Photomorphogenesis in plants and bacteria: function and signal transduction mechanisms
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer
2006
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XLVIII, 662 S. Ill., graph. Darst. |
ISBN: | 9781402038099 9781402038105 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021575172 | ||
003 | DE-604 | ||
005 | 20071221 | ||
007 | t | ||
008 | 060509s2006 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N03,0964 |2 dnb | ||
016 | 7 | |a 977651703 |2 DE-101 | |
020 | |a 9781402038099 |c Geb. |9 978-1-402-03809-9 | ||
020 | |a 9781402038105 |c Pb. : EUR 74.90, sfr 124.00 |9 978-1-402-03810-5 | ||
024 | 3 | |a 9781402038105 | |
035 | |a (OCoLC)64626556 | ||
035 | |a (DE-599)BVBBV021575172 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 | ||
050 | 0 | |a QK757 | |
082 | 0 | |a 571.4/552 |2 22 | |
084 | |a WF 1350 |0 (DE-625)148326: |2 rvk | ||
084 | |a WN 5450 |0 (DE-625)151049: |2 rvk | ||
084 | |a 570 |2 sdnb | ||
245 | 1 | 0 | |a Photomorphogenesis in plants and bacteria |b function and signal transduction mechanisms |c ed. by Eberhard Schäfer ... |
250 | |a 3. ed. | ||
264 | 1 | |a Dordrecht |b Springer |c 2006 | |
300 | |a XLVIII, 662 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Bactéries - Effets de la lumière sur les | |
650 | 4 | |a Plantes - Photomorphogenèse | |
650 | 4 | |a Bacteria |x Effect of light on | |
650 | 4 | |a Plants |x Photomorphogenesis | |
650 | 0 | 7 | |a Photomorphogenese |0 (DE-588)4174525-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bakterien |0 (DE-588)4004296-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pflanzen |0 (DE-588)4045539-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pflanzen |0 (DE-588)4045539-7 |D s |
689 | 0 | 1 | |a Photomorphogenese |0 (DE-588)4174525-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Bakterien |0 (DE-588)4004296-0 |D s |
689 | 1 | 1 | |a Photomorphogenese |0 (DE-588)4174525-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Schäfer, Eberhard |e Sonstige |4 oth | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014790925&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014790925 |
Datensatz im Suchindex
_version_ | 1804135343761391616 |
---|---|
adam_text | Photomorphogenesis in Plants
and Bacteria
3rd Edition
Function and Signal Transduction Mechanisms
Edited by
EBERHARD SCHAFER
A Ibert-Ludwigs- Universitat Freiburg,
Germany
and
FERENCNAGY
Institute of Plant Biology,
Szeged, Hungary
^ Springer
CONTENTS
Preface VII
Abbreviations XXVII
Color plates XXXI
PART 1: GENERAL INTRODUCTION AND HISTORICAL
OVERVIEW OF PHOTOMORPHOGENESIS
Chapter 1
HISTORICAL OVERVIEW
Eberhard Schafer and Ferenc Nagy
1 Introduction 1
2 Phytochrome Induction Responses 2
3 The High Irradiance Responses 8
4 Very Low Fluence Responses 10
5 Further reading 10
6 References 10
Chapter 2
PHYSIOLOGICAL BASIS OF PHOTOMORPHOGENESIS
Eberhard Schafer and Ferenc Nagy
1 Introduction 13
2 Classical action spectroscopy 13
3 Mode of function of phytochrome 16
4 Correlations between in vivo spectroscopical measurements and
physiological responses 18
5 Phytochrome response types 20
6 Summary 21
8 References 22
Chapter 3
HISTORICAL OVERVIEW OF MOLECULAR BIOLOGY AND
GENETICS IN PHOTOMORPHOGENESIS
Eberhard Schafer and Ferenc Nagy
References 30
X
Chapter 4
GENETIC BASIS AND MOLECULAR MECHANISMS OF SIGNAL
TRANSDUCTION FOR PHOTOMORPHOGENESIS
Eberhard Schafer and Ferenc Nag}
1 Introduction 33
2 Phototropism mutants 34
3 Photomorphogenic mutants 34
4 Circadian mutants 35
5 Genetic variation, mutants identified by QTL mapping 35
6 Signal transduction mutants 36
7 Signal transduction at the molecular level 37
8 Summary 38
9 References 39
PART 2: THE PHYTOCHROME
Chapter 5
THE PHYTOCHROME CHROMOPHORE
Seth J Davis
1 Introduction 41
2 Structure of the phytochrome chromophore 44
3 Phytochromobilin synthesis 47
3 1 Heme Oxygenases 50
3 2 Phytochromobilin Synthase 53
4 Holo assembly 55
5 Biophysics of the chromophore 58
6 Personal Perspectives 59
6 1 Phy chromophore structure 59
6 2 Phy chromophore synthesis 59
6 3 Holo-phy assembly and structure 59
7 References 60
xi
Chapter 6
STRUCTURE, FUNCTION, AND EVOLUTION OF MICROBIAL
PHYTOCHROMES
Baruch Karniol and Richard D Vierstra
1 Introduction 65
2 Higher plant phys 66
3 The Discovery of microbial Phys 69
4 Phylogeny of the Phy Superfamily 72
4 1 Cyanobacterial phy (Cph) family 76
4 2 Bacteriophytochrome (BphP) family 76
4 3 Fungal phy (Fph) family 83
4 4 Phy-like sequences 84
5 Downstream signal transduction cascades 85
6 Physiological roles of microbial phys 88
6 1 Directing phototaxis 88
6 2 Enhancement of photosynthetic potential 89
6 3 Photocontrol of pigmentation 91
7 Evolution of the phy superfamily 92
8 Perspectives 94
9 References 95
Chapter 7
PHYTOCHROME GENES IN HIGHER PLANTS: STRUCTURE,
EXPRESSION, AND EVOLUTION
Robert A Sharrock and Sarah Mathews
1 Introduction 99
2 Phytochrome gene structures and protein sequences 100
2 1 The first phytochrome sequences 100
2 2 Phytochrome is a family of related photoreceptors encoded by
multiple PHY genes in higher plants 101
2 3 Phytochrome nomenclature 105
2 4 Heterodimerization of type II phytochromes 105
3 Expression patterns of phytochromes in plants 106
3 1 How important are phytochrome expression patterns? 106
3 2 Assaying phytochromes 107
3 3 Early Expression Studies 107
3 4 Patterns of PHY gene expression - mRNA levels and promoter
fusion experiments 108
3 5 The levels and distributions of phytochromes in plants 112
xii
3 6 Circadian regulation of PHY gene expression 116
4 Evolution of the PHY gene family in seed plants 117
4 1 Phytochrome phylogeny in seed plants 117
4 2 Phytochrome functional evolution in seed plants 121
421 Angiosperm phyB and Gymnosperm phyP 122
422 Angiosperm phyA and Gymnosperm phyN and phyO 124
5 Conclusions 125
6 References 126
