The global approach to quantum field theory: 1
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2005
|
Ausgabe: | repr. 2004 (with corr.), 2005 |
Schriftenreihe: | ...
114 The international series of monographs on physics ... Oxford science publications |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXXI, 528, 11 S. graph. Darst. |
ISBN: | 019852790x 9780198527909 9780198712862 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV021520440 | ||
003 | DE-604 | ||
005 | 20140729 | ||
007 | t | ||
008 | 060321s2005 xxud||| |||| 00||| eng d | ||
020 | |a 019852790x |9 0-19-852790-x | ||
020 | |a 9780198527909 |9 978-0-19-852790-9 | ||
020 | |a 9780198712862 |9 978-0-19-871286-2 | ||
035 | |a (OCoLC)315194993 | ||
035 | |a (DE-599)BVBBV021520440 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-355 |a DE-703 |a DE-19 | ||
082 | 0 | |a 530.143 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
100 | 1 | |a De Witt, Bryce S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The global approach to quantum field theory |n 1 |c Bryce DeWitt |
250 | |a repr. 2004 (with corr.), 2005 | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2005 | |
300 | |a XXXI, 528, 11 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a ... |v 114 | |
490 | 0 | |a The international series of monographs on physics |v ... | |
490 | 0 | |a Oxford science publications | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
773 | 0 | 8 | |w (DE-604)BV014651048 |g 1 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014736947&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014736947 |
Datensatz im Suchindex
_version_ | 1804135261406232576 |
---|---|
adam_text | CONTENTS
VOLUME 1
I CLASSICAL DYNAMICAL THEORY
1
Fundamentals
3
Classical Dynamical Systems
3
Space of Histories. Functional Differentiation
4
Examples of Simple Functionals. Notational Abbreviations
6
Condensed and Supercondensed Notations
9
Changing Topology
11
Comments on Chapter
1 12
Reference
12
2
Dynamics and
Invariance
Transformations
13
Action Functional and Dynamical Equations
13
Invariance
Transformations
14
Commutator of
Invariance
Transformations
17
Gauge Algebras. Gauge Groups. Orbits
18
Functional Differential Equation for the Structure Functions
22
Further Simplification of Notation
24
Physical
Observables
25
Gauge Groups and Manifest Covariance
26
Comments on Chapter
2 28
References
29
3
Small Disturbances and Green s Functions
30
The Equations of Small Disturbances. Jacobi Fields
30
The Structure of
,·.
S
; 31
Other Identities Satisfied by the Coefficient Matrices
32
Supplementary Conditions
33
Retarded and Advanced Green s Functions of
F
35
Equality of Left and Right Green s Functions
36
Reciprocity Relations
37
Explicit Structure of
F
38
Relation between the
Greeďs
Functions of
5
and
F
40
x
CONTENTS
The Green s Functions Off Shell. Coherent Green s Functions
42
Landau Green s Functions
44
Transformation Laws for the Green s Functions
44
Comments on Chapter
3 45
4
The Peierls Bracket
46
Disturbances in Physical
Observables
46
The Reciprocity Relation for Physical
Observables
47
Invariance
Properties of
D J B
47
The Peierls Bracket and the Supercommutator Function
49
The Bracket Identities
50
Standard Canonical Systems. Equivalence of Peierls and
Poisson
Brackets
51
The Wronskian Operator
54
The Cauchy Problem for Jacobi Fields
56
Comments on Chapter
4 58
Reference
59
5
Finite Disturbances. Tree Theorems. Asymptotic Fields
60
Differential and Integro-differential Equations for
Finite Disturbances
60
Iterative Solutions. Tree Functions
63
Background Field. Transformation Laws
64
Changes in
P
and
к
66
Gauge Transformations
67
Tree Amplitudes and Tree Theorems
67
Tree Theorems When the Configuration Space is not a Vector Space
69
Change of Chart
70
Asymptotic In and Out Fields
73
Comments on Chapter
5 77
Reference
77
6
Conservation Laws
78
Alternative Action Functional
78
Internal Sources
78
Killing Fields. Currents, and Charges
79
The Charge Group
81
Flow
Invariance
of the Charges
82
Fundamental Lemma
83
A Special Transformation
85
Pages
1-528
appear in Volume
1,
pages
529-1042
appear in Volume
2
CONTENTS xi
The Peierls Bracket (qA, qB). The View from the
Remote
Past or Future
87
The View from Spatial Infinity
90
Compact Universes and Linearization Constraints
93
Pseudocovariants
94
Externally Impressed Fields
95
Charges in the Presence of External Fields
. 96
Peierls Bracket for the Charges
98
Differences from the Previous Theory
98
External Gravitational Field. Diffeomorphism Group
101
Stress-energy Density
103
Killing Vector Fields. The
Poincaré
Group
107
Energy-momentum Vector and Angular Momentum Tensor
108
Local
Conformai
Group
109
Conformai
Killing Vector Fields. The Global
Conformai
Group
110
Conformai
Charges and their Peierls Brackets
111
Comments on Chapter
6 112
References
113
II THE HEURISTIC ROAD TO QUANTIZATION. THE QUANTUM
FORMALISM AND ITS INTERPRETATION
7
Classical Theory of Measurement
117
System. Apparatus. Coupling
117
Apparatus Inertia
118
Disturbance in the Apparatus
120
Design of the Coupling. Accuracy of the Measurement
121
Compensation Term
122
Stem-Gerlach Experiment
123
Electric Field Measurement
125
Comments on Chapter
7 130
Reference
130
8
Quantum Theory of Measurement
131
Measurement of Two
Observables
131
Mutual Uncertainties
132
A Universal Uncertainty Principle
133
The Heuristic Quantization Rule
134
A Preferred Basis
136
Pages
1-528
appear in Volume
1,
pages
529-1042
appear in Volume
2
xii CONTENTS
Relative States.
