Topics in statistical mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
2005
|
Schriftenreihe: | Imperial College Press advanced physics texts
3 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 319 S. graph. Darst. |
ISBN: | 1860945694 1860945643 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021517103 | ||
003 | DE-604 | ||
005 | 20090720 | ||
007 | t | ||
008 | 060320s2005 d||| |||| 00||| eng d | ||
020 | |a 1860945694 |9 1-86094-569-4 | ||
020 | |a 1860945643 |c hardbound |9 1-86094-564-3 | ||
035 | |a (OCoLC)255021532 | ||
035 | |a (DE-599)BVBBV021517103 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-703 |a DE-355 | ||
050 | 0 | |a QC174.8 | |
082 | 0 | |a 530.13 | |
084 | |a UG 3100 |0 (DE-625)145625: |2 rvk | ||
084 | |a PHY 057f |2 stub | ||
100 | 1 | |a Cowan, Brian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topics in statistical mechanics |c Brian Cowan |
264 | 1 | |a London |b Imperial College Press |c 2005 | |
300 | |a XVI, 319 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Imperial College Press advanced physics texts |v 3 | |
650 | 0 | 7 | |a Statistische Mechanik |0 (DE-588)4056999-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistische Mechanik |0 (DE-588)4056999-8 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Imperial College Press advanced physics texts |v 3 |w (DE-604)BV021517089 |9 3 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014733646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014733646 |
Datensatz im Suchindex
_version_ | 1804135256442273792 |
---|---|
adam_text | CONTENTS
Preface v
1
The Methodology of Statistical Mechanics
1
1.1
Terminology and Methodology
................ 1
1.1.1
Approaches to the subject
................ 1
1.1.2
Description of states
................... 3
1.1.3
Extensivity and the thermodynamic limit
...... 3
1.2
The Fundamental Principles
.................. 4
1.2.1
The laws of thermodynamics
.............. 4
1.2.2
Probabilistic interpretation of the First Law
..... 6
1.2.3
Microscopic basis
f
or entropy
............. 7
1.3
Interactions
—
The Conditions for Equilibrium
....... 8
1.3.1
Thermal interaction
—
Temperature
.......... 8
1.3.2
Volume change
—
Pressure
............... 10
1.3.3
Particle interchange
—
Chemical potential
...... 12
1.3.4
Thermal interaction with the rest of the
world
—
The Boltzmann factor
............ 13
1.3.5
Particle and energy exchange with the rest
of the world
—
The Gibbs factor
............ 15
1.4
Thermodynamic Averages
................... 17
1.4.1
The partition function
.................. 17
1.4.2
Generalised expression for entropy
.......... 18
1.4.3
Free energy
........................ 20
1.4.4
Thermodynamic variables
............... 21
1.4.5
Fluctuations
....................... 21
ix
Topics
in Statistical Mechanics
1.4.6
The grand partition function
.............. 23
1.4.7
The grand potential
................... 24
1.4.8
Thermodynamic variables
............... 25
1.5
Quantum Distributions
..................... 25
1.5.1
Bosons and
fermions
.................. 25
1.5.2
Grand potential for identical particles
......... 28
1.5.3
The Fermi distribution
................. 29
1.5.4
The
Bose
distribution
.................. 30
1.5.5
The classical limit
—
The Maxwell distribution
... 30
1.6
Classical Statistical Mechanics
................. 31
1.6.1
Phase space and classical states
............ 31
1.6.2
Boltzmann and Gibbs phase spaces
.......... 33
1.6.3
The Fundamental Postulate in the classical case
... 34
1.6.4
The classical partition function
............. 35
1.6.5
The equipartition theorem
............... 35
1.6.6
Consequences of equipartition
............. 37
1.6.7
Liouville s theorem
................... 38
1.6.8
Boltzmann s
H
theorem
................. 40
1.7
The Third Law of Thermodynamics
.............. 42
1.7.1
History of the Third Law
................ 42
1.7.2
Entropy
.......................... 43
1.7.3
Quantum viewpoint
................... 44
1.7.4
Unattainability of absolute zero
............ 46
1.7.5
Heat capacity at low temperatures
........... 46
1.7.6
Other consequences of the Third Law
......... 48
1.7.7
Pessimist s statement of the laws of
thermodynamics
..................... 50
Practical Calculations with Ideal Systems
54
2.1
The Density of States
...................... 54
2.1.1
Non-interacting systems
................ 54
2.1.2
Converting sums to integrals
.............. 54
2.1.3
Enumeration of states
.................. 55
2.1.4
Counting states
...................... 56
2.1.5
General expression for the density of states
..... 58
2.1.6
General relation between pressure and energy
. ... 59
2.2
Identical Particles
........................ 61
2.2.1
Indistinguishability
................... 61
2.2.2
Classical approximation
................. 62
Contents xi
2.3 Ideal
Classical
Gas........................ 62
2.3.1 Quantum
approach
................... 62
2.3.2
Classical approach....................
