Riemannian geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Springer
2006
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Graduate texts in mathematics
171 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | e-ISBN 0-387-29403-1 |
Beschreibung: | XV, 401 S. Ill., graph. Darst. |
ISBN: | 0387292462 9780387292465 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021527838 | ||
003 | DE-604 | ||
005 | 20160413 | ||
007 | t | ||
008 | 060327s2006 ad|| |||| 00||| eng d | ||
020 | |a 0387292462 |9 0-387-29246-2 | ||
020 | |a 9780387292465 |9 978-0387-29246-5 | ||
035 | |a (OCoLC)254652258 | ||
035 | |a (DE-599)BVBBV021527838 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-703 |a DE-188 | ||
050 | 0 | |a QA649 | |
082 | 0 | |a 516.373 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 537f |2 stub | ||
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Petersen, Peter |d 1962- |e Verfasser |0 (DE-588)118069292 |4 aut | |
245 | 1 | 0 | |a Riemannian geometry |c Peter Petersen |
250 | |a 2. ed. | ||
264 | 1 | |a New York |b Springer |c 2006 | |
300 | |a XV, 401 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 171 | |
500 | |a e-ISBN 0-387-29403-1 | ||
650 | 4 | |a Riemannsche Geometrie - Lehrbuch | |
650 | 4 | |a Geometry, Riemannian | |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 171 |w (DE-604)BV000000067 |9 171 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014744231&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014744231 |
Datensatz im Suchindex
_version_ | 1804135272601878528 |
---|---|
adam_text | CONTENTS PREFACE VII CHAPTER 1. RIEMANNIAN METRICS 1 1. RIEMANNIAN
MANIFOLDS AND MAPS 2 2. GROUPS AND RIEMANNIAN MANIFOLDS 5 3. LOCAL
REPRESENTATIONS OF METRICS 8 4. DOUBLY WARPED PRODUCTS 13 5. EXERCISES
17 CHAPTER 2. CURVATURE 21 1. CONNECTIONS 22 2. THE CONNECTION IN LOCAL
COORDINATES 29 3. CURVATURE 32 4. THE FUNDAMENTAL CURVATURE EQUATIONS 41
5. THE EQUATIONS OF RIEMANNIAN GEOMETRY 47 6. SOME TENSOR CONCEPTS 51 7.
FURTHER STUDY 56 8. EXERCISES 56 CHAPTER 3. EXAMPLES 63 1. COMPUTATIONAL
SIMPLIFICATIONS 63 2. WARPED PRODUCTS 64 3. HYPERBOLIC SPACE 74 4.
METRICS ON LIE GROUPS 77 5. RIEMANNIAN SUBMERSIONS 82 6. FURTHER STUDY
90 7. EXERCISES 90 CHAPTER 4. HYPERSURFACES 95 1. THE GAUSS MAP 95 2.
EXISTENCE OF HYPERSURFACES 97 3. THE GAUSS-BONNET THEOREM 101 4. FURTHER
STUDY 107 5. EXERCISES 108 CHAPTER 5. GEODESICS AND DISTANCE 111 1.
MIXED PARTIALS 112 2. GEODESICS 116 3. THE METRIC STRUCTURE OF A
RIEMANNIAN MANIFOLD 121 4. FIRST VARIATION OF ENERGY 126 5. THE
EXPONENTIAL MAP 130 XIII XIV CONTENTS 6. WHY SHORT GEODESICS ARE
SEGMENTS 132 7. LOCAL GEOMETRY IN CONSTANT CURVATURE 134 8. COMPLETENESS
137 9. CHARACTERIZATION OF SEGMENTS 139 10. RIEMANNIAN ISOMETRIES 143
11. FURTHER STUDY 149 12. EXERCISES 149 CHAPTER 6. SECTIONAL CURVATURE
COMPARISON I 153 1. THE CONNECTION ALONG CURVES 153 2. SECOND VARIATION
OF ENERGY 158 3. NONPOSITIVE SECTIONAL CURVATURE 162 4. POSITIVE
CURVATURE 169 5. BASIC COMPARISON ESTIMATES 173 6. MORE ON POSITIVE
CURVATURE 176 7. FURTHER STUDY 182 8. EXERCISES 183 CHAPTER 7. THE
BOCHNER TECHNIQUE 187 1. KILLING FIELDS 188 2. HODGE THEORY 202 3.
HARMONIC FORMS 205 4. CLIFFORD MULTIPLICATION ON FORMS 213 5. THE
CURVATURE TENSOR 221 6. FURTHER STUDY 229 7. EXERCISES 229 CHAPTER 8.
SYMMETRIC SPACES AND HOLONOMY 235 1. SYMMETRIC SPACES 236 2. EXAMPLES OF
SYMMETRIC SPACES 244 3. HOLONOMY 252 4. CURVATURE AND HOLONOMY 256 5.