Chapter 8
PHYTOCHROME DEGRADATION AND DARK REVERSION
Lars Hennig
1 Introduction 131
2 Phytochrome degradation 132
2 1 Kinetic properties of phytochrome degradation 132
2 2 Mechanisms of phytochrome degradation 136
2 3 Physiological functions of phytochrome degradation 141
3 Dark reversion 143
3 1 Kinetic properties of dark reversion 143
3 2 Determinants of dark reversion 146
3 3 Functional aspects of dark reversion 148
4 Concluding remarks 149
5 Further reading 150
6 References 150
Chapter 9
INTRACELLULAR LOCALIZATION OF PHYTOCHROMES
Eberhard Schafer, Stefan Kircher and Ferenc Nagy
1 Introduction 155
2 The classical methods 155
2 1 Spectroscopic methods 155
2 2 Cell biological methods 156
2 3 Immunocytochemical methods 156
3 The novel methods 157
4 Intracellular localisation of PHYB in dark and light 158
5 Intracellular localisation of PHYA in dark and light 160
6 Intracellular localisation of PHYC, PHYD and PHYE in dark and
light 161
7 Intracellular localisation of intragenic mutant phytochromes 162
7 1 Hyposensitive, loss-of-fiinction mutants 162
xiii
7 2 Hypersensitive mutants 163
8 Protein composition of nuclear speckles associated with
phyB 163
9 The function of phytochromes localised in nuclei and cytosol 166
10 Concluding remarks 168
11 References 168
PART 3: BLUE-LIGHT AND UV-RECEPTORS
Chapter 10
BLUE/UV-A RECEPTORS: HISTORICAL OVERVIEW
Winslow R Briggs
1 Introduction 171
2 Early history 172
3 Phototropism: action spectra can be fickle 174
4 The LIAC: a frustrating digression 179
5 The cryptochrome story 180
6 The phototropin story 182
7 Stomatal opening in blue light 184
8 Chloroplast movements induced by blue light 186
9 Leaf expansion 187
10 The rapid inhibition of growth 189
11 Solar tracking 191
12 The ZTL/ADO family 191
13 Conclusions 191
14 References 192
Chapter 11
CRYPTOCHROMES
Anthony R Cashmore
1 Introduction 199
2 Photolyases 199
- 3 The discovery of cryptochrome 200
3 1 Cryptochromes of Arabidopsis 201
3 2 Cryptochromes of algae, mosses and ferns 202
3 3 Drosophila cryptochrome 202
3 4 Mammalian cryptochromes 203
3 5 Bacterial and related cryptochromes 203
4 Cryptochromes and plant photomorphogenesis 203
xiv
5 Cryptochrome and flowering 206
6 Plant cryptochromes and circadian rhythms 206
7 Arabidopsis cryptochrome and gene expression 207
8 Cryptochromes and circadian rhythms in animals 208
8 1 Drosophila circadian rhythms are entrained through cryptochrome 208
8 2 Mammalian cryptochromes: Negative transcriptional regulators
and essential components of the circadian oscillator 208
9 The mode of action of cryptochrome 210
9 1 The Arabidopsis cryptochrome C-terminal domain mediates a
constitutive light response 210
9 2 COP 1: A signalling partner of Arabidopsis cryptochromes 211
9 3 Intracellular localization of Arabidopsis CRYs 213
9 4 Phosphorylation of Arabidopsis cryptochromes 214
9 5 Photochemical properties of Arabidopsis cryptochromes 215
9 6 Drosophila cryptochrome interacts with PER and TIM in a
light-dependent manner 216
9 7 Mouse cryptochromes negatively regulate transcription in a
light-independent manner 217
10 Cryptochrome evolution 217
11 Conclusions and future studies 217
12 References 218
Chapter 12
PHOTOTROPINS
Winslow R Briggs, John M Christie and Trevor E Swartz
1 Introduction 223
2 Blue light-activated phosphorylation of a plasma-membrane protein 224
2 1 The protein is likely ubiquitous in higher plants 224
2 2 Subcellular localization of photl 225
2 3 Distribution of the phototropins in relation to function 226
2 4 Biochemical properties of the phosphorylation reaction in vitro 227
2 5 Correlation of photl phosphorylation with phototropism 228
2 6 Autophosphorylation occurs on multiple sites 231
3 Cloning and molecular characterization of phototropin 232
3 1 The initial discovery of phototropin 1 232
3 2 LOV domains function as light sensors 234
4 Why two LOV domains? 234
5 Structural and photochemical properties of the LOV domains 236
5 1 LOV domain photochemistry 236
5 2 LOV-domain structure 236
5 3 The LOV-domain photocycle 238
5 4 Mechanism of FMN-cysteinyl adduct formation 238
XV
5 5 The LOV domain back reaction 240
5 6 Protein conformational change on photoexcitation 241
6 The ZTL/ADO family 242
7 LOV domains in other systems 243
8 A return to physiology: a model for phototropism 244
9 Future prospects 245
10 Note added in proof 246
11 References 247
Chapter 13
BLUE LIGHT PHOTORECEPTORS -BEYOND PHOTOTROPINS AND
CRYPTOCHROMES
Jay Dunlap
1 Introduction 253
2 Historical antecedents 253
3 The photobiology of Neurospora 255
4 Light perception -the nature of the blue light photoreceptor 257
4 1 Flavins as chromophores 257
4 2 Genetic dissection of the blue light response 257
5 Cloning of the white collar genes 258
6 WHITE COLLAR-1 is the blue light photoreceptor 260
7 WC-1 and WC-2 -positive elements in the circadian feedback loop 263
7 1 How light resets the clock 265
8 VIVID, a second photoreceptor that modulates light responses 266
9 Complexities in light regulatory pathways 268
10 Other Neurospora photoreceptors 270
11 Flavin binding domain proteins as photoreceptors in photosynthetic
eukaryotes 271
12 Summary and conclusion 273
13 References 274
Chapter 14
UV-B PERCEPTION AND SIGNALLING IN HIGHER PLANTS
Roman Ulm
1 Introduction 279
2 DNA damage and repair 281
3 Photomorphogenic responses to UV-B 284
3 1 Synthesis of sunscreen metabolites 285
3 2 Inhibition of hypocotyl growth 287
3 3 Cotyledon opening and expansion 288
xvi
4 UV-B perception 289
4 1 Supporting evidence and possible nature of a specific UV-B
photoreceptor 289
4 2 Possible importance of specific UV-B perception? 291
5 UV-B signalling 292
5 1 Reactive oxygen species 292
5 2 Plant hormones 293
5 3 Calcium 294
5 4 Phosphorylation 294
5 5 Nitric oxide 295
6 Transcriptional response to UV-B radiation 296
7 Conclusions and perspectives 298
