Handbook of nonlinear partial differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
Chapman & Hall/CRC
2004
|
Schlagworte: | |
Online-Zugang: | Book review (E-STREAMS) Inhaltsverzeichnis |
Beschreibung: | XX, 814 S. Ill., graph. Darst. |
ISBN: | 1584883553 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021518442 | ||
003 | DE-604 | ||
005 | 20061121 | ||
007 | t | ||
008 | 060320s2004 xxuad|| |||| 00||| eng d | ||
010 | |a 2003058473 | ||
020 | |a 1584883553 |c acidfree paper |9 1-58488-355-3 | ||
035 | |a (OCoLC)52766184 | ||
035 | |a (DE-599)BVBBV021518442 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T |a DE-20 |a DE-824 |a DE-634 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA372 | |
082 | 0 | |a 515/.355 |2 22 | |
084 | |a QH 150 |0 (DE-625)141534: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a 35-00 |2 msc | ||
084 | |a 35F20 |2 msc | ||
084 | |a 35G20 |2 msc | ||
100 | 1 | |a Poljanin, Andrej D. |d 1951- |e Verfasser |0 (DE-588)128391251 |4 aut | |
245 | 1 | 0 | |a Handbook of nonlinear partial differential equations |c Andrei D. Polyanin ; Valentin F. Zaitsev |
246 | 1 | 3 | |a Nonlinear partial differential equations |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b Chapman & Hall/CRC |c 2004 | |
300 | |a XX, 814 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mécanique non linéaire - Mathématiques | |
650 | 4 | |a Équations différentielles non linéaires - Solutions numériques | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Differential equations, Nonlinear |x Numerical solutions | |
650 | 4 | |a Nonlinear mechanics |x Mathematics | |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Mechanik |0 (DE-588)4042095-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Mechanik |0 (DE-588)4042095-4 |D s |
689 | 1 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Zajcev, Valentin F. |e Sonstige |0 (DE-588)12839126X |4 oth | |
856 | 4 | |u http://www.e-streams.com/es0710/es0710*9.html |3 Book review (E-STREAMS) | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014734968&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014734968 |
Datensatz im Suchindex
_version_ | 1804135258425131008 |
---|---|
adam_text | HANDBOOK OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ANDREI D. POLYANIN
VALENTIN F. ZAITSEV CHAPMAN & HALL/CRC A CRC PRESS COMPANY BOCA RATON
LONDON NEW YORK WASHINGTON, D.C. CONTENTS AUTHORS XV FOREWORD XVII SOME
NOTATIONS AND REMARKS XIX 1. PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE
1 1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 1 1.1.1. EQUATIONS OF THE
FORM §F = A^JG- +BW + CW 2 1 1.1.2. EQUATIONS OF THE FORM ^F =A-^R + B 0
+ BIW + B 2 W 2 + B3W 3 2 1.1.3. EQUATIONS OF THE FORM §F = A^F + F(W) 6
1.1.4. EQUATIONS OF THE FORM §F = A^F + F(X, T,W) 9 1.1.5. EQUATIONS OF
THE FORM FF = AF^ + /O)FF + G(W) 9 1.1.6. EQUATIONS OF THE FORM §F =A|^F
+ F(X,T,W)^ + G(X,T,W) 13 1.1.7. EQUATIONS OF THE FORM ^F =A^R+B(^) 2 +
F(X,T,W) 15 1.1.8. EQUATIONS OF THE FORM ^? =A^ + F(X,T,W,%) 17 1.1.9.
EQUATIONS OF THE FORM %JR =AW K ^-+ F(X,T,W,^) 18 1.1.10. EQUATIONS OF
THE FORM ^ = A-§^ (W M FJ) 25 1.1.11. EQUATIONS OF THE FORM |F = A JR(*
M F!) +BWK 32 1.1.12. EQUATIONS OF THE FORM ^ = A-^ W M ^) +BW + AW KI
+ C 2 W K2 + C 3 W K3 .... 37 1.1.13. EQUATIONS OF THE FORM F^ =
;|/[/ »§§] +9(W) 40 1.1.14. EQUATIONSOFTHEFONN^ = [F(W)^]+G(X,T,W,^) 42
1.1.15. OTHER EQUATIONS 46 1.2. EQUATIONS WITH EXPONENTIAL
NONLINEARITIES 52 1.2.1. EQUATIONS OF THE FORM ^ = A^+B O + B X E XW + B
2 E 2XW 52 1.2.2. EQUATIONS OF THE FORM |F = A- (E XW %) + F(W) 53
1.2.3. EQUATIONS OF THE FORM §F = [/(,)*&] +G ( W ) 5 6 1.2.4. OTHER
EQUATIONS EXPLICITLY INDEPENDENT OF X AND T 58 1.2.5. EQUATIONS
EXPLICITLY DEPENDENT ON X AND/OR T 61 1.3. EQUATIONS WITH HYPERBOLIC
NONLINEARITIES 62 1.3.1. EQUATIONS INVOLVING HYPERBOLIC COSINE 62 1.3.2.
EQUATIONS INVOLVING HYPERBOLIC SINE 63 1.3.3. EQUATIONS INVOLVING
HYPERBOLIC TANGENT 63 1.3.4. EQUATIONS INVOLVING HYPERBOLIC COTANGENT 64
1.4. EQUATIONS WITH LOGARITHMIC NONLINEARITIES 64 * 1.4.1. EQUATIONS
OF THE FORM §F = A^F + F(X, T,W) 64 1.4.2. OTHER EQUATIONS 66 1.5.
EQUATIONS WITH TRIGONOMETRIC NONLINEARITIES 68 1.5.1. EQUATIONS
INVOLVING COSINE 68 1.5.2. EQUATIONS INVOLVING SINE 69 1.5.3. EQUATIONS
INVOLVING TANGENT 70 1.5.4. EQUATIONS INVOLVING COTANGENT 70 1.5.5.
EQUATIONS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS 71 VI CONTENTS 1.6.
EQUATIONS INVOLVING ARBITRARY FUNCTIONS 71 1.6.1. EQUATIONS OF THE FORM
§F = A^F + F(X, T,W) 71 1.6.2. EQUATIONS OF THE FORM §F = AF^F + F(X,
I)|F + G(X, T,W) 75 1.6.3. EQUATIONS OF THE FORM ^-= A^R + F(X,T,W)^ +
G(X,T,W) 78 1.6.4. EQUATIONSOFTHEFORM FF =A^+B(^F + F(X,T,W) 81 1.6.5.
EQUATIONS OF THE FORM FF=A|^F + B(^F + F(X,T,W)J%- +G(X,T,W) 83 1.6.6.
EQUATIONS OF THE FORM §F=A^ + F(X, T,W)(^) 2 + G(X,T,W)^+ H(X,T,W) 84
1.6.7. EQUATIONS OF THE FORM ^ =A^R+F(X T T,W T ^) 88 1.6.8. EQUATIONS
OFTHE FORM FF = F(X, T)F^- + G(X, T, W, F^) 89 1.6.9. EQUATIONS OFTHE
FORM FF = AW^F + F(X, T, W)^ + G(X, T,W) 92 1.6.10. EQUATIONS OF THE
FORM FF = (AW + B)^- + F(X, T,W)(^) 2 + G(X, T,W)^ + H(X, T,W) 94
1.6.11. EQUATIONS OFTHE FORM FF = AW M ^ + FIX, T)^ + G(X, T,W) 97
1.6.12. EQUATIONS OFTHE FORM ^=A-§^ (W%) + F(X, T)$ + G(X, T,W) 98
1.6.13. EQUATIONS OF THE FORM $*. = A-J^(W M ^) + F(X,T)^ + G(X,T,W) 100
1.6.14. EQUATIONS OF THE FORM |F = A-^(E XW ^)+F(X,T,W) 102 1.6.15.
EQUATIONS OFTHE FORM %F = ^ [F(W)^]+G(X, T,W,^) 10 4 1.6.16. EQUATIONS
OFTHE FORM §F = F(X,W)^ ILL 1.6.17. EQUATIONS OF THE FORM ^ = F(X,T,W)^
+ G(X,T,W, %) 113 1.6.18. EQUATIONS OF THE FORM ^F = F(X,W, ^ ) ^ T +
G(X,T,W, F^) 120 1.6.19. NONLINEAR EQUATIONS OFTHE THERMAL (DIFFUSION)
BOUNDARY LAYER 124 1.7. NONLINEAR SCHRODINGER EQUATIONS AND RELATED
EQUATIONS 125 1.7.1. EQUATIONS OF THE FORM I -^ + |^F- + F( W )W = 0
INVOLVING ARBITRARY PARAMETERS 125 1.7.2. EQUATIONS OF THE FORM I^- + -^
-§^ (X N F^) + F( W )W = 0 INVOLVING ARBITRARY PARAMETERS 128 1.7.3.
OTHER EQUATIONS INVOLVING ARBITRARY PARAMETERS 130 1.7.4. EQUATIONS WITH
CUBIC NONLINEARITIES INVOLVING ARBITRARY FUNCTIONS 131 1.7.5. EQUATIONS
OF GENERAL FORM INVOLVING ARBITRARY FUNCTIONS OF A SINGLE ARGUMENT 134
1.7.6. EQUATIONS OF GENERAL FORM INVOLVING ARBITRARY FUNCTIONS OF TWO
ARGUMENTS .. 137 2. PARABOLIC EQUATIONS WITH TWO OR MORE SPACE VARIABLES
*... 141 2.1. EQUATIONS WITH TWO SPACE VARIABLES INVOLVING POWER-LAW
NONLINEARITIES 141 2.1.1. EQUATIONSOFTHEFORM^ = [/(X)|F]+^[ 5 (T/)^]+A^
141 2.1.2. EQUATIONS OF THE FORM §F =A-§^{W N ^)+B-§^{W K ^) 142 2.1.3.