FURTHER STUDY 262 6. EXERCISES 263 CHAPTER 9. RICCI CURVATURE COMPARISON
265 1. VOLUME COMPARISON 265 2. FUNDAMENTAL GROUPS AND RICCI CURVATURE
273 3. MANIFOLDS OF NONNEGATIVE RICCI CURVATURE 279 4. FURTHER STUDY 290
5. EXERCISES 290 CHAPTER 10. CONVERGENCE 293 1. GROMOV-HAUSDORFF
CONVERGENCE 294 2. H¨ OLDER SPACES AND SCHAUDER ESTIMATES 301 3. NORMS
AND CONVERGENCE OF MANIFOLDS 307 4. GEOMETRIC APPLICATIONS 318 5.
HARMONIC NORMS AND RICCI CURVATURE 321 6. FURTHER STUDY 330 7. EXERCISES
331 CONTENTS XV CHAPTER 11. SECTIONAL CURVATURE COMPARISON II 333 1.
CRITICAL POINT THEORY 333 2. DISTANCE COMPARISON 338 3. SPHERE THEOREMS
346 4. THE SOUL THEOREM 349 5. FINITENESS OF BETTI NUMBERS 357 6.
HOMOTOPY FINITENESS 365 7. FURTHER STUDY 372 8. EXERCISES 372 APPENDIX.
DE RHAM COHOMOLOGY 375 1. LIE DERIVATIVES 375 2. ELEMENTARY PROPERTIES
379 3. INTEGRATION OF FORMS 380 4. * CECH COHOMOLOGY 383 5. DE RHAM
COHOMOLOGY 384 6. POINCAR´ E DUALITY 387 7. DEGREE THEORY 389 8. FURTHER
STUDY 391 BIBLIOGRAPHY 393 INDEX 397
|
adam_txt |
CONTENTS PREFACE VII CHAPTER 1. RIEMANNIAN METRICS 1 1. RIEMANNIAN
MANIFOLDS AND MAPS 2 2. GROUPS AND RIEMANNIAN MANIFOLDS 5 3. LOCAL
REPRESENTATIONS OF METRICS 8 4. DOUBLY WARPED PRODUCTS 13 5. EXERCISES
17 CHAPTER 2. CURVATURE 21 1. CONNECTIONS 22 2. THE CONNECTION IN LOCAL
COORDINATES 29 3. CURVATURE 32 4. THE FUNDAMENTAL CURVATURE EQUATIONS 41
5. THE EQUATIONS OF RIEMANNIAN GEOMETRY 47 6. SOME TENSOR CONCEPTS 51 7.
FURTHER STUDY 56 8. EXERCISES 56 CHAPTER 3. EXAMPLES 63 1. COMPUTATIONAL
SIMPLIFICATIONS 63 2. WARPED PRODUCTS 64 3. HYPERBOLIC SPACE 74 4.
METRICS ON LIE GROUPS 77 5. RIEMANNIAN SUBMERSIONS 82 6. FURTHER STUDY
90 7. EXERCISES 90 CHAPTER 4. HYPERSURFACES 95 1. THE GAUSS MAP 95 2.
EXISTENCE OF HYPERSURFACES 97 3. THE GAUSS-BONNET THEOREM 101 4. FURTHER
STUDY 107 5. EXERCISES 108 CHAPTER 5. GEODESICS AND DISTANCE 111 1.
MIXED PARTIALS 112 2. GEODESICS 116 3. THE METRIC STRUCTURE OF A
RIEMANNIAN MANIFOLD 121 4. FIRST VARIATION OF ENERGY 126 5. THE
EXPONENTIAL MAP 130 XIII XIV CONTENTS 6. WHY SHORT GEODESICS ARE
SEGMENTS 132 7. LOCAL GEOMETRY IN CONSTANT CURVATURE 134 8. COMPLETENESS
137 9. CHARACTERIZATION OF SEGMENTS 139 10. RIEMANNIAN ISOMETRIES 143
11. FURTHER STUDY 149 12. EXERCISES 149 CHAPTER 6. SECTIONAL CURVATURE
COMPARISON I 153 1. THE CONNECTION ALONG CURVES 153 2. SECOND VARIATION
OF ENERGY 158 3. NONPOSITIVE SECTIONAL CURVATURE 162 4. POSITIVE
CURVATURE 169 5. BASIC COMPARISON ESTIMATES 173 6. MORE ON POSITIVE
CURVATURE 176 7. FURTHER STUDY 182 8. EXERCISES 183 CHAPTER 7. THE
BOCHNER TECHNIQUE 187 1. KILLING FIELDS 188 2. HODGE THEORY 202 3.
