRIMINATION IN QUANTUM SYSTEMS 70
XII CONTENTS
3.2 DISCRIMINATION OF PLURAL QUANTUM STATES 72
3.3 ASYMPTOTIC ANALYSIS OF STATE DISCRIMINATION 74
3.4 HYPOTHESIS TESTING AND STEIN'S LEMMA 77
3.5 HYPOTHESIS TESTING BY SEPARABLE MEASUREMENTS 82
3.6 PROOF OF DIRECT PAR
T OF STEIN'S LEMMA 84
3.7 INFORMATION INEQUALITIES AND PROOF OF CONVERSE PAR
T OF
STEIN'S LEMMA 86
3.8 HISTORICAL NOTE 90
*
4 CLASSICAL-QUANTU
M CHANNE
L CODIN
G
(MESSAG
E TRANSMISSION
)
93
4.1 FORMULATION OF TH
E CHANNEL CODING PROCESS
IN QUANTUM SYSTEMS 94
4.1.1 TRANSMISSION INFORMATION IN C-Q CHANNELS
AND ITS PROPERTIES 95
4.1.2 C-Q CHANNEL CODING THEOREM 96
4.2 CODING PROTOCOLS WITH ADAPTIVE DECODING AND FEEDBACK .
. 99
4.3 CHANNEL CAPACITIES UNDER COST CONSTRAINT 101
4.4 A FUNDAMENTAL LEMMA 102
4.5 PROOF OF DIRECT PAR
T OF C-Q CHANNEL CODING THEOREM 104
4.6 PROOF OF CONVERSE PAR
T OF C-Q CHANNEL CODING THEOREM . . 109
4.7 PSEUDOCLASSICAL CHANNELS 113
4.8 HISTORICAL NOTE 115
5 STAT
E EVOLUTIO
N AN
D TRACE-PRESERVIN
G COMPLETEL
Y
POSITIV
E MAP
S
117
5.1 DESCRIPTION OF STATE EVOLUTION IN QUANTUM SYSTEMS 117
5.2 EXAMPLES OF TRACE-PRESERVING COMPLETELY POSITIVE MAPS . . . 124
5.3 STATE EVOLUTIONS IN QUANTUM TWO-LEVEL SYSTEMS 129
5.4 INFORMATION-PROCESSING INEQUALITIES IN QUANTUM SYSTEMS. . . 133
5.5 ENTROPY INEQUALITIES IN QUANTUM SYSTEMS 137
5.6 HISTORICAL NOTE 143
6 QUANTU
M INFORMATIO
N GEOMETR
Y
AND QUANTU
M ESTIMATIO
N
145
6.1 INNER PRODUCTS IN QUANTUM SYSTEMS 146
6.2 METRIC-INDUCED INNER PRODUCTS 151
6.3 GEODESIES AND DIVERGENCES 157
6.4 QUANTUM STATE ESTIMATION 165
6.5 LARGE DEVIATION EVALUATION 170
6.6 MULTIPARAMETER ESTIMATION 173
6.7 HISTORICAL NOTE 182
7 QUANTU
M MEASUREMENT
S AN
D STAT
E REDUCTIO
N
185
7.1 STAT
E REDUCTION DUE TO QUANTUM MEASUREMENT 185
CONTENTS XIII
7.2 UNCERTAINTY AND MEASUREMENT 192
7.3 MEASUREMENTS WITH NEGLIGIBLE STATE DEMOLITION 200
7.4 HISTORICAL NOTE 204
ENTANGLEMEN
T AND LOCALITY RESTRICTION
S
207
8.1 ENTANGLEMENT AND LOCAL QUANTUM OPERATIONS 209
8.2 FIDELITY AND ENTANGLEMENT 212
8.3 ENTANGLEMENT AND INFORMATION QUANTITIES 219
8.4 ENTANGLEMENT AND MAJORIZATION 224
8.5 DISTILLATION OF MAXIMALLY ENTANGLED STATES 230