Good Measurements
138
Many Worlds
140
Unobservability of the Splits
141
Comments on Chapter
8 144
References
144
9
Interpretation of the Quantum Formalism I
145
Reality
145
Signalling by Permutations
146
Equal Likelihood
147
Unequal Probabilities
149
Irrational Probabilities
150
Expectation Value. Single System vs. an Ensemble
152
Relative Frequency Function. The Ensemble Interpretation of
Quantum-mechanical Probabilities
153
Density Operator. Decoherence
156
Imperfect Measurements
159
Comments on Chapter
9 161
Reference
161
10
The
Schwinger Variational
Principle and
the Feynman Functional Integral
162
Transition Amplitudes
162
The
Schwinger
Variational Principle
162
External Sources and Chronological Products
165
The Operator Dynamical Equations and the Measure Functional
168
Functional Fourier Analysis. The Feynman Functional Integral
171
Comments on the Feynman Integral
173
The
Schwinger
Variational Principle Revisited
175
Expressions Involving
5,- 176
Comments on Chapter
10 177
References
177
11
The Quantum Mechanics of Standard Canonical Systems
178
Problems with the
Naïve
Quantization Rule
178
The Position Mapping
179
Vector Operators
180
The Momentum Operator
183
Restriction to a Local Chart
184
Overlapping Charts. Transformation of Coordinates
186
Pages
1-528
appear in Volume
1.
pages
529-1042
appear in Volume
2
CONTENTS xiii
The Position
Representation
188
The Projection m-form 1
89
The Momentum Operator in the Position Representation
190
The
Schrödinger
Equation
] 92
Remarks on Global Consistency
194
Comments on Chapter
11 194
Reference
194
12
Interpretation of the Quantum Formalism II
195
Tracing Out
195
The Model System
196
Density Operator
198
Localization. Sharp Decoherence
199
Discussion
201
Coarse Graining. Decoherence Function
202
Interpretation of the Diagonal Elements
203
Emergence of Classicality
205
Many Worlds Again. Probability as an Emergent Concept
207
Comments on Chapter
12 209
References
209
III EVALUATION AND APPROXIMATION OF
FEYNMAN FUNCTIONAL INTEGRALS
13
The Functional Integral for Standard Canonical Systems
213
The Path Integral
213
The Point-to-point Amplitude. The Action Function
213
Formal Computation of detG+[x] in the Lagrangian Formalism
216
Formal Computation of
det
G+[x. p] in the Hamiltonian Formalism
217
Ambiguity in the Path Integral
219
Homotopy
220
The Universal Covering Space. Covering Translations
221
The Relation of Homotopy to Homology and Cohomology
223
The Path Integral in
Č
225
Fundamental Domains
227
Partial Amplitudes in C. The Total Amplitude
228
Combination Law
229
The Hamiltonian Form of the Path Integral and
the
Schrödinger
Equation
230
Pages
3—528
appear in Volume
1.