64
2.3.3 Thermodynamic
properties
............... 64
2.3.4 The
1/ЛП
termín
the partition function
........ 66
2.3.5
Entropy of mixing
.................... 67
2.4
Ideal Fermi Gas
......................... 69
2.4.0
Methodology for quantum gases
............ 69
2.4.1
Fermi gas at zero temperature
............. 70
2.4.2
Fermi gas at low temperatures
—
simple model
... 72
2.4.3
Fermi gas at low temperatures
—
series expansion
. 75
Chemical potential
..................... 78
Internal energy
....................... 80
Thermal capacity
...................... 81
2.4.4
More general treatment of low temperature
heat capacity
....................... 81
2.4.5
High temperature behaviour
—
the classical limit
. . 84
2.5
Ideal
Bose
Gas
.......................... 87
2.5.1
General procedure for treating the
Bose
gas
..... 87
2.5.2
Number of particles
—
chemical potential
...... 88
2.5.3
Low temperature behaviour of
Bose
gas
....... 89
2.5.4
Thermal capacity of
Bose
gas
—
below Tc
....... 91
2.5.5
Comparison with superfluid 4He and
other systems
....................... 93
2.5.6
Two-fluid model of superfluid 4He
.......... 95
2.5.7
Elementary excitations
................. 96
2.6
Black Body Radiation
—
The Photon Gas
........... 98
2.6.1
Photons as quantised electromagnetic waves
.... 98
2.6.2
Photons in thermal equilibrium
—
black
body radiation
...................... 99
2.6.3
Planck s formula
.....................100
2.6.4
Internal energy and heat capacity
...........102
2.6.5
Black body radiation in one dimension
........103
2.7
Ideal Paramagnet
........................105
2.7.1
Partition function and free energy
...........105
2.7.2
Thermodynamic properties
...............106
2.7.3
Negative temperatures
.................110
2.7.4
Thermodynamics of negative temperatures
.....112
xii
Topics
in Statistical Mechanics
3
Non-Ideal Gases
120
3.1
Statistical Mechanics
.......................120
3.1.1
The partition function
..................120
3.1.2
Cluster expansion
....................121
3.1.3
Low density approximation
..............122
3.1.4
Equation of state
.....................123
3.2
The Virial Expansion
......................124
3.2.1
Virial coefficients
.....................124
3.2.2
Hard core potential
...................124
3.2.3
Square-well potential
..................126
3.2.4
Lennard-Jones potential
................127
3.2.5
Second virial coefficient for
Bose
and Fermi gas
... 130
3.3
Thermodynamics
........................130
3.3.1
Throttling
......................... 130
3.3.2
Joule-Thomson coefficient
............... 131
3.3.3
Connection with the second virial coefficient
..... 132
3.3.4
Inversion temperature
.................. 134
3.4
Van
der Waals
Equation of State
................ 134
3.4.1
Approximating the partition function
.........134
3.4.2
Van
der Waals
equation
.................135
3.4.3
Microscopic derivation of parameters
.......137
3.4.4
Virial expansion
.....................138
3.5
Other Phenomenological Equations of State
.........139
3.5.1
The
Dieterici
equation
..................139
3.5.2
Virial expansion
.....................139
3.5.3
The Berthelot equation
.................