8 References 299
Chapter 15
SIGNAL TRANSDUCTION IN BLUE LIGHT-MEDIATED RESPONSES
Vera Quecini and Emmanuel Liscum
1 Introduction 305
2 Cryptochrome signalling 305
2 1 Cryptochromes and photomorphogenesis 305
211 Cryptochrome signalling and photomorphogenic growth
responses 306
212 Cryptochrome signalling and electrophysiological processes 309
213 Cryptochrome signalling and the regulation of gene
expression 311
3 Phototropin signaling 311
3 1 Phototropins and plant movement responses 311
311 Phototropins and phototropism 312
312 Phototropins and stomatal aperture control 316
313 Phototropins and chloroplast movement 318
3 2 Phototropin signalling and electrophysiological processes 320
4 Concluding remarks 321
5 References 321
xvii
PART 4: SIGNAL TRANSDUCTION IN PHOTOMORPHOGENESIS
Chapter 16
GENERAL INTRODUCTION
Peter H Quail
References 333
Chapter 17
PHYTOCHROME SIGNAL TRANSDUCTION NETWORK
Peter H Quail
1 Introduction 335
2 Genetically-identified signalling-intermediate candidates 337
3 Phytochrome-Interacting Factors 340
3 1 PIF3 340
3 2 PKS1 343
3 3 NDPK2 344
3 4 Other phy interactors 344
4 Transcription-factor genes are early targets of PHY signalling 345
5 Biochemical mechanism of signal transfer 353
6 References 354
Chapter 18
THE FUNCTION OF THE COP/DET/FUS PROTEINS IN
CONTROLLING PHOTOMORPHOGENESIS: A ROLE FOR
REGULATED PROTEOLYSIS
Elizabeth Strickland, Vicente Rubio and Xing Wang Deng
1 Introduction 357
1 1 Genetic analysis of photomorphogenesis 357
2 A brief summary of the ubiquitin-proteasome system 359
3 Properties and functions of the pleiotropic COP/DET/FUS proteins 359
3 1 COP1 359
311 Nuclear localization of COP 1 360
312 Light regulation of COP1 360
313 Molecular role of COP 1 361
314 The E3 ubiquitin-protein ligase activity of COP1 363
315 COP1 interactors 364
xviii
3 2 The COP9 signalosome 364
321 Interactions and similarities between the CSN
and the ubiquitin-proteasome system 365
322 Biochemical activities of the CSN 366
Derubylation 366
Deubiquitination 367
Protein phosphorylation 368
Control of nucleocytoplasmic localization 368
323 Independent roles for CSN subunits 369
324 Non-photomorphogenic roles of the CSN 369
3 3 The CDD complex 370
331 COP 10 370
332 DET1 370
333 COPIO, DDB1, and DET1 are components of the same CDD
complex 371
4 Concluding remarks 371
5 References 373
Chapter 19
BIOCHEMICAL AND MOLECULAR ANALYSIS OF SIGNALLING
COMPONENTS
Christian Fankhauser and Chris Bowler
1 Introduction 379
2 Is phytochrome a light-regulated protein kinase? 380
3 Phosphorylation in phy mediated signalling 384
4 G-proteins 386
5 Rapid ion fluxes 389
6 Cytoplasmic movements 393
7 Forward and reverse Genetics 394
8 Interactions with internal cues (growth regulators, circadian clock) 399
9 Conclusions 401
10 References 401
Chapter 20
THE PHOTORECEPTOR INTERACTION NETWORK
Jorge Jose Casal
1 Introduction 407
1 1 Light signals and photoreceptors 407
1 2 Shared and specific control of light responses by different photoreceptors 408
x i x
2 Photoreceptor interaction during de-etiolation 409
2 1 Multiple photoreceptors control de-etiolation 409
2 2 Redundancy 410
221 The potential action of a photoreceptor can be hidden by the
action of others 410
222 Definition of redundancy 411
223 The mechanisms of redundancy 411
224 Redundant photoreceptors are not equally important 412
2 3 Synergism between phytochromes and cryptochromes 412
231 Blue light-mediated responsivity amplification towards
phytochrome 412
232 cryl amplifies responsitivity towards phyB 413
233 The synergism between cryl and phyB is conditional 415
234 Other manifestations of synergism between phytochromes
and cryptochromes 416
2 4 Synergistic or antagonistic interaction between phyA and phyB 418
2 5 Synergism between phyB and phyC 420
2 6 Interactive signalling under sunlight reduces noise/ signal ratio 422
3 Photoreceptor interaction during adult plant body shape formation 424
3 1 Redundant control of normal progression of vegetative development
by phytochromes and cryptochromes 424
3 2 The response to R:FR 424
4 Photoreceptor interaction in phototropism 425
4 1 Phototropins perceive the unilateral stimulus 425
4 2 Phytochromes enhance the responses mediated by phototropins 426
4 3 The role of cryptochromes 426
5 Photoreceptor interaction in clock entrainment 426
6 Photoreceptor interaction controlling flowering 427
6 1 Different light signals control the transition between vegetative and
reproductive growth 427
6 2 Roles of cry2, cryl and phyA in the photoperiodic response 427
6 3 Roles of phyB, phyD and phyE in the response to low R:FR 428
6 4 Integration of the responses to photoperiod and R:FR 428
7 Points of convergence in the photoreceptor signalling network * 428
7 1 The occurrence of interactions is an emergent property of the
signalling network 428
7 2 Direct convergence: Physical interaction between photoreceptor
pigments 430
7 3 Convergence in the control of transcription: HFR1 430
7 4 Post-transcriptional convergence accounts for the interaction between
phyB and phyC 431
7 5 Convergence in the control of protein stability: COP1 431
7 6 Photoreceptor sub-cellular partitioning 431
7 7 SUB1 431
8 Overview 432
XX
8 1 Redundancy 432
8 2 Hierarchical action 432
8 3 Synergism 432
8 4 Sensitivity and homeostasis 433
8 5 Connectivity 433
9 References 433
Chapter 21
INTERACTION OF LIGHT AND HORMONE SIGNALLING TO MEDIATE
PHOTOMORPHOGENESIS
Michael M Neff, Ian H Street, Edward M Turk and Jason M Ward
1 Introduction 439
2 Gibberellins 440
2 1 Gibberellin biosynthetic genes and seed germination 440
2 2 Gibberellins and de-etiolation 442
2 3 The SPY and PHOR1 genes 443
24A possible role for protein degradation 444
2 5 Interactions with other hormone signalling pathways 445
3 Auxin 446
3 1 Auxin transport 447
3 2 Auxin and phototropism 448
3 3 Auxin and shade avoidance 449