EQUATIONS OFTHE FORM §F = [/(0F?] + ^ LD(W)^] + H(W) 147 2.1.4. OTHER
EQUATIONS^ 149 2.2. EQUATIONS WITH TWO SPACE VARIABLES INVOLVING
EXPONENTIAL NONLINEARITIES 154 2.2.1. EQUATIONS OF THE FORM ^F =
[F(X)^] + ^;[G(Y)^}+AE XW 154 2.2.2. EQUATIONS OF THE FORM ^= A ^(E^^)+
B-^ (E XW ^) + F(W) 155 2.3. OTHER EQUATIONS WITH TWO SPACE VARIABLES
INVOLVING ARBITRARY PARAMETERS 157 2.3.1. EQUATIONS WITH LOGARITHMIC
NONLINEARITIES 157 2.3.2. EQUATIONS WITH TRIGONOMETRICAL NONLINEARITIES
158 CONTENTS VII 2.4. EQUATIONS INVOLVING ARBITRARY FUNCTIONS 159 2.4.1.
HEAT AND MASS TRANSFER EQUATIONS IN QUIESCENT OR MOVING MEDIA WITH
CHEMICAL REACTIONS 159 2.4.2. EQUATIONS OFTHE FORM §F = [F(X)$] + %
[G(Y)%] + H(W) 161 2.4.3. EQUATIONS OFTHE FORM ^ = -^ [/C^I^F] + IR~
.9( W }LT~ + H(T, W ) 162 2.4.4. OTHER EQUATIONS LINEAR IN THE HIGHEST
DERIVATIVES 165 2.4.5. NONLINEAR DIFFUSION BOUNDARY LAYER EQUATIONS 168
2.5. EQUATIONS WITH THREE OR MORE SPACE VARIABLES 169 2.5.1. EQUATIONS
OF MASS TRANSFER IN QUIESCENT OR MOVING MEDIA WITH CHEMICAL REACTIONS
169 2.5.2. HEAT EQUATIONS WITH POWER-LAW OR EXPONENTIAL
TEMPERATURE-DEPENDENT THERMAL DIFFUSIVITY 173 2.5.3. EQUATIONS OF HEAT
AND MASS TRANSFER IN ANISOTROPIC MEDIA 174 2.5.4. OTHER EQUATIONS WITH
THREE SPACE VARIABLES 177 2.5.5. EQUATIONS WITH N SPACE VARIABLES 179
2.6. NONLINEAR SCHRODINGER EQUATIONS 186 2.6.1. TWO-DIMENSIONAL
EQUATIONS 186 2.6.2. THREE AND N-DIMENSIONAL EQUATIONS 189 3. HYPERBOLIC
EQUATIONS WITH ONE SPACE VARIABLE 191 3.1. EQUATIONS WITH POWER-LAW
NONLINEARITIES 191 3.1.1. EQUATIONS OFTHE FORM ^§- = *^§- +AW + BW N +
CW 2N ~ L 191 3.1.2. EQUATIONS OFTHE FORM ^ = AF^F + F(X, T,W) 193
3.1.3. EQUATIONS OFTHE FORM & = A#F + FIX, T, W, &) 196 ^ OV- OX A J
OX ! 3.1.4. EQUATIONS OF THE FORM ^ = F(X)^$-+ G(X,T,W, F^) 198 3.1.5.
EQUATIONS OF THE FORM O^F = AW N ^JF + F(X, W) 202 3.1.6. EQUATIONS
OFTHE FORM ^ = A-§^ (W N ^)+F(W) 20 4 3.1.7. OTHER EQUATIONS *. * 209
3.2. EQUATIONS WITH EXPONENTIAL NONLINEARITIES 213 3.2.1. EQUATIONS
OFTHE FORM ^ = A ^ + BE? W + CE^ W 213 3.2.2. EQUATIONS OF THE FORM ^
= A ^ + F(X,T,W) 215 3.2.3. EQUATIONS OF THE FORM ^-= F(X)^ + G(X,T,W,
|F) 217 3.2.4. OTHER EQUATIONS 222 3.3. OTHER EQUATIONS INVOLVING
ARBITRARY PARAMETERS 225 3.3.1. EQUATIONS WITH HYPERBOLIC NONLINEARITIES
225 3.3.2. EQUATIONS WITH LOGARITHMIC NONLINEARITIES 226 3.3.3.
SINE-GORDON EQUATION AND OTHER EQUATIONS WITH TRIGONOMETRIC
NONLINEARITIES . 227 3.3.4. EQUATIONS OFTHE FORM ^ + A|F = -^ [/(W)FS
230 3.4. EQUATIONS INVOLVING ARBITRARY FUNCTIONS 234 3.4.1. EQUATIONS
OFTHE FORM ^ = A^T + F(X, T,W) 234 3.4.2. EQUATIONS OFTHE FORM FE = A^F
+ FIX, T, W, ^) 239 X OT OX ** OX / 3.4.3. EQUATIONS OFTHE FORM ^ =
F(.X)^T +G(X, T, W, F^F) 245 3.4.4. EQUATIONS OFTHE FORM 4#- = F(W)^R +
Q(X, T, W, ^-) 250 - 1 OT OX J V OX / 3.4.5. EQUATIONS OFTHE FORM 4^ =
F(X, W)^R + G{X, T, W, ^F) 257 VIII CONTENTS 3.4.6. EQUATIONS OFTHE FORM
F^ = F(T, W)^ +G(X,T,W,^) 259 3.4.7. OTHER EQUATIONS LINEAR IN THE
HIGHEST DERIVATIVES 260 3.5. EQUATIONS OFTHE FORM ^ = F(X,Y,W, FJ, F^)
266 3.5.1. EQUATIONS INVOLVING ARBITRARY PARAMETERS OFTHE FORM -§^§- =
F(W) 266 3.5.2. OTHER EQUATIONS INVOLVING ARBITRARY PARAMETERS 270
3.5.3. EQUATIONS INVOLVING ARBITRARY FUNCTIONS 271 4. HYPERBOLIC
EQUATIONS WITH TWO OR THREE SPACE VARIABLES 275 4.1. EQUATIONS WITH TWO
SPACE VARIABLES INVOLVING POWER-LAW NONLINEARITIES 275 4.1.1. EQUATIONS
OFTHE FORM ^ = [/(Z)F^] + ^ [G(Y)%] +A* P 275 4.1.2. EQUATIONS OF THE
FORM #$. = A&(W N %) + B^ (W K ^) 277 4.1.3. EQUATIONSOFTHEFORM^ =
^[/(^)|^]+^[^)^] 285 4.1.4. OTHER EQUATIONS 290 4.2. EQUATIONS WITH TWO
SPACE VARIABLES INVOLVING EXPONENTIAL NONLINEARITIES 292 4.2.1.
EQUATIONS OFTHE FORM F^ = [/(*)F^] + | (V)^] + AE XW 292 4.2.2.
EQUATIONS OF THE FORM ^ = A^(E^ FF)+ B^ {E XW ^) 294 4.2.3. OTHER
EQUATIONS 299 4.3. NONLINEAR TELEGRAPH EQUATIONS WITH TWO SPACE
VARIABLES 299 4.3.1. EQUATIONS INVOLVING POWER-LAW NONLINEARITIES 299
4.3.2. EQUATIONS INVOLVING EXPONENTIAL NONLINEARITIES 303 4.4. EQUATIONS
WITH TWO SPACE VARIABLES INVOLVING ARBITRARY FUNCTIONS 305 4.4.1.
EQUATIONSOFTHEFORM^ = ^[/(^]+^[ 5 (Y)^]+/I(I T ;) 305 4.4.2.
EQUATIONSOFTHEFORM^ = ^[/( U ;)|^]+^[ 5 ( W ;)^]+/I( W ;) 308 4.4.3.
OTHER EQUATIONS 313 4.5. EQUATIONS WITH THREE SPACE VARIABLES INVOLVING
ARBITRARY PARAMETERS 317 4.5.1. EQUATIONS OF THE FORM ^ = [F( X )^] +
^[G( Y) ^] + - +AW R 317 4.5.2. EQUATIONS OFTHE FORM ^ = & [/(Z)F^] +
[G(Y)%] + & [H(Z)%] + AE XW 318 4.5.3. EQ UATIONSOFTHEFORM^ = A^K|^) +
6^(^^) +C ^(^^) +S ^ 320 4.5.4. EQUATIONS OF THE FORM ^ = A ( EX
^^)+B-^{E X W %)+C(E X W ^) + SEP W 327 4.6. EQUATIONS WITH THREE
SPACE VARIABLES INVOLVING ARBITRARY FUNCTIONS 334 4.6.1. EQUATIONS OF
THE FORM ^ = [/I(*)FE] +^ [H(V)^] +F Z [M*)TH] + 9(W) 334 4.6.2.
EQUATIONSOFTHEFORM^ = ^[/ 1 (^)|^]+^[/ 2 ( W ;)^]+^[/3(;)^]+ 5 (;) 338
4.6.3. OTHER EQUATIONS 344 5. ELLIPTIC EQUATIONS WITH TWO SPACE
VARIABLES 347 5.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 347 5.1.1.
EQUATIONS OFTHE FORM FT + & = AW + BW N + CW 2N ~ L 347 5.1.2. EQUATIONS
OFTHE FORM 0 + ^ = F(X,Y,W) 349 5.1.3. EQUATIONS OF THE FORM 0 + A§F =
F(X,Y,W,^,^) 350 5.1.4. EQUATIONS OF THE FORM ^-[F L ( X ,Y)^]+^[F 1 ( X
,Y)^}= G(W) 351 5.1.5. EQUATIONS OF THE FORM J-[F,(W)^]+-^[H(W)^]=G(W)
353 5.1.6. OTHER EQUATIONS INVOLVING ARBITRARY PARAMETERS 358 CONTENTS
IX 5.2. EQUATIONS WITH EXPONENTIAL NONLINEARITIES 364 5.2.1. EQUATIONS
OFTHE FORM ^R + §R = A + BE* 3 * + CE^ W 364 5.2.2. EQUATIONS OFTHE FORM
|^X + |^F = F(X, Y,W) 367 5.2.3. EQUATIONSOFTHEFORM^[/ 1 ( A; ,Y)^]+^[/
2 ( A :, 2 /)|^]=^(^) 367 5.2.4. EQUATIONS OF THE FORM -FL [H(W)^} + -^
[F 2 (W)%] = G(W) 370 5.2.5. OTHER EQUATIONS INVOLVING ARBITRARY
PARAMETERS 373 5.3. EQUATIONS INVOLVING OTHER NONLINEARITIES 376 5.3.1.