I40
4
Phase Transitions
143
4.1
Phenomenology
.........................143
4.1.1
Basicideas
........................143
4.1.2
Phase diagrams
.....................145
4.1.3
Symmetry
.........................147
4.1.4
Order of phase transitions
...............148
4.1.5
The order parameter
...................149
4.1.6
Conserved and non-conserved order parameters
. - 151
4.1.7
Critical exponents
....................152
4.1.8
Scaling theory
......................154
4.1.9
Scaling of the free energy
................158
Contents xiii
4.2 First-Order
Transition
—
An
Example
.............159
4.2.1
Coexistence
........................ 159
4.2.2
Van der Waals
fluid...................
162
4.2.3
The Maxwell construction
............... 163
4.2.4
The critical
point
..................... 165
4.2.5
Corresponding states
.................. 166
4.2.6
Dieterici s equation
................... 168
4.2.7
Quantum mechanical effects
.............. 169
4.3
Second-Order Transition
—
An Example
........... 170
4.3.1
The ferromagnet
..................... 170
4.3.2
The Weiss model
..................... 172
4.3.3
Spontaneous magnetisation
.............. 173
4.3.4
Critical behaviour
.................... 176
4.3.5
Magnetic susceptibility
................. 177
4.3.6 Goldstone
modes
.................... 178
4.4
The lsing and Other Models
.................. 180
4.4.1
Ubiquity of the lsing model
.............. 180
4.4.2
Magnetic case of the lsing model
........... 182
4.4.3
lsing model in one dimension
............. 184
4.4.4
lsing model in two dimensions
............. 185
4.4.5
Mean field critical exponents
.............. 188
4.4.6
The XY model
...................... 190
4.4.7
The spherical model
................... 191
4.5
Landau Treatment of Phase Transitions
............ 191
4.5.1
Landau free energy
...................191
4.5.2
Landau free energy for the ferromagnet
.......193
4.5.3
Landau theory
—
second-order transitions
......196
4.5.4
Thermal capacity in the Landau model
........198
4.5.5
Ferromagnet in a magnetic field
............199
4.6
Ferroelectricity
..........................201
4.6.1
Description of the phenomenon
............ 201
4.6.2
Landau free energy
................... 202
4.6.3
Second-order case
.................... 203
4.6.4
First-order case
...................... 204
4.6.5
Entropy and latent heat at the transition
....... 208
4.6.6
Soft modes
........................ 209
4.7
Binary Mixtures
......................... 210
4.7.1
Basic ideas
........................210
4.7.2
Model calculation
....................211
xiv
Topics in Statistical Mechanics
4.7.3
System energy
......................212
4.7.4
Entropy
..........................