pases
529-1042
appear in Volume
2
xiv CONTENTS
Homotopy in
Quantum
Field Theory
232
Comments on Chapter
13 233
References
233
14
Approximation and Evaluation of the Path Integral
234
The Van Vleck-Morette Determinant
234
Jacobi Fields and Green s Functions for the Trajectory xc
236
Determinantal Relations
239
The Loop Expansion
241
The WKB Approximation
243
Normalization
245
Other Boundary Conditions
246
WKB Approximation
247
Comments on Chapter
14 250
References
250
15
The Nonrelativistic Particle in a Curved Space
251
From the Hamiltonian Path Integral to the Lagrangian Path Integral
251
The Nonrelativistic Particle in a Curved Space
252
Covariant Variation
253
Covariant Differentiation with Respect to
t
254
The Dynamical Equations
255
Covariant Functional Differentiation
255
The Measure for the Lagrangian Path Integral
257
Computation of HQ
259
Normalization of the Path Integral
262
A Two-loop Calculation
263
Analysis of the Jacobi Field Operator
265
The Morse Index
267
Morse Index Theorem
268
Application to Path Integration
271
The Generalized Morse Index
272
Comments on Chapter
15 274
References
274
16
The Heat Kernel
275
History
275
Geodesic Normal Coordinates
275
Coïncidence
Limits
277
Caustics
279
Riemanman Connection. The World Function
281
Pages
1-528
appear in Volume
1,
pages
529-1042
appear in Volume
2
CONTENTS xv
Auxiliary Geometrical Quantities. Modified Covariant Derivative
283
Further Coincidence Limits
284
Heat-kernel Expansion. Recursion Relations
285
Comments on Chapter
16 286
References
287
IV LINEAR SYSTEMS
17
Linear Boson Fields in Stationary Backgrounds
291
The Scalar Field
291
Stationary Backgrounds
292
The Field Equations
293
The Energy
295
Energy Bounds
296
Mode Functions
297
Alternative Representation
298
Multiple Roots
300
Wronskian Relations
301
Zero Roots
302
Wronskian Relations Again
304
General Solution. Supercommutator Function. Energy
307
Matrix Identities
307
Mode Functions for the Scalar Field
309
The Massless Scalar Field in a Compact Universe
310
The Vector Field
312
Rescaling of Time and Energy. Canonical Form for the Energy
315
Conformally Invariant Scalar and Vector Fields
318
Comments on Chapter
17 319
18
Quantization of Linear Boson Fields
320
Green s Functions
320
Quantization
321
Super Hubert and Fock Spaces
322
Nonstationary Backgrounds and Inequivalent Vacua
327
Nonuniqueness of
д/дх0
328
Vacua Defined by Symmetry Properties
330
The Feynman Propagator
330
Feynman Propagators for the Scalar and Vector Fields
332
When the Energy is Unbounded from Below
335
Pages
1-528
appear in Volume
1.
pages
529-1042
appear in Volume
2
xvi CONTENTS
When
K~l
Μ
is Fully Diagonalizable and has Pure
Imaginary Eigenvalues
337
Comments on Chapter
18 339
References
340
19
Linear Fermion Fields. Stationary Backgrounds
341
Local
Lorentz
Frames
341
The Dirac Matrices
342
Spin Structures
344
Space Inversions and Pin Structures
345
Spinor Fields
347
The Spin Connection
349
Generalized Spin or Pin Structures
350
Real Representations
351
Lagrange
Function.
Conformai Invariance.
Majorana
Representation
351
Stress-energy Density
353
Leibniz Rule. Matrix Identities. Canonical Form for the Energy
355
Energy-momentum Conservation and the
Poincaré
Group
357
The Dirac Operator
359
Stationary Backgrounds. A Special Field of Local
Lorentz
Frames
360
A Model System
362
Mode Functions
362
When —iB is not Positive Definite
365
Comments on Chapter
19 365
References
366
20
Quantization of Linear Fermion Fields
367
Greeks Functions
367
Quantization
367
Fock Space
368
Hole Theory t
370
The Feynman Propagator
372
Comments on Chapter
20 376
21
Linear Fields in Nonstationary Backgrounds
377
In and Out Regions
377
Bogoliubov Relations
379
in and Out Fock Spaces and the S-matrix
381
Particle Production and Annihilation Amplitudes
382
One-particle Scattering Amplitudes
385
Pages
1-528
appear in
Voïume
I. pages
529-1042
appear in Volume
2
CONTENTS xvii
Nonsingularity
of a
386
Unitarity.
