Modular representations of finite groups of lie type:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Pr.
2006
|
Ausgabe: | 1. publ. |
Schriftenreihe: | London Mathematical Society lecture note series
326 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 233 S. graph. Darst. |
ISBN: | 0521674549 9780521674546 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021519478 | ||
003 | DE-604 | ||
005 | 20120717 | ||
007 | t | ||
008 | 060321s2006 d||| |||| 00||| eng d | ||
020 | |a 0521674549 |9 0-521-67454-9 | ||
020 | |a 9780521674546 |9 978-0-521-67454-6 | ||
035 | |a (OCoLC)254776490 | ||
035 | |a (DE-599)BVBBV021519478 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-11 |a DE-703 |a DE-188 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512.23 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 225f |2 stub | ||
084 | |a MAT 203f |2 stub | ||
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Humphreys, James E. |d 1939-2020 |e Verfasser |0 (DE-588)108120848 |4 aut | |
245 | 1 | 0 | |a Modular representations of finite groups of lie type |c James E. Humphreys |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Pr. |c 2006 | |
300 | |a XV, 233 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series |v 326 | |
650 | 4 | |a Endliche Lie-Gruppe - Modulare Darstellung | |
650 | 4 | |a Finite simple groups | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Modular representations of groups | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a London Mathematical Society lecture note series |v 326 |w (DE-604)BV000000130 |9 326 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014735997&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014735997 |
Datensatz im Suchindex
_version_ | 1804135259948711936 |
---|---|
adam_text | LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES 326 MODULAR
REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE JAMES E. HUMPHREYS
UNIVERSITY OF MASSACHUSETTS, AMHERST CAMBRIDGE UNIVERSITY PRESS CONTENTS
PREFACE PAGE XIII 1 FINITE GROUPS OF LIE TYPE 1 1.1 ALGEBRAIC GROUPS
OVER FINITE FIELDS 1 1.2 CLASSIFICATION OVER FINITE FIELDS 2 1.3
FROBENIUS MAPS 3 1.4 LANG MAPS 4 1.5 CHEVALLEY GROUPS AND TWISTED GROUPS
5 1.6 EXAMPLE: SL(3, Q ) AND SU(3, Q ) 5 1.7 GROUPS WITH A BN-PAIR 7 1.8
NOTATIONAL CONVENTIONS 8 2 SIMPLE MODULES 9 2.1 REPRESENTATIONS AND
FORMAL CHARACTERS 9 2.2 SIMPLE MODULES FOR ALGEBRAIC GROUPS 10 2.3
CONSTRUCTION OF MODULES T 11 2.4 CONTRAVARIANT FORMS 12 2.5
REPRESENTATIONS OF FROBENIUS KERNELS 13 2.6 INVARIANTS IN THE FUNCTION
ALGEBRA 14 2.7 STEINBERG S TENSOR PRODUCT THEOREM 15 2.8 EXAMPLE: SL(2,
K) . 16 2.9 BRAUER THEORY 16 2.10 COUNTING SEMISIMPLE CLASSES 16 2.11
RESTRICTION TO FINITE SUBGROUPS 17 2.12 PROOF OF IRREDUCIBILITY 17 2.13
PROOF OF DISTINCTNESS: CHEVALLEY GROUPS 18 2.14 PROOF OF DISTINCTNESS:
TWISTED GROUPS 19 2.15 ACTION OF A SYLOW P-SUBGROUP 20 VI CONTENTS 3
WEYL MODULES AND LUSZTIG S CONJECTURE 21 3.1 WEYL MODULES 21 3.2
RESTRICTED HIGHEST WEIGHTS 22 3.3 COHOMOLOGY OF LINE BUNDLES 23 3.4 THE