213
4.7.5
Free energy
........................214
4.7.6
Phase separation
—
the lever rule
...........215
4.7.7
Phase separation curve
—
thebinodal
........217
4.7.8
The spinodal curve
...................219
4.7.9
Entropy in the ordered phase
..............220
4.7.10
Thermal capacity in the ordered phase
........222
4.7.11
Order of the transition and the critical point
.....223
4.7.12
The critical exponent
β
.................225
4.8
Quantum Phase Transitions
..................226
4.8.1
Introduction
.......................226
4.8.2
The transverse Ising model
...............228
4.8.3
Revision of mean field Ising model
..........228
4.8.4
Application of a transverse field
............230
4.8.5
Transition temperature
.................232
4.8.6
Quantum critical behaviour
..............233
4.8.7
Dimensionality and critical exponents
........234
4.9
Retrospective
...........................236
4.9.1
The existence of order
..................236
4.9.2
Validity of mean field theory
..............237
4.9.3
Features of different phase transition models
.... 238
5
Fluctuations and Dynamics
243
5.1
Fluctuations
...........................244
5.1.1
Probability distribution functions
...........244
5.1.2
Mean behaviour of fluctuations
............246
5.1.3
The autocorrelation function
..............250
5.1.4
The correlation time
...................253
5.2
Brownian Motion
........................254
5.2.1
Kinematics of a Brownian particle
...........255
5.2.2
Short time limit
......................257
5.2.3
Long time limit
......................258
5.3
Langevin s Equation
.......................260
5.3.1
Introduction
.......................260
5.3.2
Separation of
f
orces...................
261
5.3.3
The
Langevin
equation
.................263
5.3.4
Mean square velocity and equipartition
........264
Contents xv
5.3.5
Velocity autocorrelation function
...........265
5.3.6
Electrical analogue of the
Langevin
equation
.....267
5.4
Linear Response
—
Phenomenology
.............268
5.4.1
Definitions
........................268
5.4.2
Response to a sinusoidal excitation
..........270
5.4.3
Fourier representation
..................271
5.4.4
Response to a step excitation
..............272
5.4.5
Response to a delta function excitation
........273
5.4.6
Consequence of the reality of X(r)
...........274
5.4.7
Consequence of causality
................275
5.4.8
Energy considerations
..................277
5.4.9
Static susceptibility
...................278
5.4.10
Relaxation time approximation
............280
5.5
Linear Response
—
Microscopies
...............281
5.5.1
Onsager s hypothesis
.................. 281
5.5.2
Nyquist s theorem
.................... 283
5.5.3
Calculation of the step response function
....... 285
5.5.4
Calculation of the autocorrelation function
...... 286
Appendixes
291
Appendix
1
The Gibbs-Duhem Relation
................291
АЛЛ
Homogeneity of the fundamental relation
......291
A.1.2 The
Euler
relation
....................291
АЛ.З
A caveat
..........................292
A.I.
4
The Gibbs-Duhem relation
...............292
Appendix
2
Thermodynamic Potentials
................293
А.2Л
Equilibrium states
....................293
A.2.2 Constant temperature (and volume): the
Helmholtz potential
...................295
A.2.3 Constant pressure and energy: the
Enthalpy function
....................296
A.2.4 Constant pressure and temperature: the Gibbs