The Vacuum Persistence Amplitude
387
Unitarily Inequivalent Fock Spaces
389
Green s Function Representation of e w. The Feynman Propagator
391
Functional Integral Representation of e w
393
Comments on Chapter
21 394
References
395
22
Linear (or Linearized) Fields Possessing Invariant Flows
396
The Electromagnetic Field in a Stationary Curved Background
396
Other Linear or Linearized Fields on Stationary Backgrounds
397
Mode Functions for
F
and
S
399
Mode-function Decompositions of
G
and
Ò
401
Quantization
402
Fields on Nonstationary Backgrounds
402
Green s Function Representation of e w
404
Comments on Chapter
22 406
V NONLINEAR FIELDS
23
The Effective Action, the 5-matrix, and
Slavnov-Taylor Identities
409
Anticipation of Counter Terms
409
Correlation Functions
4
і
()
The Effective Action
411
The Relation of
Γ
to W. The Legendre Transform
413
The Correlation Functions as Tree Functions
413
Structure of the Effective Action
414
The Loop Expansion
4
j
6
Reai-Yaluedness of the Counter Terms. Perturbative
Renormali
zability
419
Asymptotic Fields
421
Asymptotic States
422
Wave-packet States
424
The S-rnatrix and the Scattering Operator
426
The Lehmann-Symanzik-Zimmermann Theorem
427
Mode Functions for the Effective Action
430
The Effective Action as the Generator of Quantum Dynamics
432
Coherent States as Relative Vacua
433
Pages
1-528
appear in Volume I. pages
529-1042
appear in Volume
2
xviii CONTENTS
Evaluation
of
(+,
rel
vac]-,
rel
vac)
436
Expression of the S-matrix in Terms of Quantum Tree Functions
438
The Cluster Decomposition Principle
439
Use of a (Super)Classical Background
440
Construction of the Relative S-matrix
442
Structure of the Relative S-matrix
444
When the Configuration Space is Not a Supervector Space
446
Relation to the Classical Tree Theorems
449
Slavnov-Taylor Identities
450
Current Algebra
452
Relation to the Effective Action. Finiteness of the Current Operator
453
Comments on Chapter
23 454
References
455
24
Gauge Theories I. General Formalism
456
Structure of the Space of Field Histories
456
Fibre-Adapted Coordinate Patches
457
A Metric for
Φ/α
459
Vilkovisky s Connection
460
Properties of Vilkovisky s Connection
462
The Functional Integral for In-Out Amplitudes
463
Properties of the Jacobian
J
[ψ]
465
A Special Choice for
Ω[φ]
and a New Measure Functional
467
Explicit Form for the New Measure
468
Consistency of Eq.
(24.80) 470
Ghosts
471
Relation to the Functional
6.
The Batalin-Vilkovisky Equation
473
Counter Terms, the Measure Functional, and
the Quantum BV Equation
474
The Slavnov Operator and
BRST
Transformations
476
Cohomology of the Slavnov Operator
477
Loop Decomposition of the Measure
478
The Role of the Measure Functional
480
The Effective Action
482
The Zinn-Justin Equation. Proof of Eq.
(24.125) 484
The Yang-Mills Field in Four Dimensions
485
Rigidity of the Gauge Group
488
Renormalization Constants
489
Comments on Chapter
24 490
References
491
Pages
1-528
appear in Volume
1.
pages
529-1042
appear in Volume
2
CONTENTS xix
25
Gauge Theories II. Background Field Methods.
Scattering Theory
492
Invariants. The Quantum Slavnov Operator
492
Integrating Out the Ghosts
493
Reduced Effective Action
494
Introduction of a Background Field
495
Gauge Fixing
496
Loop Expansion of the Reduced Effective Action
496
Structure of the Reduced Effective Action
498
The Full Quantum Shell
500
Alternative Loop Expansions
500
TheS-matrix
501
Mode Functions for the Effective Action
503
^-matrix Relative to an Arbitrary Background
505
Use of the (Supe^Classical Background
507
A Special Phenomenon
509
Use of
Г[^]
in Constructing the S-matrix
510
Comments on Chapter
25 511
Reference
512
26
Case-I Gauge Theory without Ghosts. Description of
Cases II and III
513
Geodesic Normal Fields
513
A New Effective Action
514
The Illusory Ghost
516
The Loop Series
518
Rules for Differentiating the Measure
519
Invariance
of the Loop Graphs
520
Renormalization
522
Difficulties in Applying the LSZ Theorem
523
Case-II Systems
524
Uncertain Cohomology of the Slavnov Operator
525
Decomposition of the Effective Action
525
Scattering Theory
525
Case-Ill Systems
526
Comments on Chapter
26 528
Reference
528
Index
[1]
Pages
1-528
appear in Volume i. pages
529-1042
appear in Volume
2
|
adam_txt |
CONTENTS
VOLUME 1
I CLASSICAL DYNAMICAL THEORY
1
Fundamentals
3
Classical Dynamical Systems
3
Space of Histories. Functional Differentiation
4
Examples of Simple Functionals. Notational Abbreviations
6
Condensed and Supercondensed Notations
9
Changing Topology
11
Comments on Chapter
1 12
Reference
12
2
Dynamics and
Invariance
Transformations
13
Action Functional and Dynamical Equations
13
Invariance
Transformations
14
Commutator of
Invariance
Transformations
17
Gauge Algebras. Gauge Groups. Orbits
18
Functional Differential Equation for the Structure Functions
22
Further Simplification of Notation
24
Physical
Observables
25
Gauge Groups and Manifest Covariance
26
Comments on Chapter
2 28
References
29
3
Small Disturbances and Green's Functions
30
The Equations of Small Disturbances. Jacobi Fields
30
The Structure of
,·.