EQUATIONS WITH HYPERBOLIC NONLINEARITIES 376 5.3.2. EQUATIONS WITH
LOGARITHMIC NONLINEARITIES 377 5.3.3. EQUATIONS WITH TRIGONOMETRIC
NONLINEARITIES 380 5.4. EQUATIONS INVOLVING ARBITRARY FUNCTIONS 382
5.4.1. EQUATIONS OFTHE FORM |^ + ^ = F(X, Y,W) 382 5.4.2. EQUATIONS
OFTHE FORM A ^F + BF^-= F(X,Y,W,^,^) 387 5.4.3. HEAT AND MASS TRANSFER
EQUATIONS OF THE FORM -^[F(X)^]+-^[G(Y)^]=H(W) 391 5.4.4. EQUATIONS
OFTHE FORM -^ [F(X, Y, W)^]+^ [G(X, Y, W)^} = H(X, Y,W) .... 393 5.4.5.
OTHER EQUATIONS 399 6. ELLIPTIC EQUATIONS WITH THREE OR MORE SPACE
VARIABLES 405 6.1. EQUATIONS WITH THREE SPACE VARIABLES INVOLVING
POWER-LAW NONLINEARITIES 405 6.1.1. EQUATIONS OFTHE FORM [/(X)^] +
[G(Y)%] + -§~ Z [H(Z)^ =AW* 405 6.1.2. EQUATIONS OFTHE FORM & [F(W)%]
+ % [ & )%] + [G(W)%?] =0 408 6.2. EQUATIONS WITH THREE SPACE
VARIABLES INVOLVING EXPONENTIAL NONLINEARITIES 413 6.2.1. EQUATIONS OF
THE FORM *&[F(X)%]+% ; [G(V)%JL]+&[H(Z)%]=AE^ .... 413 6.2.2.
EQUATIONSOFTHEFORMA 1 ^(E A -|^)+A 2 ^(E A ^^)+A3^(E A ^^)=6 E ^ 416
6.3. THREE-DIMENSIONAL EQUATIONS INVOLVING ARBITRARY FUNCTIONS 420
6.3.1. HEAT AND MASS TRANSFER EQUATIONS OF THE FORM ^ [/I(A;)FJ] + ^
[MY)$] + 420 6.3.2. HEAT AND MASS TRANSFER EQUATIONS WITH COMPLICATING
FACTORS 423 6.3.3. OTHER EQUATIONS 426 6.4. EQUATIONS WITH N INDEPENDENT
VARIABLES 428 6.4.1. EQUATIONS OF THE FORM -^ [F 1 ( XL )J-]+.. .+^_
[/*(»*) | ] =G(X U ...,X N ,W) 428 6.4.2. OTHER EQUATIONS ? ? 430 7.
EQUATIONS INVOLVING MIXED DERIVATIVES AND SOME OTHER EQUATIONS 433 7.1.
EQUATIONS LINEAR IN THE MIXED DERIVATIVE 433 7.1.1. CALOGERO EQUATION
433 7.1.2. KHOKHLOV-ZABOLOTSKAYA EQUATION 435 7.1.3. EQUATION OF
UNSTEADY TRANSONIC GAS FLOWS 440 ,-* 7.1.4. E Q UATIONSOFTHEFORM^^-^^
= F(X, ? /,^,^) 443 7.1.5. OTHER EQUATIONS WITH TWO INDEPENDENT
VARIABLES 445 7.1.6. OTHER EQUATIONS WITH THREE INDEPENDENT VARIABLES
448 7.2. EQUATIONS QUADRATIC IN THE HIGHEST DERIVATIVES 449 7.2.1.
EQUATIONS OFTHE FORM F^ |^F = F(X, Y) 449 7.2.2. MONGE-AMPEREEQUATION(^)
2 -^0=F(^Y) 451 7.2.3. EQUATIONSOFTHEFORM(^) 2 -^^=F(A ; , ?/ , U
;,^,|^) 461 X CONTENTS 7.2.4. EQUATIONS OF THE FORM {^F = F(X, 2/)FF |^
+ G(X, Y) 465 7.2.5. OTHER EQUATIONS 469 7.3. BELLMAN TYPE EQUATIONS AND
RELATED EQUATIONS 472 7.3.1. EQUATIONS WITH QUADRATIC NONLINEARITIES 472
7.3.2. EQUATIONS WITH POWER-LAW NONLINEARITIES 475 8. SECOND-ORDER
EQUATIONS OF GENERAL FORM 479 8.1. EQUATIONS INVOLVING THE FIRST
DERIVATIVE IN T 479 8.1.1. EQUATIONS OFTHE FORM FF = F(W, F^, FF) 479
8.1.2. EQUATIONS OFTHE FORM §F = F(T,W, F^, &$) 486 8.1.3. EQUATIONS
OFTHE FORM FF = F(X, W, §^, |^) 490 8.1.4. EQUATIONS OFTHE FORM FF =
F(X, T, W, F^, ^F) 494 8.1.5. EQUATIONS OF THE FORM F (A;, T,W, FF -FJ,
FS^F) =0 499 8.1.6. EQUATIONS WITH THREE INDEPENDENT VARIABLES 500 8.2.
EQUATIONS INVOLVING TWO OR MORE SECOND DERIVATIVES 501 8.2.1. EQUATIONS
OFTHE FORM ^$- = F(W, F^, F^) 501 8.2.2. EQUATIONS OF THE FORM ^ =
F(X,T,W,^,^-,^R) 505 8.2.3. EQUATIONS LINEAR IN THE MIXED DERIVATIVE 508
8.2.4. EQUATIONS WITH TWO INDEPENDENT VARIABLES, NONLINEAR IN TWO OR
MORE HIGHEST DERIVATIVES 509 8.2.5. EQUATIONS WITH N INDEPENDENT
VARIABLES 512 9. THIRD-ORDER EQUATIONS 515 9.1. EQUATIONS INVOLVING THE
FIRST DERIVATIVE IN T 515 9.1.1. KORTEWEG-DE VRIES EQUATION FF + AF^F +
BW^ =0 515 9.1.2. CYLINDRICAL, SPHERICAL, AND MODIFIED KORTEWEG-DE VRIES
EQUATIONS 521 9.1.3. GENERALIZED KORTEWEG-DE VRIES EQUATION FF + A^F +
/(W)FJ =0 524 9.1.4. EQUATIONS REDUCIBLE TO THE KORTEWEG-DE VRIES
EQUATION 526 9.1.5. EQUATIONS OFTHE FORM FF + A^F + F(W, §^) = 0 529
9.1.6. EQUATIONS OFTHE FORM FF + A^F + F(X, T, W, F^) = 0 530 9.1.7.
BURGERS-KORTEWEG-DE VRIES EQUATION AND OTHER EQUATIONS 532 9.2.
EQUATIONS INVOLVING THE SECOND DERIVATIVE IN T 536 9.2.1. EQUATIONS WITH
QUADRATIC NONLINEARITIES 536 9.2.2. OTHER EQUATIONS 539 9.3.
HYDRODYNAMIC BOUNDARY LAYER EQUATIONS 540 9.3.1. STEADY HYDRODYNAMIC
BOUNDARY LAYER EQUATIONS FOR A NEWTONIAN FLUID 540 9.3.2. STEADY
BOUNDARY LAYER EQUATIONS FOR NON-NEWTONIAN FLUIDS 547 9.3.3. UNSTEADY
BOUNDARY LAYER EQUATIONS FOR A NEWTONIAN FLUID 553 9.3.4. UNSTEADY
BOUNDARY LAYER EQUATIONS FOR NON-NEWTONIAN FLUIDS 564 9.3.5. RELATED
EQUATIONS 568 9.4. EQUATIONS OF MOTION OF IDEAL FLUID (EULER EQUATIONS)
570 9.4.1. STATIONARY EQUATIONS 570 9.4.2. NONSTATIONARY EQUATIONS 574
9.5. OTHER THIRD-ORDER NONLINEAR EQUATIONS 580 9.5.1. EQUATIONS
INVOLVING SECOND-ORDER MIXED DERIVATIVES 580 9.5.2. EQUATIONS INVOLVING
THIRD-ORDER MIXED DERIVATIVES 583 9.5.3. EQUATIONS INVOLVING ^ AND ^ 587
CONTENTS XI 10. FOURTH-ORDER EQUATIONS 589 10.1. EQUATIONS INVOLVING THE
FIRST DERIVATIVE IN T 589 10.1.1. EQUATIONS OF THE FORM F =A|F+F(I,T (
;,F) 589 10.1.2. OTHER EQUATIONS 593 10.2. EQUATIONS INVOLVING THE
SECOND DERIVATIVE IN T 595 10.2.1. BOUSSINESQ EQUATION AND ITS
MODIFICATIONS 595 10.2.2. EQUATIONS WITH QUADRATIC NONLINEARITIES 600
10.2.3. OTHER EQUATIONS 603 10.3. EQUATIONS INVOLVING MIXED DERIVATIVES
605 10.3.1. KADOMTSEV-PETVIASHVILI EQUATION 605 10.3.2. STATIONARY
HYDRODYNAMIC EQUATIONS (NAVIER-STOKES EQUATIONS) 607 10.3.3.
NONSTATIONARY HYDRODYNAMIC EQUATIONS (NAVIER-STOKES EQUATIONS) 616
10.3.4. OTHER EQUATIONS 628 11. EQUATIONS OF HIGHER ORDERS 631 11.1.
EQUATIONS INVOLVING THE FIRST DERIVATIVE IN T AND LINEAR IN THE HIGHEST
DERIVATIVE .... 631 11.1.1. FIFTH-ORDER EQUATIONS 631 11.1.2. EQUATIONS
OF THE FORM &$* =A% + F(X,T,W) 633 11.1.3. EQUATIONS OFTHE FORM FF =
AF^F + /(W)F^ 635 11.1.4. EQUATIONS OF THE FORM FF = AF^F + F(X,T,W)^ +
G(X,T,W) 637 11.1.5. EQUATIONS OF THE FORM FF = A§^R +F(X,T,W, F^) 640
11.1.6. EQUATIONS OF THE FORM FF =A% +F(X,T,W, F^---,FJIF) 645 11.1.7.
EQUATIONS OFTHE FORM FF = AW^- + F(X, T, W)|F + G(X, T,W) 64 7 11.1.8.