AFFINE WEYL GROUP 24 3.5 ALCOVES 25 3.6 LINKAGE AND TRANSLATION 26 3.7
STEINBERG MODULES 26 3.8 CONTRAVARIANT FORM ON A WEYL MODULE 27 3.9
JANTZEN FILTRATION AND SUM FORMULA 28 3.10 GENERIC BEHAVIOR OF WEYL
MODULES 29 3.11 LUSZTIG S CONJECTURE 30 3.12 EVIDENCE FOR THE CONJECTURE
31 4 COMPUTATION OF WEIGHT MULTIPLICITIES 33 4.1 WEIGHT SPACES IN VERMA
MODULES 33 4.2 WEIGHT SPACES IN CHARACTERISTIC P 34 4.3 AN EASY EXAMPLE:
SL(2, K) 35 4.4 COMPUTATIONAL ALGORITHMS 35 4.5 FUNDAMENTAL MODULES FOR
SYMPLECTIC GROUPS 37 4.6 SMALL WEIGHTS AND SMALL CHARACTERISTICS 38 4.7
SMALL REPRESENTATIONS 38 5 OTHER ASPECTS OF SIMPLE MODULES 41 5.1
RESTRICTION OF FROBENIUS MAPS 41 5.2 SPLITTING FIELDS 42 5.3 SPECIAL
ISOGENIES 43 5.4 STEINBERG S REFINED FACTORIZATION 44 5.5 BRAUER
CHARACTERS AND GROTHENDIECK RINGS 45 5.6 FORMAL CHARACTERS AND BRAUER
CHARACTERS 46 5.7 REWRITING FORMAL SUMS 48 5.8 RESTRICTING HIGHEST
WEIGHT MODULES TO FINITE SUBGROUPS 48 5.9 RESTRICTION OF WEYL MODULES 49
5.10 RESTRICTION OF SIMPLE MODULES TO LEVI SUBGROUPS 50 5.11 RESTRICTION
TO ELEMENTARY ABELIAN P-SUBGROUPS 51 6 TENSOR PRODUCTS 53 6.1 TENSOR
PRODUCTS OF SIMPLE MODULES 53 6.2 MULTIPLICITIES 54 CONTENTS VII 6.3
SIMPLE TENSOR PRODUCTS 55 6.4 SEMISIMPLE TENSOR PRODUCTS 56 6.5
DIMENSIONS DIVISIBLE BY P 56 6.6 FORMAL CHARACTERS AND MULTIPLICITIES *
- - 57 6.7 TWISTING BY THE FROBENIUS 57 6.8 REWRITING MULTIPLICITIES 58
6.9 MULTIPLICITY OF THE STEINBERG MODULE 59 7 IW-PAIRS AND INDUCED
MODULES 61 7.1 WEIGHTS FOR GROUPS WITH A SPLIT BA^-PAIR 61 7.2 PRINCIPAL
SERIES AND INTERTWINING OPERATORS 63 7.3 EXAMPLES 64 7.4 SUMMANDS OF
PRINCIPAL SERIES MODULES 64 7.5 HOMOLOGY REPRESENTATIONS 65 7.6
COMPARISON WITH PRINCIPAL SERIES 66 8 BLOCKS 67 8.1 BLOCKS OF A GROUP
ALGEBRA 67 8.2 THE DEFECT OF A BLOCK 68 8.3 GROUPS OF LIE TYPE 68 8.4
DEFECT GROUPS 69 8.5 DEFECT GROUPS FOR GROUPS OF LIE TYPE 70 8.6 STEPS
IN THE PROOF 70 8.7 THE BN-VAIR SETTING 72 8.8 VERTICES OF SIMPLE
MODULES 72 8.9 REPRESENTATION TYPE OF A BLOCK 73 9 PROJECTIVE MODULES 75
9.1 PROJECTIVE MODULES FOR FINITE GROUPS 75 9.2 GROUPS OF LIE TYPE 76
9.3 THE STEINBERG MODULE 77 9.4 TENSORING WITH THE STEINBERG MODULE 78
9.5 BRAUER CHARACTERS AND ORTHOGONALITY RELATIONS 79 9.6 BRAUER
CHARACTERS OF PIMS 79 9.7 A LOWER BOUND FOR DIMENSIONS OF PIMS 80 9.8
PROJECTIVE MODULES FOR SL(2, P) 81 9.9 BRAUER TREES FOR SL(2, P) 83 9.10
INDECOMPOSABLE MODULES FOR SL(2, P) 83 9.11 DIMENSIONS OF PIMS IN LOW
RANKS 84 VIII CONTENTS 10 COMPARISON WITH FROBENIUS KERNELS 87 10.1
INJECTIVE MODULES FOR FROBENIUS KERNELS _ 87 10.2 TORUS ACTION ON G R
-MODULES 89 10.3 FORMAL CHARACTER OF Q R (X) 90 10.4 LIFTING PIMS TO THE
ALGEBRAIC GROUP 91 10.5 SOME CONSEQUENCES 92 10.6 TENSORING WITH THE
STEINBERG MODULE 93 10.7 SMALL PIMS 94 10.8 THE CATEGORY OF G R
T-MODULES 94 10.9 REWRITING MULTIPLICITIES 95 10.10 BRAUER CHARACTERS 96
10.11 STATEMENT OF THE MAIN THEOREM 96 10.12 PROOF OF THE MAIN THEOREM
97 10.13 LETTING R GROW 97 10.14 SOME COMPARISONS IN LOW RANKS 99 11
CARTAN INVARIANTS 101 11.1 CARTAN INVARIANTS FOR FINITE GROUPS 101 11.2