3 4 Auxin responsive genes involved in photomorphogenesis 450
3 5 Auxin and protein degradation 451
3 6 Interaction of auxin with other hormone signalling pathways 452
4 Brassinosteroids 452
4 1 Brassinosteroid-deficient mutants 454
4 2 Brassinosteroids and gene expression 455
4 3 Further genetic connections between brassinosteroids and light 455
4 4 Brassinosteroids and light signalling: three speculative models 456
5 Ethylene 460
5 1 Genetic connections between ethylene and photomorphogenesis 461
5 2 Ethylene mutants and shade-avoidance 462
5 3 Ethylene and fruit ripening 463
6 Cytokinins /rr 463
7 Summary 465
8 Further reading 465
9 References 466
xxi
PART 5: SELECTED TOPICS
Chapter 22
THE ROLES OF PHYTOCHROMES IN ADULT PLANTS
Keara A Franklin and Garry C Whitelam
1 Introduction 475
2 The natural light environment 477
3 R:FR ratio and shade avoidance 478
4 Roles of different phytochromes in shade avoidance 482
4 1 Roles for phytochrome A in adult plants 486
5 Molecular mechanisms controlling shade avoidance responses 489
5 1 The acceleration of flowering 489
5 2 Early events in R:FR ratio signalling 491
6 References 493
Chapter 23
A ROLE FOR CHLOROPHYLL PRECURSORS IN PLASTID-TO-NUCLEUS
SIGNALING
Robert M Larkin and Joanne Chory
1 Introduction 499
2 Chlorophyll biosynthetic mutant, inhibitor, and feeding studies 500
3 Plastid-to-nucleus signaling mutants inhibit Mg-porphyrin accumulation 504
4 Mechanism of Mg-Proto/Mg-ProtoMe signaling 506
5 Plastid and light signaling pathways appear to interact 508
6 Conclusions and perspectives 509
7 Further Reading 510
8 References 510
Chapter 24
PHOTOMORPHOGENESIS OF FERNS
Takeshi Kanegae and Masamitsu Wada
1 Introduction 515
2 Photoreceptors in Adiantum 517
2 1 Cryptochromes 517
2 2 Phototropins 518
2 3 Phytochromes 519
xxii
231 Phytochrome 1 520
232 Phytochrome 2 521
233 Phytochrome 3 522
234 Phytochrome 4 523
3 Mutant analyses 523
3 1 Methods of mutant selection 523
3 2 Red light aphototropic mutants 525
3 3 Mutants deficient in the chloroplast avoidance response 526
3 4 Dark position-deficient mutants 527
4 Function of phytochrome3 527
4 1 Phytochrome3-dependent chloroplast movement 527
4 2 Phytochrome3-dependent phototropism 528
5 Function of phototropin2 530
5 1 Phototropin2-dependent chloroplast movement 530
5 2 Physiological estimation of the lifetime of phot signals 531
6 Germination-related genes 532
7 Concluding remarks 533
8 References 534
Chapter 25
PHOTOMORPHOGENESIS OF MOSSES
Tilman Lamparter
1 Introduction 537
2 Effects of light on moss development 539
2 1 Spore germination 539
2 2 Cell differentiation 541
2 3 Phototropism and polarotropism 541
2 4 Lights effects on gravitropism 542
2 5 Chloroplast movement 543
2 6 Chlorophyll synthesis 544
2 7 Protoplast regeneration 544
3 Different photoreceptors in mosses 545
3 1 Phytochromes 545
311 Phytochrome genes and proteins 545
312 Mutants 547
Ceratodon Class 1 mutants 549
Ceratodon class 2 mutants 550
Physcomitrella phytochrome knockout mutants 550
313 Light direction and polarization 551
3 2 Cryptochromes and phototropin 556
4 Signal transduction 557
4 1 Ca2+ 558
4 2 Cytoskeleton 558
xxiii
5 Summary 559
6 References 560
Chapter 26
CIRCADIAN REGULATION OF PHOTOMORPHOGENESIS
Paul Devlin
1 Introduction 567
2 The Circadian Clock 568
3 Circadian rhythms 568
4 The circadian clock in plants 569
5 Setting the plant circadian clock 574
6 Driven vs Endogenous Rhythms 578
7 Gating 579
8 Circadian Regulation of Photomorphogenesis 580
8 1 Circadian regulation of light-induced changes in gene expression 580
8 2 Circadian regulation of light-mediated inhibition of hypocotyl
elongation 581
8 3 Circadian regulation of light-mediated stimulation of hypocotyl hook
opening 581
8 4 Circadian regulation of light-mediated stimulation of stomatal opening 582
8 5 Circadian regulation of sensitivity to light allows daylength perception 582
9 Mechanism of circadian regulation of photomorphogenesis 583
10 Mutants affecting circadian regulation of photomorphogenesis 585
10 1 early flowering 3 (el/3) 585
10 2 time for coffee (tic) 588
11 Other possible components involved gating 590
11 1 Circadian regulation of photoreceptor levels 590
11 2 Circadian regulation of photoreceptor subcellular localisation 591
11 3 Circadian regulation of photoreceptor signal transduction
components 592
11 3 1 GIGANTEA (GI) 592
11 3 2 ZEITLUPE (ZTL) 593
11 3 3 Suppressor of phyA 1 (SPA 1) 594
11 3 4 early phytochrome responsive 1 (eprl) 595
12 A twist in the tale: Is there just one circadian clock regulating
photomorphogenesis? 596
13 Conclusion: Concerns for photomorphogenic study 598
14 Epilogue 599
15 Further suggested reading 599
16 References 600
xxiv
Chapter 27
THE MOLECULAR GENETICS OF PHOTO-PERIODIC RESPONSES:
COMPARISONS BETWEEN LONG-DAY AND SHORT-DAY SPECIES
George Coupland
1 Introduction 605
2 Genetic model systems 606
3 A molecular pathway that controls flowering-time in response to day
length in Arabidopsis by generating a long-distance signal from the leaf 607
4 An external coincidence model for the day-length response in Arabidopsis 611
5 Genetic analysis of the photoperiodic control of flowering in rice, a
short-day plant 614
6 Relationships between photoperiodic control and other environmental cues
regulating flowering 618
7 Photoperiodic responses other than flowering 620
8 Perspectives 621
9 References 621
Chapter 28
COMMERCIAL APPLICATIONS OF PHOTOMORPHOGENESIS
RESEARCH
Ganga Rao Davuluri and Chris Bowler
1 Introduction 627
2 Light-mediated responses in the natural environment 628
3 Manipulation of light responses in agriculture 629
3 1 Modulation of day length perception 629
3 2 Modulation of shade avoidance responses 630
3 3 Modulation of fruit ripening 632
4 Light-based biological engineering 635
5 Conclusions and perspectives 636
6 References 637
Chapter 29
PHOTOMORPHOGENESIS - WHERE NOW?