S
; 31
Other Identities Satisfied by the Coefficient Matrices
32
Supplementary Conditions
33
Retarded and Advanced Green's Functions of
F
35
Equality of Left and Right Green's Functions
36
Reciprocity Relations
37
Explicit Structure of
F
38
Relation between the
Greeďs
Functions of
5
and
F
40
x
CONTENTS
The Green's Functions Off Shell. Coherent Green's Functions
42
Landau Green's Functions
44
Transformation Laws for the Green's Functions
44
Comments on Chapter
3 45
4
The Peierls Bracket
46
Disturbances in Physical
Observables
46
The Reciprocity Relation for Physical
Observables
47
Invariance
Properties of
D J B
47
The Peierls Bracket and the Supercommutator Function
49
The Bracket Identities
50
Standard Canonical Systems. Equivalence of Peierls and
Poisson
Brackets
51
The Wronskian Operator
54
The Cauchy Problem for Jacobi Fields
56
Comments on Chapter
4 58
Reference
59
5
Finite Disturbances. Tree Theorems. Asymptotic Fields
60
Differential and Integro-differential Equations for
Finite Disturbances
60
Iterative Solutions. Tree Functions
63
Background Field. Transformation Laws
64
Changes in
P
and
к
66
Gauge Transformations
67
Tree Amplitudes and Tree Theorems
67
Tree Theorems When the Configuration Space is not a Vector Space
69
Change of Chart
70
Asymptotic "In" and "Out" Fields
73
Comments on Chapter
5 77
Reference
77
6
Conservation Laws
78
Alternative Action Functional
78
Internal Sources
78
Killing Fields. Currents, and Charges
79
The Charge Group
81
Flow
Invariance
of the Charges
82
Fundamental Lemma
83
A Special Transformation
85
Pages
1-528
appear in Volume
1,
pages
529-1042
appear in Volume
2
CONTENTS xi
The Peierls Bracket (qA, qB). The View from the
Remote
Past or Future
87
The View from Spatial Infinity
90
Compact Universes and Linearization Constraints
93
Pseudocovariants
94
Externally Impressed Fields
95
Charges in the Presence of External Fields
. 96
Peierls Bracket for the Charges
98
Differences from the Previous Theory
98
External Gravitational Field. Diffeomorphism Group
101
Stress-energy Density
103
Killing Vector Fields. The
Poincaré
Group
107
Energy-momentum Vector and Angular Momentum Tensor
108
Local
Conformai
Group
109
Conformai
Killing Vector Fields. The Global
Conformai
Group
110
Conformai
Charges and their Peierls Brackets
111
Comments on Chapter
6 112
References
113
II THE HEURISTIC ROAD TO QUANTIZATION. THE QUANTUM
FORMALISM AND ITS INTERPRETATION
7
Classical Theory of Measurement
117
System. Apparatus. Coupling
117
Apparatus Inertia
118
Disturbance in the Apparatus
120
Design of the Coupling. Accuracy of the Measurement
121
Compensation Term
122
Stem-Gerlach Experiment
123
Electric Field Measurement
125
Comments on Chapter
7 130
Reference
130
8
Quantum Theory of Measurement
131
Measurement of Two
Observables
131
Mutual Uncertainties
132
A Universal Uncertainty Principle
133
The Heuristic Quantization Rule
134
A Preferred Basis
136
Pages
1-528
appear in Volume
1,
pages
529-1042
appear in Volume
2
xii CONTENTS
Relative States.
Good Measurements
138
Many Worlds
140
Unobservability of the Splits
141
Comments on Chapter
8 144
References
144
9
Interpretation of the Quantum Formalism I
145
Reality
145
Signalling by Permutations
146
Equal Likelihood
147
Unequal Probabilities
149
Irrational Probabilities
150
Expectation Value. Single System vs. an Ensemble
152
Relative Frequency Function. The Ensemble Interpretation of
Quantum-mechanical Probabilities
153
Density Operator. Decoherence
156
Imperfect Measurements
159
Comments on Chapter
9 161
Reference
161
10
The
Schwinger Variational
Principle and
the Feynman Functional Integral
162
Transition Amplitudes
162
The
Schwinger
Variational Principle
162
External Sources and Chronological Products
165
The Operator Dynamical Equations and the Measure Functional
168
Functional Fourier Analysis. The Feynman Functional Integral
171
Comments on the Feynman Integral
173
The
Schwinger
Variational Principle Revisited
175
Expressions Involving
5,- 176
Comments on Chapter
10 177
References
177
11
The Quantum Mechanics of Standard Canonical Systems
178
Problems with the
Naïve
Quantization Rule
178
The Position Mapping
179
Vector Operators
180
The Momentum Operator
183
Restriction to a Local Chart
184
Overlapping Charts. Transformation of Coordinates
186
Pages
1-528
appear in Volume
1.