BRAUER CHARACTERS AND CARTAN INVARIANTS 102 11.3 DECOMPOSITION NUMBERS
102 11.4 GROUPS OF LIE TYPE 103 11.5 EXAMPLE: SL(2, P) 103 11.6 EXAMPLE:
SL(2, Q) 104 11.7 USING STANDARD CHARACTER DATA TO COMPUTE CARTAN
INVARIANTS 105 11.8 CONDITIONS FOR GENERICITY 105 11.9 GENERIC CARTAN
INVARIANTS 106 11.10 GROWTH OF CARTAN INVARIANTS 107 11.11 THE FIRST
CARTAN INVARIANT 108 11.12 SPECIAL CASES 108 11.13 COMPUTATIONS OF
CARTAN MATRICES 109 11.14 EXAMPLE: SL(3, 3) 110 11.15 EXAMPLE: SP(4, 3)
AND RELATED GROUPS 111 11.16 EXAMPLE: SL(5, 2) 111 11.17 CONJECTURES ON
BLOCK INVARIANTS 112 12 EXTENSIONS OF SIMPLE MODULES 115 12.1 THE
EXTENSION PROBLEM 115 12.2 EXAMPLE: SL(2, P) 116 12.3 THE OPTIMAL
SITUATION 117 12.4 EXTENSIONS FOR ALGEBRAIC GROUPS 118 CONTENTS IX 12.5
INJ ECTIVITY THEOREM 12.6 DIMENSIONS OF EXT GROUPS 12.7 THE GENERIC CASE
12.8 TRUNCATED MODULE CATEGORIES AND COHOMOLOGY 12.9 COMPARISON THEOREMS
12.10 SELF-EXTENSIONS 12.11 SPECIAL CASES 12.12 SEMISIMPLICITY CRITERIA
13 LOEWY SERIES 13.1 LOEWY SERIES 13.2 LOEWY SERIES FOR FINITE GROUPS
13.3 EXAMPLE: SL(2, P) 13.4 MINIMAL PROJECTIVE RESOLUTIONS 13.5 EXAMPLE:
SL(2, Q) 13.6 THE CATEGORY O 13.7 ANALOGIES IN CHARACTERISTIC P 13.8
FROBENIUS KERNELS AND ALGEBRAIC GROUPS 13.9 EXAMPLE: SL(3, K) 13.10
PRINCIPAL SERIES MODULES 13.11 LOEWY SERIES FOR CHEVALLEY GROUPS 13.12
EXAMPLE: SL(3, 2) 13.13 EXAMPLE: SL(3, 3) 13.14 EXAMPLE: SL(4, 2) 13.15
EXAMPLE: SO(5, 3) 14 COHOMOLOGY 14.1 COHOMOLOGY OF FINITE GROUPS 14.2
FINITE GROUPS OF LIE TYPE 14.3 COHOMOLOGY OF ALGEBRAIC GROUPS 14.4
TWISTING BY FROBENIUS MAPS 14.5 RATIONAL AND GENERIC COHOMOLOGY 14.6
DISCUSSION OF THE PROOF 14.7 EXAMPLE: SL(2, Q) 14.8 EXPLICIT
COMPUTATIONS 14.9 RECENT DEVELOPMENTS 15 COMPLEXITY AND SUPPORT
VARIETIES 15.1 COMPLEXITY OF A MODULE 15.2 SUDDORT VARIETIES 119 120 121
121 122 123 124 127 129 129 130 130 131 132 132 134 134 135 136 137 137
138 139 140 143 143 144 145 146 146 147 148 149 150 151 151 152 CONTENTS
15.3 SUPPORT VARIETIES FOR RESTRICTED LIE ALGEBRAS - 153 15.4 SUPPORT
VARIETIES FOR GROUPS OF LIE TYPE 154 15.5 FURTHER REFINEMENTS 155 15.6
RESOLUTIONS AND PERIODICITY 156 15.7 PERIODIC MODULES FOR GROUPS OF LIE
TYPE 156 16 ORDINARY AND MODULAR REPRESENTATIONS 159 16.1 THE
DECOMPOSITION MATRIX 159 16.2 BRAUER CHARACTERS 160 16.3 BLOCKS 161 16.4
THE CARTAN-BRAUER TRIANGLE 161 16.5 GROUPS OF LIE TYPE 162 16.6 BLOCKS
OF DEFECT ZERO: THE STEINBERG CHARACTER 162 16.7 CYCLIC BLOCKS AND
BRAUER TREES 163 16.8 CHARACTERS OF SL(2,Q) 164 16.9 THE BRAUER TREE OF
SL(2, P) 165 16.10 DECOMPOSITION NUMBERS OF SL(2, Q) 165 16.11 CHARACTER
COMPUTATIONS FOR LIE FAMILIES 167 16.12 SOME EXPLICIT DECOMPOSITION
MATRICES 168 16.13 SPECIAL CHARACTERS OF SP(2N, 16.14 IRREDUCIBILITY
MODULO P 169 17 DELIGNE-LUSZTIG CHARACTERS 171 17.1 REDUCTIVE GROUPS AND
FROBENIUS MAPS 171 17.2 F-STABLE MAXIMAL TORI. 172 17.3 DL CHARACTERS
173 17.4 BASIC PROPERTIES OF DL CHARACTERS 174 17.5 THE DECOMPOSITION
PROBLEM 175 17.6 PIMS AND DL CHARACTERS 176 17.7 DL CHARACTERS AND WEYL
CHARACTERS 176 17.8 GENERIC DECOMPOSITION PATTERNS 177 17.9 TWISTED