free energy
........................296
A.2.5 Differential expressions for the potentials
......297
A.2.6 Natural variables and the Maxwell relations
.....298
Appendix
3
Mathematica
Notebooks
..................299
A.3.1 Chemical potential of Fermi gas at
low temperatures
....................299
xvi
Topics
in Statistical Mechanics
A.3.2 Internal energy of the Fermi gas at
low temperatures
....................301
A.3.3
Fugacity
of the ideal gas at high
temperatures
—
Fermi, Maxwell and
Bose
cases
. . . 303
A.3.4 Internal energy of the ideal gas at high
temperatures
—
Fermi, Maxwell and
Bose
cases
. . . 307
Appendix
4
Evaluation of the Correlation Function Integral
.....310
A.4.1 Initial domain of integration
..............310
A.4.2 Transformation of variables
..............310
A.4.3 Jacobian of the transformation
.............311
Index
313
|
adam_txt |
CONTENTS
Preface v
1
The Methodology of Statistical Mechanics
1
1.1
Terminology and Methodology
. 1
1.1.1
Approaches to the subject
. 1
1.1.2
Description of states
. 3
1.1.3
Extensivity and the thermodynamic limit
. 3
1.2
The Fundamental Principles
. 4
1.2.1
The laws of thermodynamics
. 4
1.2.2
Probabilistic interpretation of the First Law
. 6
1.2.3
Microscopic basis
f
or entropy
. 7
1.3
Interactions
—
The Conditions for Equilibrium
. 8
1.3.1
Thermal interaction
—
Temperature
. 8
1.3.2
Volume change
—
Pressure
. 10
1.3.3
Particle interchange
—
Chemical potential
. 12
1.3.4
Thermal interaction with the rest of the
world
—
The Boltzmann factor
. 13
1.3.5
Particle and energy exchange with the rest
of the world
—
The Gibbs factor
. 15
1.4
Thermodynamic Averages
. 17
1.4.1
The partition function
. 17
1.4.2
Generalised expression for entropy
. 18
1.4.3
Free energy
. 20
1.4.4
Thermodynamic variables
. 21
1.4.5
Fluctuations
. 21
ix
Topics
in Statistical Mechanics
1.4.6
The grand partition function
. 23
1.4.7
The grand potential
. 24
1.4.8
Thermodynamic variables
. 25
1.5
Quantum Distributions
. 25
1.5.1
Bosons and
fermions
. 25
1.5.2
Grand potential for identical particles
. 28
1.5.3
The Fermi distribution
. 29
1.5.4
The
Bose
distribution
. 30
1.5.5
The classical limit
—
The Maxwell distribution
. 30
1.6
Classical Statistical Mechanics
. 31
1.6.1
Phase space and classical states
. 31
1.6.2
Boltzmann and Gibbs phase spaces
. 33
1.6.3
The Fundamental Postulate in the classical case
. 34
1.6.4
The classical partition function
. 35
1.6.5
The equipartition theorem
. 35
1.6.6
Consequences of equipartition
. 37
1.6.7
Liouville's theorem
. 38
1.6.8
Boltzmann's
H
theorem
. 40
1.7
The Third Law of Thermodynamics
. 42
1.7.1
History of the Third Law
. 42
1.7.2
Entropy
. 43
1.7.3
Quantum viewpoint
. 44
1.7.4
Unattainability of absolute zero
. 46
1.7.5
Heat capacity at low temperatures
. 46
1.7.6
Other consequences of the Third Law
. 48
1.7.7
Pessimist's statement of the laws of
thermodynamics
. 50
Practical Calculations with Ideal Systems
54
2.1
The Density of States
. 54
2.1.1
Non-interacting systems
. 54
2.1.2
Converting sums to integrals
. 54
2.1.3
Enumeration of states
. 55
2.1.4
Counting states
. 56
2.1.5
General expression for the density of states
. 58
2.1.6
General relation between pressure and energy
. . 59
2.2
Identical Particles
. 61
2.2.1
Indistinguishability
. 61
2.2.2
Classical approximation
. 62
Contents xi
2.3 Ideal
Classical
Gas. 62
2.3.1 Quantum
approach
. 62
2.3.2
Classical approach.
