A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces:
Abstract: "We present a finite volume method for the solution of the two-dimensional Poisson equation [inverted triangle]. ([Beta](x) [inverted triangle] u(x)) = f(x) with variable, discontinuous coefficients and solution discontinuities on irregular domains. The method uses bilinear ansatz fun...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
2006
|
Schriftenreihe: | ZIB-Report
2006,05 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We present a finite volume method for the solution of the two-dimensional Poisson equation [inverted triangle]. ([Beta](x) [inverted triangle] u(x)) = f(x) with variable, discontinuous coefficients and solution discontinuities on irregular domains. The method uses bilinear ansatz functions on Cartesian grids for the solution u(x) resulting in a compact nine-point stencil. The resulting linear problem has been solved with a standard multigrid solver. Singularities associated with vanishing partial volumes of intersected grid cells or the dual bilinear ansatz itself are removed by a two-step asymptotic approach. The method achieves second order of accuracy in the L[superscript infinity] and L² norm." |
Beschreibung: | 26 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021570233 | ||
003 | DE-604 | ||
005 | 20060719 | ||
007 | t | ||
008 | 060505s2006 ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)70123442 | ||
035 | |a (DE-599)BVBBV021570233 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-188 | ||
082 | 0 | |a 518.64 |2 22/ger | |
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Oevermann, Michael |d 1967- |e Verfasser |0 (DE-588)120804875 |4 aut | |
245 | 1 | 0 | |a A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces |c Michael Oevermann ; Rupert Klein |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 2006 | |
300 | |a 26 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a ZIB-Report |v 2006,05 | |
520 | 3 | |a Abstract: "We present a finite volume method for the solution of the two-dimensional Poisson equation [inverted triangle]. ([Beta](x) [inverted triangle] u(x)) = f(x) with variable, discontinuous coefficients and solution discontinuities on irregular domains. The method uses bilinear ansatz functions on Cartesian grids for the solution u(x) resulting in a compact nine-point stencil. The resulting linear problem has been solved with a standard multigrid solver. Singularities associated with vanishing partial volumes of intersected grid cells or the dual bilinear ansatz itself are removed by a two-step asymptotic approach. The method achieves second order of accuracy in the L[superscript infinity] and L² norm." | |
650 | 4 | |a Finite volume method | |
650 | 4 | |a Poisson's equation | |
700 | 1 | |a Klein, Rupert |e Verfasser |4 aut | |
830 | 0 | |a ZIB-Report |v 2006,05 |w (DE-604)BV013191727 |9 2006,05 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-014786059 |
Datensatz im Suchindex
_version_ | 1804135336242053120 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Oevermann, Michael 1967- Klein, Rupert |
author_GND | (DE-588)120804875 |
author_facet | Oevermann, Michael 1967- Klein, Rupert |
author_role | aut aut |
author_sort | Oevermann, Michael 1967- |
author_variant | m o mo r k rk |
building | Verbundindex |
bvnumber | BV021570233 |
ctrlnum | (OCoLC)70123442 (DE-599)BVBBV021570233 |
dewey-full | 518.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518.64 |
dewey-search | 518.64 |
dewey-sort | 3518.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01858nam a2200337 cb4500</leader><controlfield tag="001">BV021570233</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060719 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060505s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70123442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021570233</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518.64</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oevermann, Michael</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120804875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces</subfield><subfield code="c">Michael Oevermann ; Rupert Klein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">26 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ZIB-Report</subfield><subfield code="v">2006,05</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We present a finite volume method for the solution of the two-dimensional Poisson equation [inverted triangle]. ([Beta](x) [inverted triangle] u(x)) = f(x) with variable, discontinuous coefficients and solution discontinuities on irregular domains. The method uses bilinear ansatz functions on Cartesian grids for the solution u(x) resulting in a compact nine-point stencil. The resulting linear problem has been solved with a standard multigrid solver. Singularities associated with vanishing partial volumes of intersected grid cells or the dual bilinear ansatz itself are removed by a two-step asymptotic approach. The method achieves second order of accuracy in the L[superscript infinity] and L² norm."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite volume method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson's equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Rupert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">ZIB-Report</subfield><subfield code="v">2006,05</subfield><subfield code="w">(DE-604)BV013191727</subfield><subfield code="9">2006,05</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014786059</subfield></datafield></record></collection> |
id | DE-604.BV021570233 |
illustrated | Illustrated |
index_date | 2024-07-02T14:38:05Z |
indexdate | 2024-07-09T20:38:53Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014786059 |
oclc_num | 70123442 |
open_access_boolean | |
owner | DE-703 DE-188 |
owner_facet | DE-703 DE-188 |
physical | 26 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series | ZIB-Report |
series2 | ZIB-Report |
spelling | Oevermann, Michael 1967- Verfasser (DE-588)120804875 aut A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces Michael Oevermann ; Rupert Klein Berlin Konrad-Zuse-Zentrum für Informationstechnik 2006 26 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier ZIB-Report 2006,05 Abstract: "We present a finite volume method for the solution of the two-dimensional Poisson equation [inverted triangle]. ([Beta](x) [inverted triangle] u(x)) = f(x) with variable, discontinuous coefficients and solution discontinuities on irregular domains. The method uses bilinear ansatz functions on Cartesian grids for the solution u(x) resulting in a compact nine-point stencil. The resulting linear problem has been solved with a standard multigrid solver. Singularities associated with vanishing partial volumes of intersected grid cells or the dual bilinear ansatz itself are removed by a two-step asymptotic approach. The method achieves second order of accuracy in the L[superscript infinity] and L² norm." Finite volume method Poisson's equation Klein, Rupert Verfasser aut ZIB-Report 2006,05 (DE-604)BV013191727 2006,05 |
spellingShingle | Oevermann, Michael 1967- Klein, Rupert A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces ZIB-Report Finite volume method Poisson's equation |
title | A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces |
title_auth | A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces |
title_exact_search | A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces |
title_exact_search_txtP | A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces |
title_full | A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces Michael Oevermann ; Rupert Klein |
title_fullStr | A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces Michael Oevermann ; Rupert Klein |
title_full_unstemmed | A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces Michael Oevermann ; Rupert Klein |
title_short | A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces |
title_sort | a cartesian grid finite volume method for the solution of the poisson equation with variable coefficients and embedded interfaces |
topic | Finite volume method Poisson's equation |
topic_facet | Finite volume method Poisson's equation |
volume_link | (DE-604)BV013191727 |
work_keys_str_mv | AT oevermannmichael acartesiangridfinitevolumemethodforthesolutionofthepoissonequationwithvariablecoefficientsandembeddedinterfaces AT kleinrupert acartesiangridfinitevolumemethodforthesolutionofthepoissonequationwithvariablecoefficientsandembeddedinterfaces |