OTHER EQUATIONS 648 11.2. GENERAL FORM EQUATIONS INVOLVING THE FIRST
DERIVATIVE IN T 651 11.2.1. EQUATIONS OFTHE FORM §F = F(W, §^,..., FJ)
651 11.2.2. EQUATIONS OFTHE FORM §F = F(T, W, %,..., -GF) 656 11.2.3.
EQUATIONS OF THE FORM %?= F(X,W, %,..., %*) 659 11.2.4. EQUATIONS OF
THE FORM *=F(X,T, W, %,..., -F) 662 11.3. EQUATIONS INVOLVING THE
SECOND DERIVATIVE IN T 666 11.3.1. EQUATIONS OFTHE FORM ^ = AF^ + F(X,T,
W) 666 11.3.2. EQUATIONS OFTHE FORM | ^ = A^-+F(X,T,W, F^-) 667 11.3.3.
EQUATIONS OF THE FORM ^-= A^-+ F(X,T,W, FJ, * * *, IJSF) 671 11.3.4.
EQUATIONS OF THE FORM ^ = AW^-+ F(X,T,W)^+G(X,T,W) 673 11.3.5. EQUATIONS
OF THE FORM ^=F(X,T, W, F^,-** ) 675 11.4. OTHER EQUATIONS 676
11.4.1 . EQUATIONS INVOLVING MIXED DERIVATIVES 676 11.4.2. EQUATIONS
INVOLVING F^ AND F^F 680 SUPPLEMENTS. EXACT METHODS FOR SOLVING
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS .... 683 S.I. CLASSIFICATION OF
SECOND-ORDER SEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS IN TWO
INDEPENDENT VARIABLES 683 5.1.1. TYPES OF EQUATIONS. CHARACTERISTIC
EQUATION 683 5.1.2. CANONICAL FORM OF PARABOLIC EQUATIONS 683 5.1.3.
CANONICAL FORM OF HYPERBOLIC EQUATIONS 684 5.1.4. CANONICAL FORM OF
ELLIPTIC EQUATIONS 684 XII CONTENTS 5.2. TRANSFORMATIONS OF EQUATIONS OF
MATHEMATICAL PHYSICS 685 5.2.1. POINT TRANSFORMATIONS 685 5.2.2.
HODOGRAPH TRANSFORMATION 686 5.2.3. CONTACT TRANSFORMATIONS. LEGENDRE
AND EULER TRANSFORMATIONS 688 5.2.4. BACKHAND TRANSFORMATIONS.
DIFFERENTIAL SUBSTITUTIONS 690 5.3. TRAVELING-WAVE SOLUTIONS AND
SELF-SIMILAR SOLUTIONS. SIMILARITY METHODS 693 5.3.1. PRELIMINARY
REMARKS 693 5.3.2. TRAVELING-WAVE SOLUTIONS. INVARIANCE OF EQUATIONS
UNDER TRANSLATIONS 694 5.3.3. SELF-SIMILAR SOLUTIONS. INVARIANCE OF
EQUATIONS UNDER SCALING TRANSFORMATIONS 695 5.3.4. EXPONENTIAL
SELF-SIMILAR SOLUTIONS. EQUATIONS INVARIANT UNDER COMBINED TRANSLATION
AND SCALING 696 5.4. METHOD OF GENERALIZED SEPARATION OF VARIABLES 698
5.4.1. INTRODUCTION 698 5.4.2. STRUCTURE OF GENERALIZED SEPARABLE
SOLUTIONS 700 5.4.3. SOLUTION OF FUNCTIONAL-DIFFERENTIAL EQUATIONS BY
DIFFERENTIATION 701 5.4.4. SOLUTION OF FUNCTIONAL-DIFFERENTIAL EQUATIONS
BY SPLITTING 705 5.4.5. SIMPLIFIED SCHEME FOR CONSTRUCTING GENERALIZED
SEPARABLE SOLUTIONS 709 5.4.6. TITOV-GALAKTIONOV METHOD 710 5.5. METHOD
OF FUNCTIONAL SEPARATION OF VARIABLES 713 5.5.1. STRUCTURE OF FUNCTIONAL
SEPARABLE SOLUTIONS 713 5.5.2. SPECIAL FUNCTIONAL SEPARABLE SOLUTIONS
713 5.5.3. DIFFERENTIATION METHOD 718 5.5.4. SPLITTING METHOD. REDUCTION
TO A FUNCTIONAL EQUATION WITH TWO VARIABLES 721 5.5.5. SOLUTIONS OF SOME
NONLINEAR FUNCTIONAL EQUATIONS AND THEIR APPLICATIONS .... 723 5.6.
GENERALIZED SIMILARITY REDUCTIONS OF NONLINEAR EQUATIONS 728 5.6.1.
CLARKSON-KRUSKAL DIRECT METHOD: A SPECIAL FORM FOR SIMILARITY REDUCTION
.... 728 5.6.2. CLARKSON-KRUSKAL DIRECT METHOD: THE GENERAL FORM FOR
SIMILARITY REDUCTION .. 731 5.6.3. SOME MODIFICATIONS AND
GENERALIZATIONS 732 5.7. GROUP ANALYSIS METHODS 735 5.7.1. CLASSICAL
METHOD FOR SYMMETRY REDUCTIONS 735 5.7.2. NONCLASSICAL METHOD FOR
SYMMETRY REDUCTIONS 744 5.8. DIFFERENTIAL CONSTRAINTS METHOD 747 5.8.1.
DESCRIPTION OFTHE METHOD 747 5.8.2. FIRST-ORDER DIFFERENTIAL CONSTRAINTS
749 5.8.3. SECOND- AND HIGHER-ORDER DIFFERENTIAL CONSTRAINTS 754 5.8.4.
CONNECTION BETWEEN THE DIFFERENTIAL CONSTRAINTS METHOD AND OTHER METHODS
.. 756 5.9. PAINLEVE TEST FOR NONLINEAR EQUATIONS OF MATHEMATICAL
PHYSICS 758 5.9.1. MOVABLE SINGULARITIES OF SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS 758 5.9.2. SOLUTIONS OF PARTIAL DIFFERENTIAL
EQUATIONS WITH A MOVABLE POLE. DESCRIPTION OF THE METHOD 760 5.9.3.
EXAMPLES OF THE^PAINLEVE TEST APPLICATIONS 761 5.10. INVERSE SCATTERING
METHOD 764 5.10.1. LAX PAIR METHOD 764 5.10.2. METHOD BASED ON THE
COMPATIBILITY CONDITION FOR TWO LINEAR EQUATIONS .... 766 5.10.3. METHOD
BASED ON LINEAR INTEGRAL EQUATIONS 767 S.I 1. CONSERVATION LAWS 769 S.I
1.1. BASIC DEFINITIONS AND EXAMPLES 769 S.I 1.2. EQUATIONS ADMITTING
VARIATIONAL FORMULATION. NOETHERIAN SYMMETRIES 770 CONTENTS XIU S.12.
HYPERBOLIC SYSTEMS OF QUASILINEAR EQUATIONS 772 5.12.1. CONSERVATION
LAWS. SOME EXAMPLES 772 5.12.2. CAUCHY PROBLEM, RIEMANN PROBLEM, AND
INITIAL-BOUNDARY VALUE PROBLEM ... 773 5.12.3. CHARACTERISTIC LINES.
HYPERBOLIC SYSTEMS. RIEMANN INVARIANTS 773 5.12.4. SELF-SIMILAR
CONTINUOUS SOLUTIONS. RAREFACTION WAVES 777 5.12.5. SHOCKWAVES.
RANKINE-HUGONIOT JUMP CONDITIONS 779 5.12.6. EVOLUTIONARY SHOCKS. LAX
CONDITION (VARIOUS FORMULATIONS) 780 5.12.7. SOLUTIONS FOR THE RIEMANN
PROBLEM 782 5.12.8. INITIAL-BOUNDARY VALUE PROBLEMS OF SPECIAL FORM 786
5.12.9. EXAMPLES OF NONSTRICT HYPERBOLIC SYSTEMS 786 REFERENCES 791
INDEX 809
|
adam_txt |
HANDBOOK OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ANDREI D. POLYANIN
VALENTIN F. ZAITSEV CHAPMAN & HALL/CRC A CRC PRESS COMPANY BOCA RATON
LONDON NEW YORK WASHINGTON, D.C. CONTENTS AUTHORS XV FOREWORD XVII SOME
NOTATIONS AND REMARKS XIX 1. PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE
1 1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 1 1.1.1. EQUATIONS OF THE
FORM §F = A^JG- +BW + CW 2 1 1.1.2. EQUATIONS OF THE FORM ^F =A-^R + B 0
+ BIW + B 2 W 2 + B3W 3 2 1.1.3. EQUATIONS OF THE FORM §F = A^F + F(W) 6
1.1.4. EQUATIONS OF THE FORM §F = A^F + F(X, T,W) 9 1.1.5. EQUATIONS OF
THE FORM FF = AF^ + /O)FF + G(W) 9 1.1.6. EQUATIONS OF THE FORM §F =A|^F
+ F(X,T,W)^ + G(X,T,W) 13 1.1.7. EQUATIONS OF THE FORM ^F =A^R+B(^) 2 +
F(X,T,W) 15 1.1.8. EQUATIONS OF THE FORM ^? =A^ + F(X,T,W,%) 17 1.1.9.