GROUPS 178 17.10 UNIPOTENT CHARACTERS 178 17.11 SEMISIMPLE AND REGULAR
CHARACTERS 179 17.12 GEOMETRIC CONJ UGACY CLASSES OF CARDINALITY 2 181
17.13 JANTZEN FILTRATION OF A PRINCIPAL SERIES MODULE 181 17.14 EXTREMAL
COMPOSITION FACTORS 182 17.15 ANOTHER LOOK AT THE BRAUER TREE OF SL(2,
P) 182 17.16 THE BRAUER COMPLEX 183 17.17 DUAL FORMULATION 184 CONTENTS
XI 18 THE GROUPS G 2 (Q) 185 18.1 THE GROUPS 185 18.2 THE AFFINE WEYL
GROUP 185 18.3 WEYL MODULES AND SIMPLE MODULES - 186 18.4 PROJECTIVE
MODULES FOR P = 2,3,5 187 18.5 PROJECTIVE MODULES FOR P 7 191 18.6
CHARACTERS OF G 2 (Q) 191 18.7 REDUCTION MODULO P 194 18.8 BRAUER
COMPLEX OF G 2 (5) 195 19 GENERAL AND SPECIAL LINEAR GROUPS 197 19.1
REPRESENTATIONS OF GL(N, K) AN D GL(N, Q) 197 19.2 ACTION ON SYMMETRIC
POWERS 198 19.3 DICKSON INVARIANTS 198 19.4 COMPLEMENTS 199 19.5
MULTIPLICITY OF ST IN SYMMETRIC POWERS 200 19.6 OTHER SIMPLE MODULES 200
19.7 EXAMPLE: SL(2, P) 201 19.8 PERIODICITY FOR SL(2, Q) 201 19.9 KEY
LEMMA 202 19.10 PROOF OF PERIODICITY THEOREM 202 19.11 BRAUER LIFTING
204 20 SUZUKI AND REE GROUPS 205 20.1 DESCRIPTION OF THE GROUPS 205 20.2
SIMPLE MODULES 206 20.3 PROJECTIVE MODULES AND BLOCKS 208 20.4 CARTAN
INVARIANTS OF SUZUKI GROUPS 208 20.5 CARTAN INVARIANTS OF THE TITS GROUP
209 20.6 EXTENSIONS AND COHOMOLOGY 210 20.7 ORDINARY CHARACTERS 210 20.8
DECOMPOSITION NUMBERS OF SUZUKI GROUPS 211 BIBLIOGRAPHY 213 FREQUENTLY
USED SYMBOLS 229 INDEX 231
|
adam_txt |
LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES 326 MODULAR
REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE JAMES E. HUMPHREYS
UNIVERSITY OF MASSACHUSETTS, AMHERST CAMBRIDGE UNIVERSITY PRESS CONTENTS
PREFACE PAGE XIII 1 FINITE GROUPS OF LIE TYPE 1 1.1 ALGEBRAIC GROUPS
OVER FINITE FIELDS 1 1.2 CLASSIFICATION OVER FINITE FIELDS 2 1.3
FROBENIUS MAPS 3 1.4 LANG MAPS 4 1.5 CHEVALLEY GROUPS AND TWISTED GROUPS
5 1.6 EXAMPLE: SL(3, Q ) AND SU(3, Q ) 5 1.7 GROUPS WITH A BN-PAIR 7 1.8
NOTATIONAL CONVENTIONS 8 2 SIMPLE MODULES 9 2.1 REPRESENTATIONS AND
FORMAL CHARACTERS 9 2.2 SIMPLE MODULES FOR ALGEBRAIC GROUPS 10 2.3
CONSTRUCTION OF MODULES T 11 2.4 CONTRAVARIANT FORMS 12 2.5
REPRESENTATIONS OF FROBENIUS KERNELS 13 2.6 INVARIANTS IN THE FUNCTION
ALGEBRA 14 2.7 STEINBERG'S TENSOR PRODUCT THEOREM 15 2.8 EXAMPLE: SL(2,
K) . 16 2.9 BRAUER THEORY 16 2.10 COUNTING SEMISIMPLE CLASSES 16 2.11
RESTRICTION TO FINITE SUBGROUPS 17 2.12 PROOF OF IRREDUCIBILITY 17 2.13
PROOF OF DISTINCTNESS: CHEVALLEY GROUPS 18 2.14 PROOF OF DISTINCTNESS:
TWISTED GROUPS 19 2.15 ACTION OF A SYLOW P-SUBGROUP 20 VI CONTENTS 3
WEYL MODULES AND LUSZTIG'S CONJECTURE 21 3.1 WEYL MODULES 21 3.2
RESTRICTED HIGHEST WEIGHTS 22 3.3 COHOMOLOGY OF LINE BUNDLES 23 3.4 THE
AFFINE WEYL GROUP 24 3.5 ALCOVES 25 3.6 LINKAGE AND TRANSLATION 26 3.7
STEINBERG MODULES 26 3.8 CONTRAVARIANT FORM ON A WEYL MODULE 27 3.9
JANTZEN FILTRATION AND SUM FORMULA 28 3.10 GENERIC BEHAVIOR OF WEYL
MODULES 29 3.11 LUSZTIG'S CONJECTURE 30 3.12 EVIDENCE FOR THE CONJECTURE
31 4 COMPUTATION OF WEIGHT MULTIPLICITIES 33 4.1 WEIGHT SPACES IN VERMA