Harry Smith
Where are we going, Dad? 641
Where are we now, Dad? 641
XXV
So what, Dad? 643
Is that all, Dad? 646
Why, Dad? 647
What use is it, Dad? 649
Are we nearly there yet? 649
Race you to the beach, Dad! 650
References 650
Conclusions 653
Index 655
|
adam_txt |
Photomorphogenesis in Plants
and Bacteria
3rd Edition
Function and Signal Transduction Mechanisms
Edited by
EBERHARD SCHAFER
A Ibert-Ludwigs- Universitat Freiburg,
Germany
and
FERENCNAGY
Institute of Plant Biology,
Szeged, Hungary
^ Springer
CONTENTS
Preface VII
Abbreviations XXVII
Color plates XXXI
PART 1: GENERAL INTRODUCTION AND HISTORICAL
OVERVIEW OF PHOTOMORPHOGENESIS
Chapter 1
HISTORICAL OVERVIEW
Eberhard Schafer and Ferenc Nagy
1 Introduction 1
2 Phytochrome Induction Responses 2
3 The High Irradiance Responses 8
4 Very Low Fluence Responses 10
5 Further reading 10
6 References 10
Chapter 2
PHYSIOLOGICAL BASIS OF PHOTOMORPHOGENESIS
Eberhard Schafer and Ferenc Nagy
1 Introduction 13
2 Classical action spectroscopy 13
3 Mode of function of phytochrome 16
4 Correlations between in vivo spectroscopical measurements and
physiological responses 18
5 Phytochrome response types 20
6 Summary 21
8 References 22
Chapter 3
HISTORICAL OVERVIEW OF MOLECULAR BIOLOGY AND
GENETICS IN PHOTOMORPHOGENESIS
Eberhard Schafer and Ferenc Nagy
References 30
X
Chapter 4
GENETIC BASIS AND MOLECULAR MECHANISMS OF SIGNAL
TRANSDUCTION FOR PHOTOMORPHOGENESIS
Eberhard Schafer and Ferenc Nag}'
1 Introduction 33
2 Phototropism mutants 34
3 Photomorphogenic mutants 34
4 Circadian mutants 35
5 Genetic variation, mutants identified by QTL mapping 35
6 Signal transduction mutants 36
7 Signal transduction at the molecular level 37
8 Summary 38
9 References 39
PART 2: THE PHYTOCHROME
Chapter 5
THE PHYTOCHROME CHROMOPHORE
Seth J Davis
1 Introduction 41
2 Structure of the phytochrome chromophore 44
3 Phytochromobilin synthesis 47
3 1 Heme Oxygenases 50
3 2 Phytochromobilin Synthase 53
4 Holo assembly 55
5 Biophysics of the chromophore 58
6 Personal Perspectives 59
6 1 Phy chromophore structure 59
6 2 Phy chromophore synthesis 59
6 3 Holo-phy assembly and structure 59
7 References 60
xi
Chapter 6
STRUCTURE, FUNCTION, AND EVOLUTION OF MICROBIAL
PHYTOCHROMES
Baruch Karniol and Richard D Vierstra
1 Introduction 65
2 Higher plant phys 66
3 The Discovery of microbial Phys 69
4 Phylogeny of the Phy Superfamily 72
4 1 Cyanobacterial phy (Cph) family 76
4 2 Bacteriophytochrome (BphP) family 76
4 3 Fungal phy (Fph) family 83
4 4 Phy-like sequences 84
5 Downstream signal transduction cascades 85
6 Physiological roles of microbial phys 88
6 1 Directing phototaxis 88
6 2 Enhancement of photosynthetic potential 89
6 3 Photocontrol of pigmentation 91
7 Evolution of the phy superfamily 92
8 Perspectives 94
9 References 95
Chapter 7
PHYTOCHROME GENES IN HIGHER PLANTS: STRUCTURE,
EXPRESSION, AND EVOLUTION
Robert A Sharrock and Sarah Mathews
1 Introduction 99
2 Phytochrome gene structures and protein sequences 100
2 1 The first phytochrome sequences 100
2 2 Phytochrome is a family of related photoreceptors encoded by
multiple PHY genes in higher plants 101
2 3 Phytochrome nomenclature 105
2 4 Heterodimerization of type II phytochromes 105
3 Expression patterns of phytochromes in plants 106
3 1 How important are phytochrome expression patterns? 106
3 2 Assaying phytochromes 107
3 3 Early Expression Studies 107
3 4 Patterns of PHY gene expression - mRNA levels and promoter
fusion experiments 108
3 5 The levels and distributions of phytochromes in plants 112
xii
3 6 Circadian regulation of PHY gene expression 116
4 Evolution of the PHY gene family in seed plants 117
4 1 Phytochrome phylogeny in seed plants 117
4 2 Phytochrome functional evolution in seed plants 121
421 Angiosperm phyB and Gymnosperm phyP 122
422 Angiosperm phyA and Gymnosperm phyN and phyO 124
5 Conclusions 125
6 References 126
Chapter 8
PHYTOCHROME DEGRADATION AND DARK REVERSION
Lars Hennig
1 Introduction 131
2 Phytochrome degradation 132
2 1 Kinetic properties of phytochrome degradation 132
2 2 Mechanisms of phytochrome degradation 136
2 3 Physiological functions of phytochrome degradation 141
3 Dark reversion 143
3 1 Kinetic properties of dark reversion 143
3 2 Determinants of dark reversion 146
3 3 Functional aspects of dark reversion 148
4 Concluding remarks 149
5 Further reading 150
6 References 150
Chapter 9
INTRACELLULAR LOCALIZATION OF PHYTOCHROMES
Eberhard Schafer, Stefan Kircher and Ferenc Nagy
1 Introduction 155
2 The classical methods 155
2 1 Spectroscopic methods 155
2 2 Cell biological methods 156
2 3 Immunocytochemical methods 156
3 The novel methods 157
4 Intracellular localisation of PHYB in dark and light 158
5 Intracellular localisation of PHYA in dark and light 160
6 Intracellular localisation of PHYC, PHYD and PHYE in dark and
light 161
7 Intracellular localisation of intragenic mutant phytochromes 162
7 1 Hyposensitive, loss-of-fiinction mutants 162
xiii
7 2 Hypersensitive mutants 163
8 Protein composition of nuclear speckles associated with
phyB 163
9 The function of phytochromes localised in nuclei and cytosol 166
10 Concluding remarks 168
11 References 168
PART 3: BLUE-LIGHT AND UV-RECEPTORS
Chapter 10
BLUE/UV-A RECEPTORS: HISTORICAL OVERVIEW
Winslow R Briggs
1 Introduction 171
2 Early history 172
3 Phototropism: action spectra can be fickle 174
4 The LIAC: a frustrating digression 179
5 The cryptochrome story 180
6 The phototropin story 182
7 Stomatal opening in blue light 184
8 Chloroplast movements induced by blue light 186
9 Leaf expansion 187
10 The rapid inhibition of growth 189
11 Solar tracking 191
12 The ZTL/ADO family 191
13 Conclusions 191
14 References 192
Chapter 11
CRYPTOCHROMES
Anthony R Cashmore
1 Introduction 199
2 Photolyases 199
- 3 The discovery of cryptochrome 200
3 1 Cryptochromes of Arabidopsis 201
3 2 Cryptochromes of algae, mosses and ferns 202
3 3 Drosophila cryptochrome 202
3 4 Mammalian cryptochromes 203
3 5 Bacterial and related cryptochromes 203
4 Cryptochromes and plant photomorphogenesis 203
xiv
5 Cryptochrome and flowering 206
6 Plant cryptochromes and circadian rhythms 206
7 Arabidopsis cryptochrome and gene expression 207
8 Cryptochromes and circadian rhythms in animals 208
8 1 Drosophila circadian rhythms are entrained through cryptochrome 208
8 2 Mammalian cryptochromes: Negative transcriptional regulators
and essential components of the circadian oscillator 208
9 The mode of action of cryptochrome 210
9 1 The Arabidopsis cryptochrome C-terminal domain mediates a
constitutive light response 210
9 2 COP 1: A signalling partner of Arabidopsis cryptochromes 211
9 3 Intracellular localization of Arabidopsis CRYs 213
9 4 Phosphorylation of Arabidopsis cryptochromes 214
9 5 Photochemical properties of Arabidopsis cryptochromes 215
9 6 Drosophila cryptochrome interacts with PER and TIM in a
light-dependent manner 216
9 7 Mouse cryptochromes negatively regulate transcription in a
light-independent manner 217