EQUATIONS OF THE FORM %JR =AW K ^-+ F(X,T,W,^) 18 1.1.10. EQUATIONS OF
THE FORM ^ = A-§^ (W M FJ) 25 1.1.11. EQUATIONS OF THE FORM |F = A JR(*
M F!) +BWK 32 1.1.12. EQUATIONS OF THE FORM ^ = A-^ \W M ^) +BW + AW KI
+ C 2 W K2 + C 3 W K3 . 37 1.1.13. EQUATIONS OF THE FORM F^ =
;|/[/ »§§] +9(W) 40 1.1.14. EQUATIONSOFTHEFONN^ = [F(W)^]+G(X,T,W,^) 42
1.1.15. OTHER EQUATIONS 46 1.2. EQUATIONS WITH EXPONENTIAL
NONLINEARITIES 52 1.2.1. EQUATIONS OF THE FORM ^ = A^+B O + B X E XW + B
2 E 2XW 52 1.2.2. EQUATIONS OF THE FORM |F = A- (E XW %) + F(W) 53
1.2.3. EQUATIONS OF THE FORM §F = [/(,)*&] +G ( W ) 5 6 1.2.4. OTHER
EQUATIONS EXPLICITLY INDEPENDENT OF X AND T 58 1.2.5. EQUATIONS
EXPLICITLY DEPENDENT ON X AND/OR T 61 1.3. EQUATIONS WITH HYPERBOLIC
NONLINEARITIES 62 1.3.1. EQUATIONS INVOLVING HYPERBOLIC COSINE 62 1.3.2.
EQUATIONS INVOLVING HYPERBOLIC SINE 63 1.3.3. EQUATIONS INVOLVING
HYPERBOLIC TANGENT 63 1.3.4. EQUATIONS INVOLVING HYPERBOLIC COTANGENT 64
1.4. EQUATIONS WITH LOGARITHMIC NONLINEARITIES 64 *'' 1.4.1. EQUATIONS
OF THE FORM §F = A^F + F(X, T,W) 64 1.4.2. OTHER EQUATIONS 66 1.5.
EQUATIONS WITH TRIGONOMETRIC NONLINEARITIES 68 1.5.1. EQUATIONS
INVOLVING COSINE 68 1.5.2. EQUATIONS INVOLVING SINE 69 1.5.3. EQUATIONS
INVOLVING TANGENT 70 1.5.4. EQUATIONS INVOLVING COTANGENT 70 1.5.5.
EQUATIONS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS 71 VI CONTENTS 1.6.
EQUATIONS INVOLVING ARBITRARY FUNCTIONS 71 1.6.1. EQUATIONS OF THE FORM
§F = A^F + F(X, T,W) 71 1.6.2. EQUATIONS OF THE FORM §F = AF^F + F(X,
I)|F + G(X, T,W) 75 1.6.3. EQUATIONS OF THE FORM ^-= A^R + F(X,T,W)^ +
G(X,T,W) 78 1.6.4. EQUATIONSOFTHEFORM FF =A^+B(^F + F(X,T,W) 81 1.6.5.
EQUATIONS OF THE FORM FF=A|^F + B(^F + F(X,T,W)J%- +G(X,T,W) 83 1.6.6.
EQUATIONS OF THE FORM §F=A^ + F(X, T,W)(^) 2 + G(X,T,W)^+ H(X,T,W) 84
1.6.7. EQUATIONS OF THE FORM ^ =A^R+F(X T T,W T ^) 88 1.6.8. EQUATIONS
OFTHE FORM FF = F(X, T)F^- + G(X, T, W, F^) 89 1.6.9. EQUATIONS OFTHE
FORM FF = AW^F + F(X, T, W)^ + G(X, T,W) 92 1.6.10. EQUATIONS OF THE
FORM FF = (AW + B)^- + F(X, T,W)(^) 2 + G(X, T,W)^ + H(X, T,W) 94
1.6.11. EQUATIONS OFTHE FORM FF = AW M ^ + FIX, T)^ + G(X, T,W) 97
1.6.12. EQUATIONS OFTHE FORM ^=A-§^ (W%) + F(X, T)$ + G(X, T,W) 98
1.6.13. EQUATIONS OF THE FORM $*. = A-J^(W M ^) + F(X,T)^ + G(X,T,W) 100
1.6.14. EQUATIONS OF THE FORM |F = A-^(E XW ^)+F(X,T,W) 102 1.6.15.
EQUATIONS OFTHE FORM %F = ^ [F(W)^]+G(X, T,W,^) 10 4 1.6.16. EQUATIONS
OFTHE FORM §F = F(X,W)^ ILL 1.6.17. EQUATIONS OF THE FORM ^ = F(X,T,W)^
+ G(X,T,W, %) 113 1.6.18. EQUATIONS OF THE FORM ^F = F(X,W, ^ ) ^ T +
G(X,T,W, F^) 120 1.6.19. NONLINEAR EQUATIONS OFTHE THERMAL (DIFFUSION)
BOUNDARY LAYER 124 1.7. NONLINEAR SCHRODINGER EQUATIONS AND RELATED
EQUATIONS 125 1.7.1. EQUATIONS OF THE FORM I -^ + |^F- + F(\W\)W = 0
INVOLVING ARBITRARY PARAMETERS 125 1.7.2. EQUATIONS OF THE FORM I^- + -^
-§^ (X N F^) + F(\W\)W = 0 INVOLVING ARBITRARY PARAMETERS 128 1.7.3.
OTHER EQUATIONS INVOLVING ARBITRARY PARAMETERS 130 1.7.4. EQUATIONS WITH
CUBIC NONLINEARITIES INVOLVING ARBITRARY FUNCTIONS 131 1.7.5. EQUATIONS
OF GENERAL FORM INVOLVING ARBITRARY FUNCTIONS OF A SINGLE ARGUMENT 134
1.7.6. EQUATIONS OF GENERAL FORM INVOLVING ARBITRARY FUNCTIONS OF TWO
ARGUMENTS . 137 2. PARABOLIC EQUATIONS WITH TWO OR MORE SPACE VARIABLES
*. 141 2.1. EQUATIONS WITH TWO SPACE VARIABLES INVOLVING POWER-LAW
NONLINEARITIES 141 2.1.1. EQUATIONSOFTHEFORM^ = [/(X)|F]+^[ 5 (T/)^]+A^
141 2.1.2. EQUATIONS OF THE FORM §F =A-§^{W N ^)+B-§^{W K ^) 142 2.1.3.
EQUATIONS OFTHE FORM §F = [/(0F?] + ^ LD(W)^] + H(W) 147 2.1.4. OTHER
EQUATIONS^ 149 2.2. EQUATIONS WITH TWO SPACE VARIABLES INVOLVING
EXPONENTIAL NONLINEARITIES 154 2.2.1. EQUATIONS OF THE FORM ^F =
[F(X)^] + ^;[G(Y)^}+AE XW 154 2.2.2. EQUATIONS OF THE FORM ^= A ^(E^^)+
B-^ (E XW ^) + F(W) 155 2.3. OTHER EQUATIONS WITH TWO SPACE VARIABLES
INVOLVING ARBITRARY PARAMETERS 157 2.3.1. EQUATIONS WITH LOGARITHMIC
NONLINEARITIES 157 2.3.2. EQUATIONS WITH TRIGONOMETRICAL NONLINEARITIES
158 CONTENTS VII 2.4. EQUATIONS INVOLVING ARBITRARY FUNCTIONS 159 2.4.1.
HEAT AND MASS TRANSFER EQUATIONS IN QUIESCENT OR MOVING MEDIA WITH
CHEMICAL REACTIONS 159 2.4.2. EQUATIONS OFTHE FORM §F = [F(X)$] + %
[G(Y)%] + H(W) 161 2.4.3. EQUATIONS OFTHE FORM ^ = -^ [/C^I^F] + IR~
\.9( W }LT~\ + H(T, W ) 162 2.4.4. OTHER EQUATIONS LINEAR IN THE HIGHEST
DERIVATIVES 165 2.4.5. NONLINEAR DIFFUSION BOUNDARY LAYER EQUATIONS 168
2.5. EQUATIONS WITH THREE OR MORE SPACE VARIABLES 169 2.5.1. EQUATIONS
OF MASS TRANSFER IN QUIESCENT OR MOVING MEDIA WITH CHEMICAL REACTIONS
169 2.5.2. HEAT EQUATIONS WITH POWER-LAW OR EXPONENTIAL
TEMPERATURE-DEPENDENT THERMAL DIFFUSIVITY 173 2.5.3. EQUATIONS OF HEAT
AND MASS TRANSFER IN ANISOTROPIC MEDIA 174 2.5.4. OTHER EQUATIONS WITH
THREE SPACE VARIABLES 177 2.5.5. EQUATIONS WITH N SPACE VARIABLES 179
2.6. NONLINEAR SCHRODINGER EQUATIONS 186 2.6.1. TWO-DIMENSIONAL
EQUATIONS 186 2.6.2. THREE AND N-DIMENSIONAL EQUATIONS 189 3. HYPERBOLIC
EQUATIONS WITH ONE SPACE VARIABLE 191 3.1. EQUATIONS WITH POWER-LAW
NONLINEARITIES 191 3.1.1. EQUATIONS OFTHE FORM ^§- = *^§- +AW + BW N +
CW 2N ~ L 191 3.1.2. EQUATIONS OFTHE FORM ^ = AF^F + F(X, T,W) 193
3.1.3. EQUATIONS OFTHE FORM & = A#F + FIX, T, W, &) 196 ^ OV- OX A J \
OX ! 3.1.4. EQUATIONS OF THE FORM ^ = F(X)^$-+ G(X,T,W, F^) 198 3.1.5.
EQUATIONS OF THE FORM O^F = AW N ^JF + F(X, W) 202 3.1.6. EQUATIONS
OFTHE FORM ^ = A-§^ (W N ^)+F(W) 20 4 3.1.7. OTHER EQUATIONS *. * 209
3.2. EQUATIONS WITH EXPONENTIAL NONLINEARITIES 213 3.2.1. EQUATIONS
OFTHE FORM ^ = A ^ + BE? W + CE^ W 213 3.2.2. EQUATIONS OF THE FORM ^
= A ^ + F(X,T,W) 215 3.2.3. EQUATIONS OF THE FORM ^-= F(X)^ + G(X,T,W,
|F) 217 3.2.4. OTHER EQUATIONS 222 3.3. OTHER EQUATIONS INVOLVING
ARBITRARY PARAMETERS 225 3.3.1. EQUATIONS WITH HYPERBOLIC NONLINEARITIES
225 3.3.2. EQUATIONS WITH LOGARITHMIC NONLINEARITIES 226 3.3.3.