MODULES 33 4.2 WEIGHT SPACES IN CHARACTERISTIC P 34 4.3 AN EASY EXAMPLE:
SL(2, K) 35 4.4 COMPUTATIONAL ALGORITHMS 35 4.5 FUNDAMENTAL MODULES FOR
SYMPLECTIC GROUPS 37 4.6 SMALL WEIGHTS AND SMALL CHARACTERISTICS 38 4.7
SMALL REPRESENTATIONS 38 5 OTHER ASPECTS OF SIMPLE MODULES 41 5.1
RESTRICTION OF FROBENIUS MAPS 41 5.2 SPLITTING FIELDS 42 5.3 SPECIAL
ISOGENIES 43 5.4 STEINBERG'S REFINED FACTORIZATION 44 5.5 BRAUER
CHARACTERS AND GROTHENDIECK RINGS 45 5.6 FORMAL CHARACTERS AND BRAUER
CHARACTERS 46 5.7 REWRITING FORMAL SUMS 48 5.8 RESTRICTING HIGHEST
WEIGHT MODULES TO FINITE SUBGROUPS 48 5.9 RESTRICTION OF WEYL MODULES 49
5.10 RESTRICTION OF SIMPLE MODULES TO LEVI SUBGROUPS 50 5.11 RESTRICTION
TO ELEMENTARY ABELIAN P-SUBGROUPS 51 6 TENSOR PRODUCTS 53 6.1 TENSOR
PRODUCTS OF SIMPLE MODULES 53 6.2 MULTIPLICITIES 54 CONTENTS VII 6.3
SIMPLE TENSOR PRODUCTS 55 6.4 SEMISIMPLE TENSOR PRODUCTS 56 6.5
DIMENSIONS DIVISIBLE BY P 56 6.6 FORMAL CHARACTERS AND MULTIPLICITIES *
- - 57 6.7 TWISTING BY THE FROBENIUS 57 6.8 REWRITING MULTIPLICITIES 58
6.9 MULTIPLICITY OF THE STEINBERG MODULE 59 7 IW-PAIRS AND INDUCED
MODULES 61 7.1 WEIGHTS FOR GROUPS WITH A SPLIT BA^-PAIR 61 7.2 PRINCIPAL
SERIES AND INTERTWINING OPERATORS 63 7.3 EXAMPLES 64 7.4 SUMMANDS OF
PRINCIPAL SERIES MODULES 64 7.5 HOMOLOGY REPRESENTATIONS 65 7.6
COMPARISON WITH PRINCIPAL SERIES 66 8 BLOCKS 67 8.1 BLOCKS OF A GROUP
ALGEBRA 67 8.2 THE DEFECT OF A BLOCK 68 8.3 GROUPS OF LIE TYPE 68 8.4
DEFECT GROUPS 69 8.5 DEFECT GROUPS FOR GROUPS OF LIE TYPE 70 8.6 STEPS
IN THE PROOF 70 8.7 THE BN-VAIR SETTING 72 8.8 VERTICES OF SIMPLE
MODULES 72 8.9 REPRESENTATION TYPE OF A BLOCK 73 9 PROJECTIVE MODULES 75
9.1 PROJECTIVE MODULES FOR FINITE GROUPS 75 9.2 GROUPS OF LIE TYPE 76
9.3 THE STEINBERG MODULE 77 9.4 TENSORING WITH THE STEINBERG MODULE 78
9.5 BRAUER CHARACTERS AND ORTHOGONALITY RELATIONS 79 9.6 BRAUER
CHARACTERS OF PIMS 79 9.7 A LOWER BOUND FOR DIMENSIONS OF PIMS 80 9.8
PROJECTIVE MODULES FOR SL(2, P) 81 9.9 BRAUER TREES FOR SL(2, P) 83 9.10
INDECOMPOSABLE MODULES FOR SL(2, P) 83 9.11 DIMENSIONS OF PIMS IN LOW
RANKS 84 VIII CONTENTS 10 COMPARISON WITH FROBENIUS KERNELS 87 10.1
INJECTIVE MODULES FOR FROBENIUS KERNELS _ 87 10.2 TORUS ACTION ON G R
-MODULES 89 10.3 FORMAL CHARACTER OF Q R (X) 90 10.4 LIFTING PIMS TO THE
ALGEBRAIC GROUP 91 10.5 SOME CONSEQUENCES 92 10.6 TENSORING WITH THE
STEINBERG MODULE 93 10.7 SMALL PIMS 94 10.8 THE CATEGORY OF G R
T-MODULES 94 10.9 REWRITING MULTIPLICITIES 95 10.10 BRAUER CHARACTERS 96
10.11 STATEMENT OF THE MAIN THEOREM 96 10.12 PROOF OF THE MAIN THEOREM
97 10.13 LETTING R GROW 97 10.14 SOME COMPARISONS IN LOW RANKS 99 11
CARTAN INVARIANTS 101 11.1 CARTAN INVARIANTS FOR FINITE GROUPS 101 11.2
BRAUER CHARACTERS AND CARTAN INVARIANTS 102 11.3 DECOMPOSITION NUMBERS
102 11.4 GROUPS OF LIE TYPE 103 11.5 EXAMPLE: SL(2, P) 103 11.6 EXAMPLE:
SL(2, Q) 104 11.7 USING STANDARD CHARACTER DATA TO COMPUTE CARTAN
INVARIANTS 105 11.8 CONDITIONS FOR GENERICITY 105 11.9 GENERIC CARTAN
INVARIANTS 106 11.10 GROWTH OF CARTAN INVARIANTS 107 11.11 THE FIRST