10 Cryptochrome evolution 217
11 Conclusions and future studies 217
12 References 218
Chapter 12
PHOTOTROPINS
Winslow R Briggs, John M Christie and Trevor E Swartz
1 Introduction 223
2 Blue light-activated phosphorylation of a plasma-membrane protein 224
2 1 The protein is likely ubiquitous in higher plants 224
2 2 Subcellular localization of photl 225
2 3 Distribution of the phototropins in relation to function 226
2 4 Biochemical properties of the phosphorylation reaction in vitro 227
2 5 Correlation of photl phosphorylation with phototropism 228
2 6 Autophosphorylation occurs on multiple sites 231
3 Cloning and molecular characterization of phototropin 232
3 1 The initial discovery of phototropin 1 232
3 2 LOV domains function as light sensors 234
4 Why two LOV domains? 234
5 Structural and photochemical properties of the LOV domains 236
5 1 LOV domain photochemistry 236
5 2 LOV-domain structure 236
5 3 The LOV-domain photocycle 238
5 4 Mechanism of FMN-cysteinyl adduct formation 238
XV
5 5 The LOV domain back reaction 240
5 6 Protein conformational change on photoexcitation 241
6 The ZTL/ADO family 242
7 LOV domains in other systems 243
8 A return to physiology: a model for phototropism 244
9 Future prospects 245
10 Note added in proof 246
11 References 247
Chapter 13
BLUE LIGHT PHOTORECEPTORS -BEYOND PHOTOTROPINS AND
CRYPTOCHROMES
Jay Dunlap
1 Introduction 253
2 Historical antecedents 253
3 The photobiology of Neurospora 255
4 Light perception -the nature of the blue light photoreceptor 257
4 1 Flavins as chromophores 257
4 2 Genetic dissection of the blue light response 257
5 Cloning of the white collar genes 258
6 WHITE COLLAR-1 is the blue light photoreceptor 260
7 WC-1 and WC-2 -positive elements in the circadian feedback loop 263
7 1 How light resets the clock 265
8 VIVID, a second photoreceptor that modulates light responses 266
9 Complexities in light regulatory pathways 268
10 Other Neurospora photoreceptors 270
11 Flavin binding domain proteins as photoreceptors in photosynthetic
eukaryotes 271
12 Summary and conclusion 273
13 References 274
Chapter 14
UV-B PERCEPTION AND SIGNALLING IN HIGHER PLANTS
Roman Ulm
1 Introduction 279
2 DNA damage and repair 281
3 Photomorphogenic responses to UV-B 284
3 1 Synthesis of sunscreen metabolites 285
3 2 Inhibition of hypocotyl growth 287
3 3 Cotyledon opening and expansion 288
xvi
4 UV-B perception 289
4 1 Supporting evidence and possible nature of a specific UV-B
photoreceptor 289
4 2 Possible importance of specific UV-B perception? 291
5 UV-B signalling 292
5 1 Reactive oxygen species 292
5 2 Plant hormones 293
5 3 Calcium 294
5 4 Phosphorylation 294
5 5 Nitric oxide 295
6 Transcriptional response to UV-B radiation 296
7 Conclusions and perspectives 298
8 References 299
Chapter 15
SIGNAL TRANSDUCTION IN BLUE LIGHT-MEDIATED RESPONSES
Vera Quecini and Emmanuel Liscum
1 Introduction 305
2 Cryptochrome signalling 305
2 1 Cryptochromes and photomorphogenesis 305
211 Cryptochrome signalling and photomorphogenic growth
responses 306
212 Cryptochrome signalling and electrophysiological processes 309
213 Cryptochrome signalling and the regulation of gene
expression 311
3 Phototropin signaling 311
3 1 Phototropins and plant movement responses 311
311 Phototropins and phototropism 312
312 Phototropins and stomatal aperture control 316
313 Phototropins and chloroplast movement 318
3 2 Phototropin signalling and electrophysiological processes 320
4 Concluding remarks 321
5 References 321
xvii
PART 4: SIGNAL TRANSDUCTION IN PHOTOMORPHOGENESIS
Chapter 16
GENERAL INTRODUCTION
Peter H Quail
References 333
Chapter 17
PHYTOCHROME SIGNAL TRANSDUCTION NETWORK
Peter H Quail
1 Introduction 335
2 Genetically-identified signalling-intermediate candidates 337
3 Phytochrome-Interacting Factors 340
3 1 PIF3 340
3 2 PKS1 343
3 3 NDPK2 344
3 4 Other phy interactors 344
4 Transcription-factor genes are early targets of PHY signalling 345
5 Biochemical mechanism of signal transfer 353
6 References 354
Chapter 18
THE FUNCTION OF THE COP/DET/FUS PROTEINS IN
CONTROLLING PHOTOMORPHOGENESIS: A ROLE FOR
REGULATED PROTEOLYSIS
Elizabeth Strickland, Vicente Rubio and Xing Wang Deng
1 Introduction 357
1 1 Genetic analysis of photomorphogenesis 357
2 A brief summary of the ubiquitin-proteasome system 359
3 Properties and functions of the pleiotropic COP/DET/FUS proteins 359
3 1 COP1 359
311 Nuclear localization of COP 1 360
312 Light regulation of COP1 360
313 Molecular role of COP 1 361
314 The E3 ubiquitin-protein ligase activity of COP1 363
315 COP1 interactors 364
xviii
3 2 The COP9 signalosome 364
321 Interactions and similarities between the CSN
and the ubiquitin-proteasome system 365
322 Biochemical activities of the CSN 366
Derubylation 366
Deubiquitination 367
Protein phosphorylation 368
Control of nucleocytoplasmic localization 368
323 Independent roles for CSN subunits 369
324 Non-photomorphogenic roles of the CSN 369
3 3 The CDD complex 370
331 COP 10 370
332 DET1 370
333 COPIO, DDB1, and DET1 are components of the same CDD
complex 371
4 Concluding remarks 371
5 References 373
Chapter 19
BIOCHEMICAL AND MOLECULAR ANALYSIS OF SIGNALLING
COMPONENTS
Christian Fankhauser and Chris Bowler
1 Introduction 379
2 Is phytochrome a light-regulated protein kinase? 380
3 Phosphorylation in phy mediated signalling 384
4 G-proteins 386
5 Rapid ion fluxes 389
6 Cytoplasmic movements 393
7 Forward and reverse Genetics 394
8 Interactions with internal cues (growth regulators, circadian clock) 399
9 Conclusions 401
10 References 401
Chapter 20
THE PHOTORECEPTOR INTERACTION NETWORK
Jorge Jose Casal
1 Introduction 407
1 1 Light signals and photoreceptors 407
1 2 Shared and specific control of light responses by different photoreceptors 408
x i x
2 Photoreceptor interaction during de-etiolation 409
2 1 Multiple photoreceptors control de-etiolation 409
2 2 Redundancy 410
221 The potential action of a photoreceptor can be hidden by the
action of others 410
222 Definition of redundancy 411
223 The mechanisms of redundancy 411
224 Redundant photoreceptors are not equally important 412
2 3 Synergism between phytochromes and cryptochromes 412
231 Blue light-mediated responsivity amplification towards
phytochrome 412
232 cryl amplifies responsitivity towards phyB 413
233 The synergism between cryl and phyB is conditional 415
234 Other manifestations of synergism between phytochromes
and cryptochromes 416
2 4 Synergistic or antagonistic interaction between phyA and phyB 418
2 5 Synergism between phyB and phyC 420
2 6 Interactive signalling under sunlight reduces noise/ signal ratio 422
3 Photoreceptor interaction during adult plant body shape formation 424
3 1 Redundant control of normal progression of vegetative development
by phytochromes and cryptochromes 424
3 2 The response to R:FR 424
4 Photoreceptor interaction in phototropism 425
4 1 Phototropins perceive the unilateral stimulus 425
4 2 Phytochromes enhance the responses mediated by phototropins 426