pages
529-1042
appear in Volume
2
CONTENTS xiii
The Position
Representation
188
The Projection m-form 1
89
The Momentum Operator in the Position Representation
190
The
Schrödinger
Equation
] 92
Remarks on Global Consistency
194
Comments on Chapter
11 194
Reference
194
12
Interpretation of the Quantum Formalism II
195
Tracing Out
195
The Model System
196
Density Operator
198
Localization. Sharp Decoherence
199
Discussion
201
Coarse Graining. Decoherence Function
202
Interpretation of the Diagonal Elements
203
Emergence of Classicality
205
Many Worlds Again. Probability as an Emergent Concept
207
Comments on Chapter
12 209
References
209
III EVALUATION AND APPROXIMATION OF
FEYNMAN FUNCTIONAL INTEGRALS
13
The Functional Integral for Standard Canonical Systems
213
The Path Integral
213
The Point-to-point Amplitude. The Action Function
213
Formal Computation of detG+[x] in the Lagrangian Formalism
216
Formal Computation of
det
G+[x. p] in the Hamiltonian Formalism
217
Ambiguity in the Path Integral
219
Homotopy
220
The Universal Covering Space. Covering Translations
221
The Relation of Homotopy to Homology and Cohomology
223
The Path Integral in
Č
225
Fundamental Domains
227
Partial Amplitudes in C. The Total Amplitude
228
Combination Law
229
The Hamiltonian Form of the Path Integral and
the
Schrödinger
Equation
230
Pages
3—528
appear in Volume
1.
pases
529-1042
appear in Volume
2
xiv CONTENTS
Homotopy in
Quantum
Field Theory
232
Comments on Chapter
13 233
References
233
14
Approximation and Evaluation of the Path Integral
234
The Van Vleck-Morette Determinant
234
Jacobi Fields and Green's Functions for the Trajectory xc
236
Determinantal Relations
239
The Loop Expansion
241
The WKB Approximation
243
Normalization
245
Other Boundary Conditions
246
WKB Approximation
247
Comments on Chapter
14 250
References
250
15
The Nonrelativistic Particle in a Curved Space
251
From the Hamiltonian Path Integral to the Lagrangian Path Integral
251
The Nonrelativistic Particle in a Curved Space
252
Covariant Variation
253
Covariant Differentiation with Respect to
t
254
The Dynamical Equations
255
Covariant Functional Differentiation
255
The Measure for the Lagrangian Path Integral
257
Computation of HQ
259
Normalization of the Path Integral
262
A Two-loop Calculation
263
Analysis of the Jacobi Field Operator
265
The Morse Index
267
Morse Index Theorem
268
Application to Path Integration
271
The Generalized Morse Index
272
Comments on Chapter
15 274
References
274
16
The Heat Kernel
275
History
275
Geodesic Normal Coordinates
275
Coïncidence
Limits
277
Caustics
279
Riemanman Connection. The World Function
281
Pages
1-528
appear in Volume
1,
pages
529-1042
appear in Volume
2
CONTENTS xv
Auxiliary Geometrical Quantities. Modified Covariant Derivative
283
Further Coincidence Limits
284
Heat-kernel Expansion. Recursion Relations
285
Comments on Chapter
16 286
References
287
IV LINEAR SYSTEMS
17
Linear Boson Fields in Stationary Backgrounds
291
The Scalar Field
291
Stationary Backgrounds
292
The Field Equations
293
The Energy
295
Energy Bounds
296
Mode Functions
297
Alternative Representation
298
Multiple Roots
300
Wronskian Relations
301
Zero Roots
302
Wronskian Relations Again
304
General Solution. Supercommutator Function. Energy
307
Matrix Identities
307
Mode Functions for the Scalar Field
309
The Massless Scalar Field in a Compact Universe
310
The Vector Field
312
Rescaling of Time and Energy. Canonical Form for the Energy
315
Conformally Invariant Scalar and Vector Fields
318
Comments on Chapter
17 319
18
Quantization of Linear Boson Fields
320
Green's Functions
320
Quantization
321
Super Hubert and Fock Spaces
322
Nonstationary Backgrounds and Inequivalent Vacua
327
Nonuniqueness of
д/дх0
328
Vacua Defined by Symmetry Properties
330
The Feynman Propagator
330
Feynman Propagators for the Scalar and Vector Fields
332
When the Energy is Unbounded from Below
335
Pages
1-528
appear in Volume
1.
pages
529-1042
appear in Volume
2
xvi CONTENTS
When
K~l
Μ
is Fully Diagonalizable and has Pure
Imaginary Eigenvalues
337
Comments on Chapter
18 339
References
340
19
Linear Fermion Fields. Stationary Backgrounds
341
Local
Lorentz
Frames
341
The Dirac Matrices
342
Spin Structures
344
Space Inversions and Pin Structures
345
Spinor Fields
347
The Spin Connection
349
Generalized Spin or Pin Structures
350
Real Representations
351
Lagrange
Function.