8.6 DILUTION OF MAXIMALLY ENTANGLED STATES 237
8.7 UNIFIED APPROACH TO DISTILLATION AND DILUTION 241
8.8 DILUTION WITH ZERO-RATE COMMUNICATION 249
8.9 STATE GENERATION FROM SHARED RANDOMNESS 255
8.10 POSITIVE PARTIAL TRANSPOSE (PPT) OPERATIONS 260
8.11 EXAMPLES 266
8.11.1 2X
2 SYSTEM 266
8.11.2 WERNER STATE 268
8.11.3 ISOTROPIC STATE 270
8.12 HISTORICAL NOTE 273
ANALYSI
S OF QUANTU
M COMMUNICATIO
N PROTOCOL
S
275
9.1 QUANTUM TELEPORTATION 276
9.2 C-Q CHANNEL CODING WITH ENTANGLED INPUTS 277
9.3 C-Q CHANNEL CODING WITH SHARED ENTANGLEMENT 284
9.4 QUANTUM CHANNEL RESOLVABILITY 293
9.5 QUANTUM-CHANNEL COMMUNICATIONS WITH AN EAVESDROPPER . 298
9.5.1 C-Q WIRETAP CHANNEL 298
9.5.2 RELATION TO BB84 PROTOCOL 300
9.5.3 SECRET SHARING 302
9.5.4 DISTILLATION OF CLASSICAL SECRET KEY 302
9.5.5 PROOF OF DIRECT PAR
T
OF C-Q WIRETAP CHANNEL CODING THEOREM 304
9.5.6 PROOF OF CONVERSE PART
OF C-Q WIRETAP CHANNEL CODING THEOREM 305
9.6 CHANNEL CAPACITY FOR QUANTUM-STATE TRANSMISSION 307
9.7 EXAMPLES 313
9.7.1 GROUP COVARIANCE FORMULAS 313
9.7.2 D-DIMENSIONAL DEPOLARIZING CHANNEL 315
9.7.3 TRANSPOSE-DEPOLARIZING CHANNEL 315
9.7.4 GENERALIZED PAULI CHANNEL 316
9.7.5 PNS CHANNEL 316
9.7.6 ERASURE CHANNEL 317
9.7.7 PHASE-DAMPING CHANNEL 318
9.8 HISTORICAL NOTE 319
XIV CONTENTS
1
0 SOURC
E CODIN
G I
N QUANTU
M SYSTEM
S
321
10.1 FOUR KIND
S OF SOURCE CODIN
G SCHEMES
I
N QUANTU
M SYSTEM
S 322
10.2 QUANTU
M FIXED-LENGT
H SOURCE CODIN
G 324
10.3 CONSTRUCTIO
N OF A QUANTU
M FIXED-LENGT
H SOURCE CODE .
. 327
10.4 UNIVERSAL QUANTU
M FIXED-LENGT
H SOURCE CODES 330
10.5 UNIVERSAL QUANTU
M VARIABLE-LENGT
H SOURCE CODES 331
10.6 MIXED-STAT
E CAS
E 332
10.7 COMPRESSION BY CLASSICAL MEMOR
Y 336
10.8 COMPRESSIO
N BY SHARE
D RANDOMNES
S 339
10.9 RELATIO
N T
O CHANNE
L CAPACITIE
S 342
10.10 HISTORICA
L NOT
E 344
A LIMIT
S AN
D LINEA
R ALGEBR
A
347
A.
I LIMIT
S 347
A.2 SINGULAR VALUE DECOMPOSITIO
N AN
D POLA
R DECOMPOSITIO
N . . . 349
A.3 NORM
S OF MATRICE
S 351
A.4 CONVEX FUNCTION
S AN
D MATRI
X CONVEX FUNCTION
S 353
A.5 PROOF AN
D CONSTRUCTIO
N OF STINESPRIN
G AN
D CHOI-KRAU
S
REPRESENTATION
S 357
B PROOF
S O
F THEOREM
S AN
D LEMMA
S
36
3
B.