CARTAN INVARIANT 108 11.12 SPECIAL CASES 108 11.13 COMPUTATIONS OF
CARTAN MATRICES 109 11.14 EXAMPLE: SL(3, 3) 110 11.15 EXAMPLE: SP(4, 3)
AND RELATED GROUPS 111 11.16 EXAMPLE: SL(5, 2) 111 11.17 CONJECTURES ON
BLOCK INVARIANTS 112 12 EXTENSIONS OF SIMPLE MODULES 115 12.1 THE
EXTENSION PROBLEM 115 12.2 EXAMPLE: SL(2, P) 116 12.3 THE OPTIMAL
SITUATION 117 12.4 EXTENSIONS FOR ALGEBRAIC GROUPS 118 CONTENTS IX 12.5
INJ ECTIVITY THEOREM 12.6 DIMENSIONS OF EXT GROUPS 12.7 THE GENERIC CASE
12.8 TRUNCATED MODULE CATEGORIES AND COHOMOLOGY 12.9 COMPARISON THEOREMS
12.10 SELF-EXTENSIONS 12.11 SPECIAL CASES 12.12 SEMISIMPLICITY CRITERIA
13 LOEWY SERIES 13.1 LOEWY SERIES 13.2 LOEWY SERIES FOR FINITE GROUPS
13.3 EXAMPLE: SL(2, P) 13.4 MINIMAL PROJECTIVE RESOLUTIONS 13.5 EXAMPLE:
SL(2, Q) 13.6 THE CATEGORY O 13.7 ANALOGIES IN CHARACTERISTIC P 13.8
FROBENIUS KERNELS AND ALGEBRAIC GROUPS 13.9 EXAMPLE: SL(3, K) 13.10
PRINCIPAL SERIES MODULES 13.11 LOEWY SERIES FOR CHEVALLEY GROUPS 13.12
EXAMPLE: SL(3, 2) 13.13 EXAMPLE: SL(3, 3) 13.14 EXAMPLE: SL(4, 2) 13.15
EXAMPLE: SO(5, 3) 14 COHOMOLOGY 14.1 COHOMOLOGY OF FINITE GROUPS \ 14.2
FINITE GROUPS OF LIE TYPE 14.3 COHOMOLOGY OF ALGEBRAIC GROUPS 14.4
TWISTING BY FROBENIUS MAPS 14.5 RATIONAL AND GENERIC COHOMOLOGY 14.6
DISCUSSION OF THE PROOF 14.7 EXAMPLE: SL(2, Q) 14.8 EXPLICIT
COMPUTATIONS 14.9 RECENT DEVELOPMENTS 15 COMPLEXITY AND SUPPORT
VARIETIES 15.1 COMPLEXITY OF A MODULE 15.2 SUDDORT VARIETIES 119 120 121
121 122 123 124 127 129 129 130 130 131 132 132 134 134 135 136 137 137
138 139 140 143 143 144 145 146 146 147 148 149 150 151 151 152 CONTENTS
15.3 SUPPORT VARIETIES FOR RESTRICTED LIE ALGEBRAS - 153 15.4 SUPPORT
VARIETIES FOR GROUPS OF LIE TYPE 154 15.5 FURTHER REFINEMENTS 155 15.6
RESOLUTIONS AND PERIODICITY 156 15.7 PERIODIC MODULES FOR GROUPS OF LIE
TYPE 156 16 ORDINARY AND MODULAR REPRESENTATIONS 159 16.1 THE
DECOMPOSITION MATRIX 159 16.2 BRAUER CHARACTERS 160 16.3 BLOCKS 161 16.4
THE CARTAN-BRAUER TRIANGLE 161 16.5 GROUPS OF LIE TYPE 162 16.6 BLOCKS
OF DEFECT ZERO: THE STEINBERG CHARACTER 162 16.7 CYCLIC BLOCKS AND
BRAUER TREES 163 16.8 CHARACTERS OF SL(2,Q) 164 16.9 THE BRAUER TREE OF
SL(2, P) 165 16.10 DECOMPOSITION NUMBERS OF SL(2, Q) 165 16.11 CHARACTER
COMPUTATIONS FOR LIE FAMILIES 167 16.12 SOME EXPLICIT DECOMPOSITION
MATRICES 168 16.13 SPECIAL CHARACTERS OF SP(2N, 16.14 IRREDUCIBILITY
MODULO P 169 17 DELIGNE-LUSZTIG CHARACTERS 171 17.1 REDUCTIVE GROUPS AND
FROBENIUS MAPS 171 17.2 F-STABLE MAXIMAL TORI. 172 17.3 DL CHARACTERS
173 17.4 BASIC PROPERTIES OF DL CHARACTERS 174 17.5 THE DECOMPOSITION
PROBLEM 175 17.6 PIMS AND DL CHARACTERS 176 17.7 DL CHARACTERS AND WEYL
CHARACTERS 176 17.8 GENERIC DECOMPOSITION PATTERNS 177 17.9 TWISTED
GROUPS 178 17.10 UNIPOTENT CHARACTERS 178 17.11 SEMISIMPLE AND REGULAR
CHARACTERS 179 17.12 GEOMETRIC CONJ UGACY CLASSES OF CARDINALITY 2 181
17.13 JANTZEN FILTRATION OF A PRINCIPAL SERIES MODULE 181 17.14 EXTREMAL
COMPOSITION FACTORS 182 17.15 ANOTHER LOOK AT THE BRAUER TREE OF SL(2,
P) 182 17.16 THE BRAUER COMPLEX 183 17.17 DUAL FORMULATION 184 CONTENTS