Conformai Invariance.
Majorana
Representation
351
Stress-energy Density
353
Leibniz' Rule. Matrix Identities. Canonical Form for the Energy
355
Energy-momentum Conservation and the
Poincaré
Group
357
The Dirac Operator
359
Stationary Backgrounds. A Special Field of Local
Lorentz
Frames
360
A Model System
362
Mode Functions
362
When —iB is not Positive Definite
365
Comments on Chapter
19 365
References
366
20
Quantization of Linear Fermion Fields
367
Greeks Functions
367
Quantization
367
Fock Space
368
Hole Theory t
370
The Feynman Propagator
372
Comments on Chapter
20 376
21
Linear Fields in Nonstationary Backgrounds
377
"In" and "Out" Regions
377
Bogoliubov Relations
379
"in" and "Out" Fock Spaces and the S-matrix
381
Particle Production and Annihilation Amplitudes
382
One-particle Scattering Amplitudes
385
Pages
1-528
appear in
Voïume
I. pages
529-1042
appear in Volume
2
CONTENTS xvii
Nonsingularity
of a
386
Unitarity.
The Vacuum Persistence Amplitude
387
Unitarily Inequivalent Fock Spaces
389
Green's Function Representation of e'w. The Feynman Propagator
391
Functional Integral Representation of e'w
393
Comments on Chapter
21 394
References
395
22
Linear (or Linearized) Fields Possessing Invariant Flows
396
The Electromagnetic Field in a Stationary Curved Background
396
Other Linear or Linearized Fields on Stationary Backgrounds
397
Mode Functions for
F
and
S
399
Mode-function Decompositions of
G
and
Ò
401
Quantization
402
Fields on Nonstationary Backgrounds
402
Green's Function Representation of e'w
404
Comments on Chapter
22 406
V NONLINEAR FIELDS
23
The Effective Action, the 5-matrix, and
Slavnov-Taylor Identities
409
Anticipation of Counter Terms
409
Correlation Functions
4
і
()
The Effective Action
411
The Relation of
Γ
to W. The Legendre Transform
413
The Correlation Functions as Tree Functions
413
Structure of the Effective Action
414
The Loop Expansion
4
j
6
Reai-Yaluedness of the Counter Terms. Perturbative
Renormali
zability
419
Asymptotic Fields
421
Asymptotic States
422
Wave-packet States
424
The S-rnatrix and the Scattering Operator
426
The Lehmann-Symanzik-Zimmermann Theorem
427
Mode Functions for the Effective Action
430
The Effective Action as the Generator of Quantum Dynamics
432
Coherent States as Relative Vacua
433
Pages
1-528
appear in Volume I. pages
529-1042
appear in Volume
2
xviii CONTENTS
Evaluation
of
(+,
rel
vac]-,
rel
vac)
436
Expression of the S-matrix in Terms of Quantum Tree Functions
438
The Cluster Decomposition Principle
439
Use of a (Super)Classical Background
440
Construction of the Relative S-matrix
442
Structure of the Relative S-matrix
444
When the Configuration Space is Not a Supervector Space
446
Relation to the Classical Tree Theorems
449
Slavnov-Taylor Identities
450
Current Algebra
452
Relation to the Effective Action. Finiteness of the Current Operator
453
Comments on Chapter
23 454
References
455
24
Gauge Theories I. General Formalism
456
Structure of the Space of Field Histories
456
Fibre-Adapted Coordinate Patches
457
A Metric for
Φ/α
459
Vilkovisky's Connection
460
Properties of Vilkovisky's Connection
462
The Functional Integral for "In-Out" Amplitudes
463
Properties of the Jacobian
J
[ψ]
465
A Special Choice for
Ω[φ]
and a New Measure Functional
467
Explicit Form for the New Measure
468
Consistency of Eq.
(24.80) 470
Ghosts
471
Relation to the Functional
6.
The Batalin-Vilkovisky Equation
473
Counter Terms, the Measure Functional, and
the Quantum BV Equation
474
The Slavnov Operator and
BRST
Transformations
476
Cohomology of the Slavnov Operator
477
Loop Decomposition of the Measure
478
The Role of the Measure Functional
480
The Effective Action
482
The Zinn-Justin Equation. Proof of Eq.