64
2.3.3 Thermodynamic
properties
. 64
2.3.4 The
1/ЛП
termín
the partition function
. 66
2.3.5
Entropy of mixing
. 67
2.4
Ideal Fermi Gas
. 69
2.4.0
Methodology for quantum gases
. 69
2.4.1
Fermi gas at zero temperature
. 70
2.4.2
Fermi gas at low temperatures
—
simple model
. 72
2.4.3
Fermi gas at low temperatures
—
series expansion
. 75
Chemical potential
. 78
Internal energy
. 80
Thermal capacity
. 81
2.4.4
More general treatment of low temperature
heat capacity
. 81
2.4.5
High temperature behaviour
—
the classical limit
. . 84
2.5
Ideal
Bose
Gas
. 87
2.5.1
General procedure for treating the
Bose
gas
. 87
2.5.2
Number of particles
—
chemical potential
. 88
2.5.3
Low temperature behaviour of
Bose
gas
. 89
2.5.4
Thermal capacity of
Bose
gas
—
below Tc
. 91
2.5.5
Comparison with superfluid 4He and
other systems
. 93
2.5.6
Two-fluid model of superfluid 4He
. 95
2.5.7
Elementary excitations
. 96
2.6
Black Body Radiation
—
The Photon Gas
. 98
2.6.1
Photons as quantised electromagnetic waves
. 98
2.6.2
Photons in thermal equilibrium
—
black
body radiation
. 99
2.6.3
Planck's formula
.100
2.6.4
Internal energy and heat capacity
.102
2.6.5
Black body radiation in one dimension
.103
2.7
Ideal Paramagnet
.105
2.7.1
Partition function and free energy
.105
2.7.2
Thermodynamic properties
.106
2.7.3
Negative temperatures
.110
2.7.4
Thermodynamics of negative temperatures
.112
xii
Topics
in Statistical Mechanics
3
Non-Ideal Gases
120
3.1
Statistical Mechanics
.120
3.1.1
The partition function
.120
3.1.2
Cluster expansion
.121
3.1.3
Low density approximation
.122
3.1.4
Equation of state
.123
3.2
The Virial Expansion
.124
3.2.1
Virial coefficients
.124
3.2.2
Hard core potential
.124
3.2.3
Square-well potential
.126
3.2.4
Lennard-Jones potential
.127
3.2.5
Second virial coefficient for
Bose
and Fermi gas
. 130
3.3
Thermodynamics
.130
3.3.1
Throttling
. 130
3.3.2
Joule-Thomson coefficient
. 131
3.3.3
Connection with the second virial coefficient
. 132
3.3.4
Inversion temperature
. 134
3.4
Van
der Waals
Equation of State
. 134
3.4.1
Approximating the partition function
.134
3.4.2
Van
der Waals
equation
.135
3.4.3
Microscopic "derivation" of parameters
.137
3.4.4
Virial expansion
.138
3.5
Other Phenomenological Equations of State
.139
3.5.1
The
Dieterici
equation
.139
3.5.2
Virial expansion
.139
3.5.3
The Berthelot equation
.
I40
4
Phase Transitions
143
4.1
Phenomenology
.143
4.1.1
Basicideas
.143
4.1.2
Phase diagrams
.145
4.1.3
Symmetry
.147
4.1.4
Order of phase transitions
.148
4.1.5
The order parameter
.149
4.1.6
Conserved and non-conserved order parameters
. - 151
4.1.7
Critical exponents
.152
4.1.8
Scaling theory
.154
4.1.9
Scaling of the free energy
.158
Contents xiii
4.2 First-Order
Transition
—
An
Example
.159
4.2.1
Coexistence
. 159
4.2.2
Van der Waals
fluid.
162
4.2.3
The Maxwell construction
. 163
4.2.4
The critical
point
. 165
4.2.5
Corresponding states
. 166
4.2.6
Dieterici's equation
. 168
4.2.7
Quantum mechanical effects
. 169
4.3
Second-Order Transition
—
An Example
. 170
4.3.1
The ferromagnet
. 170
4.3.2
The Weiss model
. 172
4.3.3
Spontaneous magnetisation
. 173
4.3.4
Critical behaviour
. 176
4.3.5
Magnetic susceptibility
. 177
4.3.6 Goldstone
modes
. 178
4.4
The lsing and Other Models
. 180
4.4.1
Ubiquity of the lsing model
. 180
4.4.2
Magnetic case of the lsing model
. 182
4.4.3
lsing model in one dimension
. 184
4.4.4
lsing model in two dimensions
. 185
4.4.5
Mean field critical exponents
. 188
4.4.6
The XY model
. 190
4.4.7
The spherical model
. 191
4.5
Landau Treatment of Phase Transitions
. 191
4.5.1
Landau free energy
.191
4.5.2
Landau free energy for the ferromagnet
.193
4.5.3
Landau theory
—
second-order transitions
.196
4.5.4
Thermal capacity in the Landau model
.198
4.5.5
Ferromagnet in a magnetic field
.199
4.6
Ferroelectricity
.201
4.6.1
Description of the phenomenon
. 201
4.6.2
Landau free energy
. 202
4.6.3
Second-order case
. 203
4.6.4
First-order case
. 204
4.6.5
Entropy and latent heat at the transition
. 208
4.6.6
Soft modes
. 209
4.7
Binary Mixtures
. 210
4.7.1
Basic ideas
.210
4.7.2
Model calculation
.211
xiv
Topics in Statistical Mechanics
4.7.3
System energy
.212
4.7.4
Entropy
.