SINE-GORDON EQUATION AND OTHER EQUATIONS WITH TRIGONOMETRIC
NONLINEARITIES . 227 3.3.4. EQUATIONS OFTHE FORM ^ + A|F = -^ [/(W)FS
230 3.4. EQUATIONS INVOLVING ARBITRARY FUNCTIONS 234 3.4.1. EQUATIONS
OFTHE FORM ^ = A^T + F(X, T,W) 234 3.4.2. EQUATIONS OFTHE FORM FE = A^F
+ FIX, T, W, ^) 239 X OT OX ** \ OX / 3.4.3. EQUATIONS OFTHE FORM ^ =
F(.X)^T +G(X, T, W, F^F) 245 3.4.4. EQUATIONS OFTHE FORM 4#- = F(W)^R +
Q(X, T, W, ^-) 250 - 1 OT " OX J V OX / 3.4.5. EQUATIONS OFTHE FORM 4^ =
F(X, W)^R + G{X, T, W, ^F) 257 VIII CONTENTS 3.4.6. EQUATIONS OFTHE FORM
F^ = F(T, W)^ +G(X,T,W,^) 259 3.4.7. OTHER EQUATIONS LINEAR IN THE
HIGHEST DERIVATIVES 260 3.5. EQUATIONS OFTHE FORM ^ = F(X,Y,W, FJ, F^)
266 3.5.1. EQUATIONS INVOLVING ARBITRARY PARAMETERS OFTHE FORM -§^§- =
F(W) 266 3.5.2. OTHER EQUATIONS INVOLVING ARBITRARY PARAMETERS 270
3.5.3. EQUATIONS INVOLVING ARBITRARY FUNCTIONS 271 4. HYPERBOLIC
EQUATIONS WITH TWO OR THREE SPACE VARIABLES 275 4.1. EQUATIONS WITH TWO
SPACE VARIABLES INVOLVING POWER-LAW NONLINEARITIES 275 4.1.1. EQUATIONS
OFTHE FORM ^ = [/(Z)F^] + ^ [G(Y)%] +A* P 275 4.1.2. EQUATIONS OF THE
FORM #$. = A&(W N %) + B^ (W K ^) 277 4.1.3. EQUATIONSOFTHEFORM^ =
^[/(^)|^]+^[^)^] 285 4.1.4. OTHER EQUATIONS 290 4.2. EQUATIONS WITH TWO
SPACE VARIABLES INVOLVING EXPONENTIAL NONLINEARITIES 292 4.2.1.
EQUATIONS OFTHE FORM F^ = [/(*)F^] + | (V)^] + AE XW 292 4.2.2.
EQUATIONS OF THE FORM ^ = A^(E^ FF)+ B^ {E XW ^) 294 4.2.3. OTHER
EQUATIONS 299 4.3. NONLINEAR TELEGRAPH EQUATIONS WITH TWO SPACE
VARIABLES 299 4.3.1. EQUATIONS INVOLVING POWER-LAW NONLINEARITIES 299
4.3.2. EQUATIONS INVOLVING EXPONENTIAL NONLINEARITIES 303 4.4. EQUATIONS
WITH TWO SPACE VARIABLES INVOLVING ARBITRARY FUNCTIONS 305 4.4.1.
EQUATIONSOFTHEFORM^ = ^[/(^]+^[ 5 (Y)^]+/I(I T ;) 305 4.4.2.
EQUATIONSOFTHEFORM^ = ^[/( U ;)|^]+^[ 5 ( W ;)^]+/I( W ;) 308 4.4.3.
OTHER EQUATIONS 313 4.5. EQUATIONS WITH THREE SPACE VARIABLES INVOLVING
ARBITRARY PARAMETERS 317 4.5.1. EQUATIONS OF THE FORM ^ = [F( X )^] +
^[G( Y) ^] + - +AW R 317 4.5.2. EQUATIONS OFTHE FORM ^ = & [/(Z)F^] +
[G(Y)%] + & [H(Z)%] + AE XW 318 4.5.3. EQ UATIONSOFTHEFORM^ = A^K|^) +
6^(^^) +C ^(^^) +S ^ 320 4.5.4. EQUATIONS OF THE FORM ^ = A ( EX
^^)+B-^{E X W %)+C(E X W ^) + SEP W 327 4.6. EQUATIONS WITH THREE
SPACE VARIABLES INVOLVING ARBITRARY FUNCTIONS 334 4.6.1. EQUATIONS OF
THE FORM ^ = [/I(*)FE] +^ [H(V)^] +F Z [M*)TH] + 9(W) 334 4.6.2.
EQUATIONSOFTHEFORM^ = ^[/ 1 (^)|^]+^[/ 2 ( W ;)^]+^[/3(;)^]+ 5 (;) 338
4.6.3. OTHER EQUATIONS 344 5. ELLIPTIC EQUATIONS WITH TWO SPACE
VARIABLES 347 5.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 347 5.1.1.
EQUATIONS OFTHE FORM FT + & = AW + BW N + CW 2N ~ L 347 5.1.2. EQUATIONS
OFTHE FORM 0 + ^ = F(X,Y,W) 349 5.1.3. EQUATIONS OF THE FORM 0 + A§F =
F(X,Y,W,^,^) 350 5.1.4. EQUATIONS OF THE FORM ^-[F L ( X ,Y)^]+^[F 1 ( X
,Y)^}= G(W) 351 5.1.5. EQUATIONS OF THE FORM J-[F,(W)^]+-^[H(W)^]=G(W)
353 5.1.6. OTHER EQUATIONS INVOLVING ARBITRARY PARAMETERS 358 CONTENTS
IX 5.2. EQUATIONS WITH EXPONENTIAL NONLINEARITIES 364 5.2.1. EQUATIONS
OFTHE FORM ^R + §R = A + BE* 3 * + CE^ W 364 5.2.2. EQUATIONS OFTHE FORM
|^X + |^F = F(X, Y,W) 367 5.2.3. EQUATIONSOFTHEFORM^[/ 1 ( A; ,Y)^]+^[/
2 ( A :, 2 /)|^]=^(^) 367 5.2.4. EQUATIONS OF THE FORM -FL [H(W)^} + -^
[F 2 (W)%] = G(W) 370 5.2.5. OTHER EQUATIONS INVOLVING ARBITRARY
PARAMETERS 373 5.3. EQUATIONS INVOLVING OTHER NONLINEARITIES 376 5.3.1.
EQUATIONS WITH HYPERBOLIC NONLINEARITIES 376 5.3.2. EQUATIONS WITH
LOGARITHMIC NONLINEARITIES 377 5.3.3. EQUATIONS WITH TRIGONOMETRIC
NONLINEARITIES 380 5.4. EQUATIONS INVOLVING ARBITRARY FUNCTIONS 382
5.4.1. EQUATIONS OFTHE FORM |^ + ^ = F(X, Y,W) 382 5.4.2. EQUATIONS
OFTHE FORM A ^F + BF^-= F(X,Y,W,^,^) 387 5.4.3. HEAT AND MASS TRANSFER
EQUATIONS OF THE FORM -^[F(X)^]+-^[G(Y)^]=H(W) 391 5.4.4. EQUATIONS
OFTHE FORM -^ [F(X, Y, W)^]+^ [G(X, Y, W)^} = H(X, Y,W) . 393 5.4.5.
OTHER EQUATIONS 399 6. ELLIPTIC EQUATIONS WITH THREE OR MORE SPACE
VARIABLES 405 6.1. EQUATIONS WITH THREE SPACE VARIABLES INVOLVING
POWER-LAW NONLINEARITIES 405 6.1.1. EQUATIONS OFTHE FORM [/(X)^] +
[G(Y)%] + -§~ Z [H(Z)^\ =AW* 405 6.1.2. EQUATIONS OFTHE FORM & [F(W)%]
+ % [ & )%] + [G(W)%?] =0 408 6.2. EQUATIONS WITH THREE SPACE
VARIABLES INVOLVING EXPONENTIAL NONLINEARITIES 413 6.2.1. EQUATIONS OF
THE FORM *&[F(X)%]+% ; [G(V)%JL]+&[H(Z)%]=AE^ . 413 6.2.2.
EQUATIONSOFTHEFORMA 1 ^(E A -|^)+A 2 ^(E A ^^)+A3^(E A ^^)=6 E ^ 416
6.3. THREE-DIMENSIONAL EQUATIONS INVOLVING ARBITRARY FUNCTIONS 420
6.3.1. HEAT AND MASS TRANSFER EQUATIONS OF THE FORM ^ [/I(A;)FJ] + ^
[MY)$] + 420 6.3.2. HEAT AND MASS TRANSFER EQUATIONS WITH COMPLICATING
FACTORS 423 6.3.3. OTHER EQUATIONS 426 6.4. EQUATIONS WITH N INDEPENDENT
VARIABLES 428 6.4.1. EQUATIONS OF THE FORM -^ [F 1 ( XL )J-]+. .+^_
[/*(»*) | ] =G(X U .,X N ,W) 428 6.4.2. OTHER EQUATIONS ? ? 430 7.
EQUATIONS INVOLVING MIXED DERIVATIVES AND SOME OTHER EQUATIONS 433 7.1.
EQUATIONS LINEAR IN THE MIXED DERIVATIVE 433 7.1.1. CALOGERO EQUATION
433 7.1.2. KHOKHLOV-ZABOLOTSKAYA EQUATION 435 7.1.3. EQUATION OF
UNSTEADY TRANSONIC GAS FLOWS 440 ,-* 7.1.4. E Q UATIONSOFTHEFORM^^-^^
= F(X, ? /,^,^) 443 7.1.5. OTHER EQUATIONS WITH TWO INDEPENDENT
VARIABLES 445 7.1.6. OTHER EQUATIONS WITH THREE INDEPENDENT VARIABLES
448 7.2. EQUATIONS QUADRATIC IN THE HIGHEST DERIVATIVES 449 7.2.1.