HARMONIC FORMS 205 4. CLIFFORD MULTIPLICATION ON FORMS 213 5. THE
CURVATURE TENSOR 221 6. FURTHER STUDY 229 7. EXERCISES 229 CHAPTER 8.
SYMMETRIC SPACES AND HOLONOMY 235 1. SYMMETRIC SPACES 236 2. EXAMPLES OF
SYMMETRIC SPACES 244 3. HOLONOMY 252 4. CURVATURE AND HOLONOMY 256 5.
FURTHER STUDY 262 6. EXERCISES 263 CHAPTER 9. RICCI CURVATURE COMPARISON
265 1. VOLUME COMPARISON 265 2. FUNDAMENTAL GROUPS AND RICCI CURVATURE
273 3. MANIFOLDS OF NONNEGATIVE RICCI CURVATURE 279 4. FURTHER STUDY 290
5. EXERCISES 290 CHAPTER 10. CONVERGENCE 293 1. GROMOV-HAUSDORFF
CONVERGENCE 294 2. H¨ OLDER SPACES AND SCHAUDER ESTIMATES 301 3. NORMS
AND CONVERGENCE OF MANIFOLDS 307 4. GEOMETRIC APPLICATIONS 318 5.
HARMONIC NORMS AND RICCI CURVATURE 321 6. FURTHER STUDY 330 7. EXERCISES
331 CONTENTS XV CHAPTER 11. SECTIONAL CURVATURE COMPARISON II 333 1.
CRITICAL POINT THEORY 333 2. DISTANCE COMPARISON 338 3. SPHERE THEOREMS
346 4. THE SOUL THEOREM 349 5. FINITENESS OF BETTI NUMBERS 357 6.
HOMOTOPY FINITENESS 365 7. FURTHER STUDY 372 8. EXERCISES 372 APPENDIX.
DE RHAM COHOMOLOGY 375 1. LIE DERIVATIVES 375 2. ELEMENTARY PROPERTIES
379 3. INTEGRATION OF FORMS 380 4. * CECH COHOMOLOGY 383 5. DE RHAM
COHOMOLOGY 384 6. POINCAR´ E DUALITY 387 7. DEGREE THEORY 389 8. FURTHER
STUDY 391 BIBLIOGRAPHY 393 INDEX 397 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Petersen, Peter 1962- |
author_GND | (DE-588)118069292 |
author_facet | Petersen, Peter 1962- |
author_role | aut |
author_sort | Petersen, Peter 1962- |
author_variant | p p pp |
building | Verbundindex |
bvnumber | BV021527838 |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 |
classification_tum | MAT 537f |
ctrlnum | (OCoLC)254652258 (DE-599)BVBBV021527838 |
dewey-full | 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.373 |
dewey-search | 516.373 |
dewey-sort | 3516.373 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01602nam a2200445 cb4500</leader><controlfield tag="001">BV021527838</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060327s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387292462</subfield><subfield code="9">0-387-29246-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387292465</subfield><subfield code="9">978-0387-29246-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254652258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021527838</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.373</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petersen, Peter</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118069292</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian geometry</subfield><subfield code="c">Peter Petersen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 401 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">171</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">e-ISBN 0-387-29403-1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannsche Geometrie - Lehrbuch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">171</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">171</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014744231&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014744231</subfield></datafield></record></collection> |
id | DE-604.BV021527838 |
illustrated | Illustrated |
index_date | 2024-07-02T14:24:26Z |
indexdate | 2024-07-09T20:37:52Z |
institution | BVB |
isbn | 0387292462 9780387292465 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014744231 |
oclc_num | 254652258 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-188 |
physical | XV, 401 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Petersen, Peter 1962- Verfasser (DE-588)118069292 aut Riemannian geometry Peter Petersen 2. ed. New York Springer 2006 XV, 401 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 171 e-ISBN 0-387-29403-1 Riemannsche Geometrie - Lehrbuch Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s DE-604 Graduate texts in mathematics 171 (DE-604)BV000000067 171 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014744231&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Petersen, Peter 1962- Riemannian geometry Graduate texts in mathematics Riemannsche Geometrie - Lehrbuch Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4128462-8 |
title | Riemannian geometry |
title_auth | Riemannian geometry |
title_exact_search | Riemannian geometry |
title_exact_search_txtP | Riemannian geometry |
title_full | Riemannian geometry Peter Petersen |
title_fullStr | Riemannian geometry Peter Petersen |
title_full_unstemmed | Riemannian geometry Peter Petersen |
title_short | Riemannian geometry |
title_sort | riemannian geometry |
topic | Riemannsche Geometrie - Lehrbuch Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Riemannsche Geometrie - Lehrbuch Geometry, Riemannian Riemannsche Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014744231&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT petersenpeter riemanniangeometry |