213
4.7.5
Free energy
.214
4.7.6
Phase separation
—
the lever rule
.215
4.7.7
Phase separation curve
—
thebinodal
.217
4.7.8
The spinodal curve
.219
4.7.9
Entropy in the ordered phase
.220
4.7.10
Thermal capacity in the ordered phase
.222
4.7.11
Order of the transition and the critical point
.223
4.7.12
The critical exponent
β
.225
4.8
Quantum Phase Transitions
.226
4.8.1
Introduction
.226
4.8.2
The transverse Ising model
.228
4.8.3
Revision of mean field Ising model
.228
4.8.4
Application of a transverse field
.230
4.8.5
Transition temperature
.232
4.8.6
Quantum critical behaviour
.233
4.8.7
Dimensionality and critical exponents
.234
4.9
Retrospective
.236
4.9.1
The existence of order
.236
4.9.2
Validity of mean field theory
.237
4.9.3
Features of different phase transition models
. 238
5
Fluctuations and Dynamics
243
5.1
Fluctuations
.244
5.1.1
Probability distribution functions
.244
5.1.2
Mean behaviour of fluctuations
.246
5.1.3
The autocorrelation function
.250
5.1.4
The correlation time
.253
5.2
Brownian Motion
.254
5.2.1
Kinematics of a Brownian particle
.255
5.2.2
Short time limit
.257
5.2.3
Long time limit
.258
5.3
Langevin's Equation
.260
5.3.1
Introduction
.260
5.3.2
Separation of
f
orces.
261
5.3.3
The
Langevin
equation
.263
5.3.4
Mean square velocity and equipartition
.264
Contents xv
5.3.5
Velocity autocorrelation function
.265
5.3.6
Electrical analogue of the
Langevin
equation
.267
5.4
Linear Response
—
Phenomenology
.268
5.4.1
Definitions
.268
5.4.2
Response to a sinusoidal excitation
.270
5.4.3
Fourier representation
.271
5.4.4
Response to a step excitation
.272
5.4.5
Response to a delta function excitation
.273
5.4.6
Consequence of the reality of X(r)
.274
5.4.7
Consequence of causality
.275
5.4.8
Energy considerations
.277
5.4.9
Static susceptibility
.278
5.4.10
Relaxation time approximation
.280
5.5
Linear Response
—
Microscopies
.281
5.5.1
Onsager's hypothesis
. 281
5.5.2
Nyquist's theorem
. 283
5.5.3
Calculation of the step response function
. 285
5.5.4
Calculation of the autocorrelation function
. 286
Appendixes
291
Appendix
1
The Gibbs-Duhem Relation
.291
АЛЛ
Homogeneity of the fundamental relation
.291
A.1.2 The
Euler
relation
.291
АЛ.З
A caveat
.292
A.I.