XI 18 THE GROUPS G 2 (Q) 185 18.1 THE GROUPS 185 18.2 THE AFFINE WEYL
GROUP 185 18.3 WEYL MODULES AND SIMPLE MODULES - 186 18.4 PROJECTIVE
MODULES FOR P = 2,3,5 187 18.5 PROJECTIVE MODULES FOR P 7 191 18.6
CHARACTERS OF G 2 (Q) 191 18.7 REDUCTION MODULO P 194 18.8 BRAUER
COMPLEX OF G 2 (5) 195 19 GENERAL AND SPECIAL LINEAR GROUPS 197 19.1
REPRESENTATIONS OF GL(N, K) AN D GL(N, Q) 197 19.2 ACTION ON SYMMETRIC
POWERS 198 19.3 DICKSON INVARIANTS 198 19.4 COMPLEMENTS 199 19.5
MULTIPLICITY OF ST IN SYMMETRIC POWERS 200 19.6 OTHER SIMPLE MODULES 200
19.7 EXAMPLE: SL(2, P) 201 19.8 PERIODICITY FOR SL(2, Q) 201 19.9 KEY
LEMMA 202 19.10 PROOF OF PERIODICITY THEOREM 202 19.11 BRAUER LIFTING
204 20 SUZUKI AND REE GROUPS 205 20.1 DESCRIPTION OF THE GROUPS 205 20.2
SIMPLE MODULES 206 20.3 PROJECTIVE MODULES AND BLOCKS 208 20.4 CARTAN
INVARIANTS OF SUZUKI GROUPS 208 20.5 CARTAN INVARIANTS OF THE TITS GROUP
209 20.6 EXTENSIONS AND COHOMOLOGY 210 20.7 ORDINARY CHARACTERS 210 20.8
DECOMPOSITION NUMBERS OF SUZUKI GROUPS 211 BIBLIOGRAPHY 213 FREQUENTLY
USED SYMBOLS 229 INDEX 231 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Humphreys, James E. 1939-2020 |
author_GND | (DE-588)108120848 |
author_facet | Humphreys, James E. 1939-2020 |
author_role | aut |
author_sort | Humphreys, James E. 1939-2020 |
author_variant | j e h je jeh |
building | Verbundindex |
bvnumber | BV021519478 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 340 |
classification_tum | MAT 225f MAT 203f |
ctrlnum | (OCoLC)254776490 (DE-599)BVBBV021519478 |
dewey-full | 512.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.23 |
dewey-search | 512.23 |
dewey-sort | 3512.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01923nam a2200505 cb4500</leader><controlfield tag="001">BV021519478</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120717 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060321s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521674549</subfield><subfield code="9">0-521-67454-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521674546</subfield><subfield code="9">978-0-521-67454-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254776490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021519478</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 203f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Humphreys, James E.</subfield><subfield code="d">1939-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108120848</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modular representations of finite groups of lie type</subfield><subfield code="c">James E. Humphreys</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Pr.</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 233 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">326</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endliche Lie-Gruppe - Modulare Darstellung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite simple groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">326</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">326</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014735997&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014735997</subfield></datafield></record></collection> |