(24.125) 484
The Yang-Mills Field in Four Dimensions
485
Rigidity of the Gauge Group
488
Renormalization Constants
489
Comments on Chapter
24 490
References
491
Pages
1-528
appear in Volume
1.
pages
529-1042
appear in Volume
2
CONTENTS xix
25
Gauge Theories II. Background Field Methods.
Scattering Theory
492
Invariants. The Quantum Slavnov Operator
492
Integrating Out the Ghosts
493
Reduced Effective Action
494
Introduction of a Background Field
495
Gauge Fixing
496
Loop Expansion of the Reduced Effective Action
496
Structure of the Reduced Effective Action
498
The Full Quantum Shell
500
Alternative Loop Expansions
500
TheS-matrix
501
Mode Functions for the Effective Action
503
^-matrix Relative to an Arbitrary Background
505
Use of the (Supe^Classical Background
507
A Special Phenomenon
509
Use of
Г[^]
in Constructing the S-matrix
510
Comments on Chapter
25 511
Reference
512
26
Case-I Gauge Theory without Ghosts. Description of
Cases II and III
513
Geodesic Normal Fields
513
A New Effective Action
514
The Illusory Ghost
516
The Loop Series
518
Rules for Differentiating the Measure
519
Invariance
of the Loop Graphs
520
Renormalization
522
Difficulties in Applying the LSZ Theorem
523
Case-II Systems
524
Uncertain Cohomology of the Slavnov Operator
525
Decomposition of the Effective Action
525
Scattering Theory
525
Case-Ill Systems
526
Comments on Chapter
26 528
Reference
528
Index
[1]
Pages
1-528
appear in Volume i. pages
529-1042
appear in Volume
2 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | De Witt, Bryce S. |
author_facet | De Witt, Bryce S. |
author_role | aut |
author_sort | De Witt, Bryce S. |
author_variant | w b s d wbs wbsd |
building | Verbundindex |
bvnumber | BV021520440 |
classification_rvk | UO 4000 |
ctrlnum | (OCoLC)315194993 (DE-599)BVBBV021520440 |
dewey-full | 530.143 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.143 |
dewey-search | 530.143 |
dewey-sort | 3530.143 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | repr. 2004 (with corr.), 2005 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01508nam a2200397 cc4500</leader><controlfield tag="001">BV021520440</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140729 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060321s2005 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">019852790x</subfield><subfield code="9">0-19-852790-x</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198527909</subfield><subfield code="9">978-0-19-852790-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198712862</subfield><subfield code="9">978-0-19-871286-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315194993</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021520440</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.143</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Witt, Bryce S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The global approach to quantum field theory</subfield><subfield code="n">1</subfield><subfield code="c">Bryce DeWitt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">repr. 2004 (with corr.), 2005</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXI, 528, 11 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">...</subfield><subfield code="v">114</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The international series of monographs on physics</subfield><subfield code="v">...</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford science publications</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV014651048</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014736947&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014736947</subfield></datafield></record></collection> |
id | DE-604.BV021520440 |
illustrated | Illustrated |
index_date | 2024-07-02T14:22:25Z |
indexdate | 2024-07-09T20:37:42Z |
institution | BVB |
isbn | 019852790x 9780198527909 9780198712862 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014736947 |
oclc_num | 315194993 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-703 DE-19 DE-BY-UBM |
physical | XXXI, 528, 11 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Oxford Univ. Press |
record_format | marc |
series2 | ... The international series of monographs on physics Oxford science publications |
spelling | De Witt, Bryce S. Verfasser aut The global approach to quantum field theory 1 Bryce DeWitt repr. 2004 (with corr.), 2005 Oxford [u.a.] Oxford Univ. Press 2005 XXXI, 528, 11 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier ... 114 The international series of monographs on physics ... Oxford science publications Hier auch später erschienene, unveränderte Nachdrucke (DE-604)BV014651048 1 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014736947&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | De Witt, Bryce S. The global approach to quantum field theory |
title | The global approach to quantum field theory |
title_auth | The global approach to quantum field theory |
title_exact_search | The global approach to quantum field theory |
title_exact_search_txtP | The global approach to quantum field theory |
title_full | The global approach to quantum field theory 1 Bryce DeWitt |
title_fullStr | The global approach to quantum field theory 1 Bryce DeWitt |
title_full_unstemmed | The global approach to quantum field theory 1 Bryce DeWitt |
title_short | The global approach to quantum field theory |
title_sort | the global approach to quantum field theory |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014736947&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014651048 |
work_keys_str_mv | AT dewittbryces theglobalapproachtoquantumfieldtheory1 |