4
The Gibbs-Duhem relation
.292
Appendix
2
Thermodynamic Potentials
.293
А.2Л
Equilibrium states
.293
A.2.2 Constant temperature (and volume): the
Helmholtz potential
.295
A.2.3 Constant pressure and energy: the
Enthalpy function
.296
A.2.4 Constant pressure and temperature: the Gibbs
free energy
.296
A.2.5 Differential expressions for the potentials
.297
A.2.6 Natural variables and the Maxwell relations
.298
Appendix
3
Mathematica
Notebooks
.299
A.3.1 Chemical potential of Fermi gas at
low temperatures
.299
xvi
Topics
in Statistical Mechanics
A.3.2 Internal energy of the Fermi gas at
low temperatures
.301
A.3.3
Fugacity
of the ideal gas at high
temperatures
—
Fermi, Maxwell and
Bose
cases
. . . 303
A.3.4 Internal energy of the ideal gas at high
temperatures
—
Fermi, Maxwell and
Bose
cases
. . . 307
Appendix
4
Evaluation of the Correlation Function Integral
.310
A.4.1 Initial domain of integration
.310
A.4.2 Transformation of variables
.310
A.4.3 Jacobian of the transformation
.311
Index
313 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cowan, Brian |
author_facet | Cowan, Brian |
author_role | aut |
author_sort | Cowan, Brian |
author_variant | b c bc |
building | Verbundindex |
bvnumber | BV021517103 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.8 |
callnumber-search | QC174.8 |
callnumber-sort | QC 3174.8 |
callnumber-subject | QC - Physics |
classification_rvk | UG 3100 |
classification_tum | PHY 057f |
ctrlnum | (OCoLC)255021532 (DE-599)BVBBV021517103 |
dewey-full | 530.13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.13 |
dewey-search | 530.13 |
dewey-sort | 3530.13 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01461nam a2200385 cb4500</leader><controlfield tag="001">BV021517103</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090720 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060320s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860945694</subfield><subfield code="9">1-86094-569-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860945643</subfield><subfield code="c">hardbound</subfield><subfield code="9">1-86094-564-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255021532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021517103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.13</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3100</subfield><subfield code="0">(DE-625)145625:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 057f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cowan, Brian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics in statistical mechanics</subfield><subfield code="c">Brian Cowan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 319 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Imperial College Press advanced physics texts</subfield><subfield code="v">3</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Imperial College Press advanced physics texts</subfield><subfield code="v">3</subfield><subfield code="w">(DE-604)BV021517089</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014733646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014733646</subfield></datafield></record></collection> |
id | DE-604.BV021517103 |
illustrated | Illustrated |
index_date | 2024-07-02T14:21:14Z |
indexdate | 2024-07-09T20:37:37Z |
institution | BVB |
isbn | 1860945694 1860945643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014733646 |
oclc_num | 255021532 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR |
physical | XVI, 319 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Imperial College Press |
record_format | marc |
series | Imperial College Press advanced physics texts |
series2 | Imperial College Press advanced physics texts |
spelling | Cowan, Brian Verfasser aut Topics in statistical mechanics Brian Cowan London Imperial College Press 2005 XVI, 319 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Imperial College Press advanced physics texts 3 Statistische Mechanik (DE-588)4056999-8 gnd rswk-swf Statistische Mechanik (DE-588)4056999-8 s DE-604 Imperial College Press advanced physics texts 3 (DE-604)BV021517089 3 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014733646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cowan, Brian Topics in statistical mechanics Imperial College Press advanced physics texts Statistische Mechanik (DE-588)4056999-8 gnd |
subject_GND | (DE-588)4056999-8 |
title | Topics in statistical mechanics |
title_auth | Topics in statistical mechanics |
title_exact_search | Topics in statistical mechanics |
title_exact_search_txtP | Topics in statistical mechanics |
title_full | Topics in statistical mechanics Brian Cowan |
title_fullStr | Topics in statistical mechanics Brian Cowan |
title_full_unstemmed | Topics in statistical mechanics Brian Cowan |
title_short | Topics in statistical mechanics |
title_sort | topics in statistical mechanics |
topic | Statistische Mechanik (DE-588)4056999-8 gnd |
topic_facet | Statistische Mechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014733646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021517089 |
work_keys_str_mv | AT cowanbrian topicsinstatisticalmechanics |