id | DE-604.BV021519478 |
illustrated | Illustrated |
index_date | 2024-07-02T14:22:04Z |
indexdate | 2024-07-09T20:37:40Z |
institution | BVB |
isbn | 0521674549 9780521674546 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014735997 |
oclc_num | 254776490 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-11 DE-703 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-11 DE-703 DE-188 |
physical | XV, 233 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Pr. |
record_format | marc |
series | London Mathematical Society lecture note series |
series2 | London Mathematical Society lecture note series |
spelling | Humphreys, James E. 1939-2020 Verfasser (DE-588)108120848 aut Modular representations of finite groups of lie type James E. Humphreys 1. publ. Cambridge Cambridge Univ. Pr. 2006 XV, 233 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier London Mathematical Society lecture note series 326 Endliche Lie-Gruppe - Modulare Darstellung Finite simple groups Lie groups Modular representations of groups Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Lie-Gruppe (DE-588)4035695-4 s DE-604 London Mathematical Society lecture note series 326 (DE-604)BV000000130 326 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014735997&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Humphreys, James E. 1939-2020 Modular representations of finite groups of lie type London Mathematical Society lecture note series Endliche Lie-Gruppe - Modulare Darstellung Finite simple groups Lie groups Modular representations of groups Endliche Gruppe (DE-588)4014651-0 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4014651-0 (DE-588)4035695-4 |
title | Modular representations of finite groups of lie type |
title_auth | Modular representations of finite groups of lie type |
title_exact_search | Modular representations of finite groups of lie type |
title_exact_search_txtP | Modular representations of finite groups of lie type |
title_full | Modular representations of finite groups of lie type James E. Humphreys |
title_fullStr | Modular representations of finite groups of lie type James E. Humphreys |
title_full_unstemmed | Modular representations of finite groups of lie type James E. Humphreys |
title_short | Modular representations of finite groups of lie type |
title_sort | modular representations of finite groups of lie type |
topic | Endliche Lie-Gruppe - Modulare Darstellung Finite simple groups Lie groups Modular representations of groups Endliche Gruppe (DE-588)4014651-0 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Endliche Lie-Gruppe - Modulare Darstellung Finite simple groups Lie groups Modular representations of groups Endliche Gruppe Lie-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014735997&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT humphreysjamese modularrepresentationsoffinitegroupsoflietype |