4 3 The role of cryptochromes 426
5 Photoreceptor interaction in clock entrainment 426
6 Photoreceptor interaction controlling flowering 427
6 1 Different light signals control the transition between vegetative and
reproductive growth 427
6 2 Roles of cry2, cryl and phyA in the photoperiodic response 427
6 3 Roles of phyB, phyD and phyE in the response to low R:FR 428
6 4 Integration of the responses to photoperiod and R:FR 428
7 Points of convergence in the photoreceptor signalling network * 428
7 1 The occurrence of interactions is an emergent property of the
signalling network 428
7 2 Direct convergence: Physical interaction between photoreceptor
pigments 430
7 3 Convergence in the control of transcription: HFR1 430
7 4 Post-transcriptional convergence accounts for the interaction between
phyB and phyC 431
7 5 Convergence in the control of protein stability: COP1 431
7 6 Photoreceptor sub-cellular partitioning 431
7 7 SUB1 431
8 Overview 432
XX
8 1 Redundancy 432
8 2 Hierarchical action 432
8 3 Synergism 432
8 4 Sensitivity and homeostasis 433
8 5 Connectivity 433
9 References 433
Chapter 21
INTERACTION OF LIGHT AND HORMONE SIGNALLING TO MEDIATE
PHOTOMORPHOGENESIS
Michael M Neff, Ian H Street, Edward M Turk and Jason M Ward
1 Introduction 439
2 Gibberellins 440
2 1 Gibberellin biosynthetic genes and seed germination 440
2 2 Gibberellins and de-etiolation 442
2 3 The SPY and PHOR1 genes 443
24A possible role for protein degradation 444
2 5 Interactions with other hormone signalling pathways 445
3 Auxin 446
3 1 Auxin transport 447
3 2 Auxin and phototropism 448
3 3 Auxin and shade avoidance 449
3 4 Auxin responsive genes involved in photomorphogenesis 450
3 5 Auxin and protein degradation 451
3 6 Interaction of auxin with other hormone signalling pathways 452
4 Brassinosteroids 452
4 1 Brassinosteroid-deficient mutants 454
4 2 Brassinosteroids and gene expression 455
4 3 Further genetic connections between brassinosteroids and light 455
4 4 Brassinosteroids and light signalling: three speculative models 456
5 Ethylene 460
5 1 Genetic connections between ethylene and photomorphogenesis 461
5 2 Ethylene mutants and shade-avoidance 462
5 3 Ethylene and fruit ripening 463
6 Cytokinins /rr 463
7 Summary 465
8 Further reading 465
9 References 466
xxi
PART 5: SELECTED TOPICS
Chapter 22
THE ROLES OF PHYTOCHROMES IN ADULT PLANTS
Keara A Franklin and Garry C Whitelam
1 Introduction 475
2 The natural light environment 477
3 R:FR ratio and shade avoidance 478
4 Roles of different phytochromes in shade avoidance 482
4 1 Roles for phytochrome A in adult plants 486
5 Molecular mechanisms controlling shade avoidance responses 489
5 1 The acceleration of flowering 489
5 2 Early events in R:FR ratio signalling 491
6 References 493
Chapter 23
A ROLE FOR CHLOROPHYLL PRECURSORS IN PLASTID-TO-NUCLEUS
SIGNALING
Robert M Larkin and Joanne Chory
1 Introduction 499
2 Chlorophyll biosynthetic mutant, inhibitor, and feeding studies 500
3 Plastid-to-nucleus signaling mutants inhibit Mg-porphyrin accumulation 504
4 Mechanism of Mg-Proto/Mg-ProtoMe signaling 506
5 Plastid and light signaling pathways appear to interact 508
6 Conclusions and perspectives 509
7 Further Reading 510
8 References 510
Chapter 24
PHOTOMORPHOGENESIS OF FERNS
Takeshi Kanegae and Masamitsu Wada
1 Introduction 515
2 Photoreceptors in Adiantum 517
2 1 Cryptochromes 517
2 2 Phototropins 518
2 3 Phytochromes 519
xxii
231 Phytochrome 1 520
232 Phytochrome 2 521
233 Phytochrome 3 522
234 Phytochrome 4 523
3 Mutant analyses 523
3 1 Methods of mutant selection 523
3 2 Red light aphototropic mutants 525
3 3 Mutants deficient in the chloroplast avoidance response 526
3 4 Dark position-deficient mutants 527
4 Function of phytochrome3 527
4 1 Phytochrome3-dependent chloroplast movement 527
4 2 Phytochrome3-dependent phototropism 528
5 Function of phototropin2 530
5 1 Phototropin2-dependent chloroplast movement 530
5 2 Physiological estimation of the lifetime of phot signals 531
6 Germination-related genes 532
7 Concluding remarks 533
8 References 534
Chapter 25
PHOTOMORPHOGENESIS OF MOSSES
Tilman Lamparter
1 Introduction 537
2 Effects of light on moss development 539
2 1 Spore germination 539
2 2 Cell differentiation 541
2 3 Phototropism and polarotropism 541
2 4 Lights effects on gravitropism 542
2 5 Chloroplast movement 543
2 6 Chlorophyll synthesis 544
2 7 Protoplast regeneration 544
3 Different photoreceptors in mosses 545
3 1 Phytochromes 545
311 Phytochrome genes and proteins 545
312 Mutants 547
Ceratodon Class 1 mutants 549
Ceratodon class 2 mutants 550
Physcomitrella phytochrome knockout mutants 550
313 Light direction and polarization 551
3 2 Cryptochromes and phototropin 556
4 Signal transduction 557
4 1 Ca2+ 558
4 2 Cytoskeleton 558
xxiii
5 Summary 559
6 References 560
Chapter 26
CIRCADIAN REGULATION OF PHOTOMORPHOGENESIS
Paul Devlin
1 Introduction 567
2 The Circadian Clock 568
3 Circadian rhythms 568
4 The circadian clock in plants 569
5 Setting the plant circadian clock 574
6 Driven vs Endogenous Rhythms 578
7 Gating 579
8 Circadian Regulation of Photomorphogenesis 580
8 1 Circadian regulation of light-induced changes in gene expression 580
8 2 Circadian regulation of light-mediated inhibition of hypocotyl
elongation 581
8 3 Circadian regulation of light-mediated stimulation of hypocotyl hook
opening 581
8 4 Circadian regulation of light-mediated stimulation of stomatal opening 582
8 5 Circadian regulation of sensitivity to light allows daylength perception 582
9 Mechanism of circadian regulation of photomorphogenesis 583
10 Mutants affecting circadian regulation of photomorphogenesis 585
10 1 early flowering 3 (el/3) 585
10 2 time for coffee (tic) 588
11 Other possible components involved gating 590
11 1 Circadian regulation of photoreceptor levels 590
11 2 Circadian regulation of photoreceptor subcellular localisation 591
11 3 Circadian regulation of photoreceptor signal transduction
components 592
11 3 1 GIGANTEA (GI) 592
11 3 2 ZEITLUPE (ZTL) 593
11 3 3 Suppressor of phyA 1 (SPA 1) 594
11 3 4 early phytochrome responsive 1 (eprl) 595
12 A twist in the tale: Is there just one circadian clock regulating
photomorphogenesis? 596
13 Conclusion: Concerns for photomorphogenic study 598
14 Epilogue 599
15 Further suggested reading 599
16 References 600
xxiv
Chapter 27
THE MOLECULAR GENETICS OF PHOTO-PERIODIC RESPONSES:
COMPARISONS BETWEEN LONG-DAY AND SHORT-DAY SPECIES
George Coupland
1 Introduction 605
2 Genetic model systems 606
3 A molecular pathway that controls flowering-time in response to day
length in Arabidopsis by generating a long-distance signal from the leaf 607
4 An external coincidence model for the day-length response in Arabidopsis 611
5 Genetic analysis of the photoperiodic control of flowering in rice, a
short-day plant 614
6 Relationships between photoperiodic control and other environmental cues
regulating flowering 618
7 Photoperiodic responses other than flowering 620
8 Perspectives 621