EQUATIONS OFTHE FORM F^ |^F = F(X, Y) 449 7.2.2. MONGE-AMPEREEQUATION(^)
2 -^0=F(^Y) 451 7.2.3. EQUATIONSOFTHEFORM(^) 2 -^^=F(A ; , ?/ , U
;,^,|^) 461 X CONTENTS 7.2.4. EQUATIONS OF THE FORM {^F = F(X, 2/)FF |^
+ G(X, Y) 465 7.2.5. OTHER EQUATIONS 469 7.3. BELLMAN TYPE EQUATIONS AND
RELATED EQUATIONS 472 7.3.1. EQUATIONS WITH QUADRATIC NONLINEARITIES 472
7.3.2. EQUATIONS WITH POWER-LAW NONLINEARITIES 475 8. SECOND-ORDER
EQUATIONS OF GENERAL FORM 479 8.1. EQUATIONS INVOLVING THE FIRST
DERIVATIVE IN T 479 8.1.1. EQUATIONS OFTHE FORM FF = F(W, F^, FF) 479
8.1.2. EQUATIONS OFTHE FORM §F = F(T,W, F^, &$) 486 8.1.3. EQUATIONS
OFTHE FORM FF = F(X, W, §^, |^) 490 8.1.4. EQUATIONS OFTHE FORM FF =
F(X, T, W, F^, ^F) 494 8.1.5. EQUATIONS OF THE FORM F (A;, T,W, FF'-FJ,
FS^F) =0 499 8.1.6. EQUATIONS WITH THREE INDEPENDENT VARIABLES 500 8.2.
EQUATIONS INVOLVING TWO OR MORE SECOND DERIVATIVES 501 8.2.1. EQUATIONS
OFTHE FORM ^$- = F(W, F^, F^) 501 8.2.2. EQUATIONS OF THE FORM ^ =
F(X,T,W,^,^-,^R) 505 8.2.3. EQUATIONS LINEAR IN THE MIXED DERIVATIVE 508
8.2.4. EQUATIONS WITH TWO INDEPENDENT VARIABLES, NONLINEAR IN TWO OR
MORE HIGHEST DERIVATIVES 509 8.2.5. EQUATIONS WITH N INDEPENDENT
VARIABLES 512 9. THIRD-ORDER EQUATIONS 515 9.1. EQUATIONS INVOLVING THE
FIRST DERIVATIVE IN T 515 9.1.1. KORTEWEG-DE VRIES EQUATION FF + AF^F +
BW^ =0 515 9.1.2. CYLINDRICAL, SPHERICAL, AND MODIFIED KORTEWEG-DE VRIES
EQUATIONS 521 9.1.3. GENERALIZED KORTEWEG-DE VRIES EQUATION FF + A^F +
/(W)FJ =0 524 9.1.4. EQUATIONS REDUCIBLE TO THE KORTEWEG-DE VRIES
EQUATION 526 9.1.5. EQUATIONS OFTHE FORM FF + A^F + F(W, §^) = 0 529
9.1.6. EQUATIONS OFTHE FORM FF + A^F + F(X, T, W, F^) = 0 530 9.1.7.
BURGERS-KORTEWEG-DE VRIES EQUATION AND OTHER EQUATIONS 532 9.2.
EQUATIONS INVOLVING THE SECOND DERIVATIVE IN T 536 9.2.1. EQUATIONS WITH
QUADRATIC NONLINEARITIES 536 9.2.2. OTHER EQUATIONS 539 9.3.
HYDRODYNAMIC BOUNDARY LAYER EQUATIONS 540 9.3.1. STEADY HYDRODYNAMIC
BOUNDARY LAYER EQUATIONS FOR A NEWTONIAN FLUID 540 9.3.2. STEADY
BOUNDARY LAYER EQUATIONS FOR NON-NEWTONIAN FLUIDS 547 9.3.3. UNSTEADY
BOUNDARY LAYER EQUATIONS FOR A NEWTONIAN FLUID 553 9.3.4. UNSTEADY
BOUNDARY LAYER EQUATIONS FOR NON-NEWTONIAN FLUIDS 564 9.3.5. RELATED
EQUATIONS 568 9.4. EQUATIONS OF MOTION OF IDEAL FLUID (EULER EQUATIONS)
570 9.4.1. STATIONARY EQUATIONS 570 9.4.2. NONSTATIONARY EQUATIONS 574
9.5. OTHER THIRD-ORDER NONLINEAR EQUATIONS 580 9.5.1. EQUATIONS
INVOLVING SECOND-ORDER MIXED DERIVATIVES 580 9.5.2. EQUATIONS INVOLVING
THIRD-ORDER MIXED DERIVATIVES 583 9.5.3. EQUATIONS INVOLVING ^ AND ^ 587
CONTENTS XI 10. FOURTH-ORDER EQUATIONS 589 10.1. EQUATIONS INVOLVING THE
FIRST DERIVATIVE IN T 589 10.1.1. EQUATIONS OF THE FORM F =A|F+F(I,T (
;,F) 589 10.1.2. OTHER EQUATIONS 593 10.2. EQUATIONS INVOLVING THE
SECOND DERIVATIVE IN T 595 10.2.1. BOUSSINESQ EQUATION AND ITS
MODIFICATIONS 595 10.2.2. EQUATIONS WITH QUADRATIC NONLINEARITIES 600
10.2.3. OTHER EQUATIONS 603 10.3. EQUATIONS INVOLVING MIXED DERIVATIVES
605 10.3.1. KADOMTSEV-PETVIASHVILI EQUATION 605 10.3.2. STATIONARY
HYDRODYNAMIC EQUATIONS (NAVIER-STOKES EQUATIONS) 607 10.3.3.
NONSTATIONARY HYDRODYNAMIC EQUATIONS (NAVIER-STOKES EQUATIONS) 616
10.3.4. OTHER EQUATIONS 628 11. EQUATIONS OF HIGHER ORDERS 631 11.1.
EQUATIONS INVOLVING THE FIRST DERIVATIVE IN T AND LINEAR IN THE HIGHEST
DERIVATIVE . 631 11.1.1. FIFTH-ORDER EQUATIONS 631 11.1.2. EQUATIONS
OF THE FORM &$* =A% + F(X,T,W) 633 11.1.3. EQUATIONS OFTHE FORM FF =
AF^F + /(W)F^ 635 11.1.4. EQUATIONS OF THE FORM FF = AF^F + F(X,T,W)^ +
G(X,T,W) 637 11.1.5. EQUATIONS OF THE FORM FF = A§^R +F(X,T,W, F^) 640
11.1.6. EQUATIONS OF THE FORM FF =A% +F(X,T,W, F^---,FJIF) 645 11.1.7.
EQUATIONS OFTHE FORM FF = AW^- + F(X, T, W)|F + G(X, T,W) 64 7 11.1.8.
OTHER EQUATIONS 648 11.2. GENERAL FORM EQUATIONS INVOLVING THE FIRST
DERIVATIVE IN T 651 11.2.1. EQUATIONS OFTHE FORM §F = F(W, §^,., FJ)
651 11.2.2. EQUATIONS OFTHE FORM §F = F(T, W, %,., -GF) 656 11.2.3.
EQUATIONS OF THE FORM %?= F(X,W, %,., %*) 659 11.2.4. EQUATIONS OF
THE FORM *=F(X,T, W, %,., -F) 662 11.3. EQUATIONS INVOLVING THE
SECOND DERIVATIVE IN T 666 11.3.1. EQUATIONS OFTHE FORM ^ = AF^ + F(X,T,
W) 666 11.3.2. EQUATIONS OFTHE FORM | ^ = A^-+F(X,T,W, F^-) 667 11.3.3.
EQUATIONS OF THE FORM ^-= A^-+ F(X,T,W, FJ, * * *, "IJSF) 671 11.3.4.
EQUATIONS OF THE FORM ^ = AW^-+ F(X,T,W)^+G(X,T,W) 673 11.3.5. EQUATIONS
OF THE FORM ^=F(X,T, W, F^,-** ) 675 11.4. OTHER EQUATIONS 676
11.4.1'. EQUATIONS INVOLVING MIXED DERIVATIVES 676 11.4.2. EQUATIONS
INVOLVING F^ AND F^F 680 SUPPLEMENTS. EXACT METHODS FOR SOLVING
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS . 683 S.I. CLASSIFICATION OF
SECOND-ORDER SEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS IN TWO
INDEPENDENT VARIABLES 683 5.1.1. TYPES OF EQUATIONS. CHARACTERISTIC
EQUATION 683 5.1.2. CANONICAL FORM OF PARABOLIC EQUATIONS 683 5.1.3.
CANONICAL FORM OF HYPERBOLIC EQUATIONS 684 5.1.4. CANONICAL FORM OF
ELLIPTIC EQUATIONS 684 XII CONTENTS 5.2. TRANSFORMATIONS OF EQUATIONS OF
MATHEMATICAL PHYSICS 685 5.2.1. POINT TRANSFORMATIONS 685 5.2.2.
HODOGRAPH TRANSFORMATION 686 5.2.3. CONTACT TRANSFORMATIONS. LEGENDRE
AND EULER TRANSFORMATIONS 688 5.2.4. BACKHAND TRANSFORMATIONS.
