Domain decomposition method for Maxwell's equations: scattering off periodic structures
Abstract: "We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly mat...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
2006
|
Schriftenreihe: | ZIB-Report
2006,04 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer." |
Beschreibung: | 24 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021570206 | ||
003 | DE-604 | ||
005 | 20060719 | ||
007 | t | ||
008 | 060505s2006 ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)70123444 | ||
035 | |a (DE-599)BVBBV021570206 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-188 | ||
082 | 0 | |a 518.64 |2 22/ger | |
084 | |a 510 |2 sdnb | ||
245 | 1 | 0 | |a Domain decomposition method for Maxwell's equations |b scattering off periodic structures |c Achim Schädle ... |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 2006 | |
300 | |a 24 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a ZIB-Report |v 2006,04 | |
520 | 3 | |a Abstract: "We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer." | |
650 | 4 | |a Decomposition method | |
650 | 4 | |a Maxwell equations | |
700 | 1 | |a Schädle, Achim |d 1972- |e Sonstige |0 (DE-588)124115195 |4 oth | |
830 | 0 | |a ZIB-Report |v 2006,04 |w (DE-604)BV013191727 |9 2006,04 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-014786035 |
Datensatz im Suchindex
_version_ | 1804135336199061504 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_GND | (DE-588)124115195 |
building | Verbundindex |
bvnumber | BV021570206 |
ctrlnum | (OCoLC)70123444 (DE-599)BVBBV021570206 |
dewey-full | 518.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518.64 |
dewey-search | 518.64 |
dewey-sort | 3518.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01798nam a2200325 cb4500</leader><controlfield tag="001">BV021570206</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060719 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060505s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70123444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021570206</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518.64</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domain decomposition method for Maxwell's equations</subfield><subfield code="b">scattering off periodic structures</subfield><subfield code="c">Achim Schädle ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">24 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ZIB-Report</subfield><subfield code="v">2006,04</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell equations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schädle, Achim</subfield><subfield code="d">1972-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)124115195</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">ZIB-Report</subfield><subfield code="v">2006,04</subfield><subfield code="w">(DE-604)BV013191727</subfield><subfield code="9">2006,04</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014786035</subfield></datafield></record></collection> |
id | DE-604.BV021570206 |
illustrated | Illustrated |
index_date | 2024-07-02T14:38:03Z |
indexdate | 2024-07-09T20:38:53Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014786035 |
oclc_num | 70123444 |
open_access_boolean | |
owner | DE-703 DE-188 |
owner_facet | DE-703 DE-188 |
physical | 24 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series | ZIB-Report |
series2 | ZIB-Report |
spelling | Domain decomposition method for Maxwell's equations scattering off periodic structures Achim Schädle ... Berlin Konrad-Zuse-Zentrum für Informationstechnik 2006 24 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier ZIB-Report 2006,04 Abstract: "We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer." Decomposition method Maxwell equations Schädle, Achim 1972- Sonstige (DE-588)124115195 oth ZIB-Report 2006,04 (DE-604)BV013191727 2006,04 |
spellingShingle | Domain decomposition method for Maxwell's equations scattering off periodic structures ZIB-Report Decomposition method Maxwell equations |
title | Domain decomposition method for Maxwell's equations scattering off periodic structures |
title_auth | Domain decomposition method for Maxwell's equations scattering off periodic structures |
title_exact_search | Domain decomposition method for Maxwell's equations scattering off periodic structures |
title_exact_search_txtP | Domain decomposition method for Maxwell's equations scattering off periodic structures |
title_full | Domain decomposition method for Maxwell's equations scattering off periodic structures Achim Schädle ... |
title_fullStr | Domain decomposition method for Maxwell's equations scattering off periodic structures Achim Schädle ... |
title_full_unstemmed | Domain decomposition method for Maxwell's equations scattering off periodic structures Achim Schädle ... |
title_short | Domain decomposition method for Maxwell's equations |
title_sort | domain decomposition method for maxwell s equations scattering off periodic structures |
title_sub | scattering off periodic structures |
topic | Decomposition method Maxwell equations |
topic_facet | Decomposition method Maxwell equations |
volume_link | (DE-604)BV013191727 |
work_keys_str_mv | AT schadleachim domaindecompositionmethodformaxwellsequationsscatteringoffperiodicstructures |