9 References 621
Chapter 28
COMMERCIAL APPLICATIONS OF PHOTOMORPHOGENESIS
RESEARCH
Ganga Rao Davuluri and Chris Bowler
1 Introduction 627
2 Light-mediated responses in the natural environment 628
3 Manipulation of light responses in agriculture 629
3 1 Modulation of day length perception 629
3 2 Modulation of shade avoidance responses 630
3 3 Modulation of fruit ripening 632
4 Light-based biological engineering 635
5 Conclusions and perspectives 636
6 References 637
Chapter 29
PHOTOMORPHOGENESIS - WHERE NOW?
Harry Smith
Where are we going, Dad? 641
Where are we now, Dad? 641
XXV
So what, Dad? 643
Is that all, Dad? 646
Why, Dad? 647
What use is it, Dad? 649
Are we nearly there yet? 649
Race you to the beach, Dad! 650
References 650
Conclusions 653
Index 655 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV021575172 |
callnumber-first | Q - Science |
callnumber-label | QK757 |
callnumber-raw | QK757 |
callnumber-search | QK757 |
callnumber-sort | QK 3757 |
callnumber-subject | QK - Botany |
classification_rvk | WF 1350 WN 5450 |
ctrlnum | (OCoLC)64626556 (DE-599)BVBBV021575172 |
dewey-full | 571.4/552 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.4/552 |
dewey-search | 571.4/552 |
dewey-sort | 3571.4 3552 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02074nam a2200553 c 4500</leader><controlfield tag="001">BV021575172</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071221 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060509s2006 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N03,0964</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977651703</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402038099</subfield><subfield code="c">Geb.</subfield><subfield code="9">978-1-402-03809-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402038105</subfield><subfield code="c">Pb. : EUR 74.90, sfr 124.00</subfield><subfield code="9">978-1-402-03810-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781402038105</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)64626556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021575172</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK757</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.4/552</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 1350</subfield><subfield code="0">(DE-625)148326:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WN 5450</subfield><subfield code="0">(DE-625)151049:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photomorphogenesis in plants and bacteria</subfield><subfield code="b">function and signal transduction mechanisms</subfield><subfield code="c">ed. by Eberhard Schäfer ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLVIII, 662 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bactéries - Effets de la lumière sur les</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plantes - Photomorphogenèse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield><subfield code="x">Effect of light on</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plants</subfield><subfield code="x">Photomorphogenesis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photomorphogenese</subfield><subfield code="0">(DE-588)4174525-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bakterien</subfield><subfield code="0">(DE-588)4004296-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzen</subfield><subfield code="0">(DE-588)4045539-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pflanzen</subfield><subfield code="0">(DE-588)4045539-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Photomorphogenese</subfield><subfield code="0">(DE-588)4174525-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bakterien</subfield><subfield code="0">(DE-588)4004296-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Photomorphogenese</subfield><subfield code="0">(DE-588)4174525-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schäfer, Eberhard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014790925&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014790925</subfield></datafield></record></collection> |
id | DE-604.BV021575172 |
illustrated | Illustrated |
index_date | 2024-07-02T14:39:46Z |
indexdate | 2024-07-09T20:39:00Z |
institution | BVB |
isbn | 9781402038099 9781402038105 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014790925 |
oclc_num | 64626556 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | XLVIII, 662 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
spelling | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms ed. by Eberhard Schäfer ... 3. ed. Dordrecht Springer 2006 XLVIII, 662 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Bactéries - Effets de la lumière sur les Plantes - Photomorphogenèse Bacteria Effect of light on Plants Photomorphogenesis Photomorphogenese (DE-588)4174525-5 gnd rswk-swf Bakterien (DE-588)4004296-0 gnd rswk-swf Pflanzen (DE-588)4045539-7 gnd rswk-swf Pflanzen (DE-588)4045539-7 s Photomorphogenese (DE-588)4174525-5 s DE-604 Bakterien (DE-588)4004296-0 s Schäfer, Eberhard Sonstige oth HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014790925&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms Bactéries - Effets de la lumière sur les Plantes - Photomorphogenèse Bacteria Effect of light on Plants Photomorphogenesis Photomorphogenese (DE-588)4174525-5 gnd Bakterien (DE-588)4004296-0 gnd Pflanzen (DE-588)4045539-7 gnd |
subject_GND | (DE-588)4174525-5 (DE-588)4004296-0 (DE-588)4045539-7 |
title | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms |
title_auth | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms |
title_exact_search | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms |
title_exact_search_txtP | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms |
title_full | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms ed. by Eberhard Schäfer ... |
title_fullStr | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms ed. by Eberhard Schäfer ... |
title_full_unstemmed | Photomorphogenesis in plants and bacteria function and signal transduction mechanisms ed. by Eberhard Schäfer ... |
title_short | Photomorphogenesis in plants and bacteria |
title_sort | photomorphogenesis in plants and bacteria function and signal transduction mechanisms |
title_sub | function and signal transduction mechanisms |
topic | Bactéries - Effets de la lumière sur les Plantes - Photomorphogenèse Bacteria Effect of light on Plants Photomorphogenesis Photomorphogenese (DE-588)4174525-5 gnd Bakterien (DE-588)4004296-0 gnd Pflanzen (DE-588)4045539-7 gnd |
topic_facet | Bactéries - Effets de la lumière sur les Plantes - Photomorphogenèse Bacteria Effect of light on Plants Photomorphogenesis Photomorphogenese Bakterien Pflanzen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014790925&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schafereberhard photomorphogenesisinplantsandbacteriafunctionandsignaltransductionmechanisms |