DIFFERENTIAL SUBSTITUTIONS 690 5.3. TRAVELING-WAVE SOLUTIONS AND
SELF-SIMILAR SOLUTIONS. SIMILARITY METHODS 693 5.3.1. PRELIMINARY
REMARKS 693 5.3.2. TRAVELING-WAVE SOLUTIONS. INVARIANCE OF EQUATIONS
UNDER TRANSLATIONS 694 5.3.3. SELF-SIMILAR SOLUTIONS. INVARIANCE OF
EQUATIONS UNDER SCALING TRANSFORMATIONS 695 5.3.4. EXPONENTIAL
SELF-SIMILAR SOLUTIONS. EQUATIONS INVARIANT UNDER COMBINED TRANSLATION
AND SCALING 696 5.4. METHOD OF GENERALIZED SEPARATION OF VARIABLES 698
5.4.1. INTRODUCTION 698 5.4.2. STRUCTURE OF GENERALIZED SEPARABLE
SOLUTIONS 700 5.4.3. SOLUTION OF FUNCTIONAL-DIFFERENTIAL EQUATIONS BY
DIFFERENTIATION 701 5.4.4. SOLUTION OF FUNCTIONAL-DIFFERENTIAL EQUATIONS
BY SPLITTING 705 5.4.5. SIMPLIFIED SCHEME FOR CONSTRUCTING GENERALIZED
SEPARABLE SOLUTIONS 709 5.4.6. TITOV-GALAKTIONOV METHOD 710 5.5. METHOD
OF FUNCTIONAL SEPARATION OF VARIABLES 713 5.5.1. STRUCTURE OF FUNCTIONAL
SEPARABLE SOLUTIONS 713 5.5.2. SPECIAL FUNCTIONAL SEPARABLE SOLUTIONS
713 5.5.3. DIFFERENTIATION METHOD 718 5.5.4. SPLITTING METHOD. REDUCTION
TO A FUNCTIONAL EQUATION WITH TWO VARIABLES 721 5.5.5. SOLUTIONS OF SOME
NONLINEAR FUNCTIONAL EQUATIONS AND THEIR APPLICATIONS . 723 5.6.
GENERALIZED SIMILARITY REDUCTIONS OF NONLINEAR EQUATIONS 728 5.6.1.
CLARKSON-KRUSKAL DIRECT METHOD: A SPECIAL FORM FOR SIMILARITY REDUCTION
. 728 5.6.2. CLARKSON-KRUSKAL DIRECT METHOD: THE GENERAL FORM FOR
SIMILARITY REDUCTION . 731 5.6.3. SOME MODIFICATIONS AND
GENERALIZATIONS 732 5.7. GROUP ANALYSIS METHODS 735 5.7.1. CLASSICAL
METHOD FOR SYMMETRY REDUCTIONS 735 5.7.2. NONCLASSICAL METHOD FOR
SYMMETRY REDUCTIONS 744 5.8. DIFFERENTIAL CONSTRAINTS METHOD 747 5.8.1.
DESCRIPTION OFTHE METHOD 747 5.8.2. FIRST-ORDER DIFFERENTIAL CONSTRAINTS
749 5.8.3. SECOND- AND HIGHER-ORDER DIFFERENTIAL CONSTRAINTS 754 5.8.4.
CONNECTION BETWEEN THE DIFFERENTIAL CONSTRAINTS METHOD AND OTHER METHODS
. 756 5.9. PAINLEVE TEST FOR NONLINEAR EQUATIONS OF MATHEMATICAL
PHYSICS 758 5.9.1. MOVABLE SINGULARITIES OF SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS 758 5.9.2. SOLUTIONS OF PARTIAL DIFFERENTIAL
EQUATIONS WITH A MOVABLE POLE. DESCRIPTION OF THE METHOD 760 5.9.3.
EXAMPLES OF THE^PAINLEVE TEST APPLICATIONS 761 5.10. INVERSE SCATTERING
METHOD 764 5.10.1. LAX PAIR METHOD 764 5.10.2. METHOD BASED ON THE
COMPATIBILITY CONDITION FOR TWO LINEAR EQUATIONS . 766 5.10.3. METHOD
BASED ON LINEAR INTEGRAL EQUATIONS 767 S.I 1. CONSERVATION LAWS 769 S.I
1.1. BASIC DEFINITIONS AND EXAMPLES 769 S.I 1.2. EQUATIONS ADMITTING
VARIATIONAL FORMULATION. NOETHERIAN SYMMETRIES 770 CONTENTS XIU S.12.
HYPERBOLIC SYSTEMS OF QUASILINEAR EQUATIONS 772 5.12.1. CONSERVATION
LAWS. SOME EXAMPLES 772 5.12.2. CAUCHY PROBLEM, RIEMANN PROBLEM, AND
INITIAL-BOUNDARY VALUE PROBLEM . 773 5.12.3. CHARACTERISTIC LINES.
HYPERBOLIC SYSTEMS. RIEMANN INVARIANTS 773 5.12.4. SELF-SIMILAR
CONTINUOUS SOLUTIONS. RAREFACTION WAVES 777 5.12.5. SHOCKWAVES.
RANKINE-HUGONIOT JUMP CONDITIONS 779 5.12.6. EVOLUTIONARY SHOCKS. LAX
CONDITION (VARIOUS FORMULATIONS) 780 5.12.7. SOLUTIONS FOR THE RIEMANN
PROBLEM 782 5.12.8. INITIAL-BOUNDARY VALUE PROBLEMS OF SPECIAL FORM 786
5.12.9. EXAMPLES OF NONSTRICT HYPERBOLIC SYSTEMS 786 REFERENCES 791
INDEX 809 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Poljanin, Andrej D. 1951- |
author_GND | (DE-588)128391251 (DE-588)12839126X |
author_facet | Poljanin, Andrej D. 1951- |
author_role | aut |
author_sort | Poljanin, Andrej D. 1951- |
author_variant | a d p ad adp |
building | Verbundindex |
bvnumber | BV021518442 |
callnumber-first | Q - Science |
callnumber-label | QA372 |
callnumber-raw | QA372 |
callnumber-search | QA372 |
callnumber-sort | QA 3372 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 150 SK 540 |
ctrlnum | (OCoLC)52766184 (DE-599)BVBBV021518442 |
dewey-full | 515/.355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.355 |
dewey-search | 515/.355 |
dewey-sort | 3515 3355 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02375nam a2200565zc 4500</leader><controlfield tag="001">BV021518442</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20061121 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060320s2004 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003058473</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584883553</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">1-58488-355-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52766184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021518442</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA372</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.355</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 150</subfield><subfield code="0">(DE-625)141534:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35-00</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35F20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35G20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Poljanin, Andrej D.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128391251</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of nonlinear partial differential equations</subfield><subfield code="c">Andrei D. Polyanin ; Valentin F. Zaitsev</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Nonlinear partial differential equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 814 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mécanique non linéaire - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles non linéaires - Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear mechanics</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Mechanik</subfield><subfield code="0">(DE-588)4042095-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Mechanik</subfield><subfield code="0">(DE-588)4042095-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zajcev, Valentin F.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)12839126X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.e-streams.com/es0710/es0710*9.html</subfield><subfield code="3">Book review (E-STREAMS)</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014734968&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014734968</subfield></datafield></record></collection> |
id | DE-604.BV021518442 |
illustrated | Illustrated |
index_date | 2024-07-02T14:21:40Z |
indexdate | 2024-07-09T20:37:39Z |
institution | BVB |
isbn | 1584883553 |
language | English |
lccn | 2003058473 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014734968 |
oclc_num | 52766184 |
open_access_boolean | |
owner | DE-29T DE-20 DE-824 DE-634 DE-83 DE-11 |
owner_facet | DE-29T DE-20 DE-824 DE-634 DE-83 DE-11 |
physical | XX, 814 S. Ill., graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Chapman & Hall/CRC |
record_format | marc |
spelling | Poljanin, Andrej D. 1951- Verfasser (DE-588)128391251 aut Handbook of nonlinear partial differential equations Andrei D. Polyanin ; Valentin F. Zaitsev Nonlinear partial differential equations Boca Raton, Fla. [u.a.] Chapman & Hall/CRC 2004 XX, 814 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mécanique non linéaire - Mathématiques Équations différentielles non linéaires - Solutions numériques Mathematik Differential equations, Nonlinear Numerical solutions Nonlinear mechanics Mathematics Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd rswk-swf Nichtlineare Mechanik (DE-588)4042095-4 gnd rswk-swf Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 s DE-604 Nichtlineare Mechanik (DE-588)4042095-4 s Numerische Mathematik (DE-588)4042805-9 s Zajcev, Valentin F. Sonstige (DE-588)12839126X oth http://www.e-streams.com/es0710/es0710*9.html Book review (E-STREAMS) HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014734968&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Poljanin, Andrej D. 1951- Handbook of nonlinear partial differential equations Mécanique non linéaire - Mathématiques Équations différentielles non linéaires - Solutions numériques Mathematik Differential equations, Nonlinear Numerical solutions Nonlinear mechanics Mathematics Numerische Mathematik (DE-588)4042805-9 gnd Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Nichtlineare Mechanik (DE-588)4042095-4 gnd |
subject_GND | (DE-588)4042805-9 (DE-588)4128900-6 (DE-588)4042095-4 |
title | Handbook of nonlinear partial differential equations |
title_alt | Nonlinear partial differential equations |
title_auth | Handbook of nonlinear partial differential equations |
title_exact_search | Handbook of nonlinear partial differential equations |
title_exact_search_txtP | Handbook of nonlinear partial differential equations |
title_full | Handbook of nonlinear partial differential equations Andrei D. Polyanin ; Valentin F. Zaitsev |
title_fullStr | Handbook of nonlinear partial differential equations Andrei D. Polyanin ; Valentin F. Zaitsev |
title_full_unstemmed | Handbook of nonlinear partial differential equations Andrei D. Polyanin ; Valentin F. Zaitsev |
title_short | Handbook of nonlinear partial differential equations |
title_sort | handbook of nonlinear partial differential equations |
topic | Mécanique non linéaire - Mathématiques Équations différentielles non linéaires - Solutions numériques Mathematik Differential equations, Nonlinear Numerical solutions Nonlinear mechanics Mathematics Numerische Mathematik (DE-588)4042805-9 gnd Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Nichtlineare Mechanik (DE-588)4042095-4 gnd |
topic_facet | Mécanique non linéaire - Mathématiques Équations différentielles non linéaires - Solutions numériques Mathematik Differential equations, Nonlinear Numerical solutions Nonlinear mechanics Mathematics Numerische Mathematik Nichtlineare partielle Differentialgleichung Nichtlineare Mechanik |
url | http://www.e-streams.com/es0710/es0710*9.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014734968&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT poljaninandrejd handbookofnonlinearpartialdifferentialequations AT zajcevvalentinf handbookofnonlinearpartialdifferentialequations AT poljaninandrejd nonlinearpartialdifferentialequations AT zajcevvalentinf nonlinearpartialdifferentialequations |