I PROO
F OF THEORE
M 3.1 363
B.2 PROO
F OF THEORE
M 8.2 364
B.3 PROOF OF THEORE
M 8.3 367
B.4 PROO
F OF THEORE
M 8.8 FOR MIXED STATE
S 367
B.5 PROOF OF THEORE
M 8.9 FOR MIXED STATE
S 368
B.5.1 PROO
F OF DIREC
T PAR
T 368
B.5.2 PROO
F OF CONVERSE PAR
T 370
B.6 PROO
F OF THEORE
M 9.3 371
B.7 PROOF OF LEMM
A 9.4 374
B.8 PROOF OF LEMM
A 10.3 380
C HINT
S AND BRIEF SOLUTION
S T
O EXERCISE
S
383
REFERENCES
401
INDE
X
423 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hayashi, Masahito 1971- |
author_GND | (DE-588)131819313 |
author_facet | Hayashi, Masahito 1971- |
author_role | aut |
author_sort | Hayashi, Masahito 1971- |
author_variant | m h mh |
building | Verbundindex |
bvnumber | BV021581729 |
classification_rvk | ST 152 UG 3000 UK 1000 UK 1200 UK 2000 UK 8000 |
classification_tum | DAT 503f |
ctrlnum | (OCoLC)181493454 (DE-599)BVBBV021581729 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Physik Informatik Mathematik |
discipline_str_mv | Physik Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02129nam a2200541 c 4500</leader><controlfield tag="001">BV021581729</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170613 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060515s2006 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N47,0579</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">976892782</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540302650</subfield><subfield code="9">978-3-540-30265-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540302654</subfield><subfield code="c">Gb. : ca. EUR 64.15 (freier Pr.), ca. sfr 106.00 (freier Pr.)</subfield><subfield code="9">3-540-30265-4</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11530770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181493454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021581729</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">jpn</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 152</subfield><subfield code="0">(DE-625)143596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3000</subfield><subfield code="0">(DE-625)145624:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 2000</subfield><subfield code="0">(DE-625)145798:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 8000</subfield><subfield code="0">(DE-625)145808:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 503f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hayashi, Masahito</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131819313</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Ryoshi-jūhū-riron-nyumon</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum information</subfield><subfield code="b">an introduction ; with 10 tables</subfield><subfield code="c">Masahito Hayashi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 426 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quanteninformatik</subfield><subfield code="0">(DE-588)4705961-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quanteninformatik</subfield><subfield code="0">(DE-588)4705961-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="785" ind1="0" ind2="0"><subfield code="i">2. Aufl. u.d.T.:</subfield><subfield code="a">Hayashi, Masahito</subfield><subfield code="t">Quantum information theory</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2696688&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014797382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014797382</subfield></datafield></record></collection> |
id | DE-604.BV021581729 |
illustrated | Illustrated |
index_date | 2024-07-02T14:41:49Z |
indexdate | 2024-07-09T20:39:10Z |
institution | BVB |
isbn | 9783540302650 3540302654 |
language | English Japanese |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014797382 |
oclc_num | 181493454 |
open_access_boolean | |
owner | DE-29T DE-91G DE-BY-TUM DE-703 DE-20 DE-1051 DE-83 DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-29T DE-91G DE-BY-TUM DE-703 DE-20 DE-1051 DE-83 DE-11 DE-19 DE-BY-UBM |
physical | XIV, 426 S. Ill. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
spelling | Hayashi, Masahito 1971- Verfasser (DE-588)131819313 aut Ryoshi-jūhū-riron-nyumon Quantum information an introduction ; with 10 tables Masahito Hayashi Berlin [u.a.] Springer 2006 XIV, 426 S. Ill. txt rdacontent n rdamedia nc rdacarrier Information theory Quantum communication Quantum computers Quanteninformatik (DE-588)4705961-8 gnd rswk-swf Quanteninformatik (DE-588)4705961-8 s DE-604 2. Aufl. u.d.T.: Hayashi, Masahito Quantum information theory text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2696688&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014797382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hayashi, Masahito 1971- Quantum information an introduction ; with 10 tables Information theory Quantum communication Quantum computers Quanteninformatik (DE-588)4705961-8 gnd |
subject_GND | (DE-588)4705961-8 |
title | Quantum information an introduction ; with 10 tables |
title_alt | Ryoshi-jūhū-riron-nyumon |
title_auth | Quantum information an introduction ; with 10 tables |
title_exact_search | Quantum information an introduction ; with 10 tables |
title_exact_search_txtP | Quantum information an introduction ; with 10 tables |
title_full | Quantum information an introduction ; with 10 tables Masahito Hayashi |
title_fullStr | Quantum information an introduction ; with 10 tables Masahito Hayashi |
title_full_unstemmed | Quantum information an introduction ; with 10 tables Masahito Hayashi |
title_new | Hayashi, Masahito Quantum information theory |
title_short | Quantum information |
title_sort | quantum information an introduction with 10 tables |
title_sub | an introduction ; with 10 tables |
topic | Information theory Quantum communication Quantum computers Quanteninformatik (DE-588)4705961-8 gnd |
topic_facet | Information theory Quantum communication Quantum computers Quanteninformatik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2696688&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014797382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hayashimasahito ryoshijuhurironnyumon AT hayashimasahito quantuminformationanintroductionwith10tables |