Homotopy limit functors on model categories and homotopical categories:
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2004]
|
Schriftenreihe: | Mathematical surveys and monographs
Volume 113 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | vii, 181 Seiten Diagramme 27 cm |
ISBN: | 0821837036 0821839756 9780821839751 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021513228 | ||
003 | DE-604 | ||
005 | 20230907 | ||
007 | t | ||
008 | 060316s2004 xxu|||| |||| 00||| eng d | ||
010 | |a 2004059481 | ||
020 | |a 0821837036 |c alk. paper |9 0-8218-3703-6 | ||
020 | |a 0821839756 |9 0-8218-3975-6 | ||
020 | |a 9780821839751 |9 978-0-8218-3975-1 | ||
035 | |a (OCoLC)56615653 | ||
035 | |a (DE-599)BVBBV021513228 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-384 |a DE-11 |a DE-19 | ||
050 | 0 | |a QA612.7 | |
082 | 0 | |a 514/.24 |2 22 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Dwyer, William G. |d 1947- |e Verfasser |0 (DE-588)17322590X |4 aut | |
245 | 1 | 0 | |a Homotopy limit functors on model categories and homotopical categories |c William G. Dwyer Philip S. Hirschhorn Daniel M. Kan Jeffrey H. Smith |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2004] | |
264 | 4 | |c © 2004 | |
300 | |a vii, 181 Seiten |b Diagramme |c 27 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematical surveys and monographs |v Volume 113 | |
650 | 7 | |a Teoria das categorias |2 larpcal | |
650 | 7 | |a Álgebra |2 larpcal | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Hirschhorn, Philip S. |d 1952- |e Verfasser |0 (DE-588)140253068 |4 aut | |
700 | 1 | |a Kan, Daniel Marinus |e Verfasser |0 (DE-588)1027793592 |4 aut | |
700 | 1 | |a Smith, Jeffrey H. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-1340-8 |
830 | 0 | |a Mathematical surveys and monographs |v Volume 113 |w (DE-604)BV000018014 |9 113 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014729819&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014729819 |
Datensatz im Suchindex
_version_ | 1804135250621628416 |
---|---|
adam_text | Contents
Preface vii
Part I. Model Categories 1
Chapter I. An Overview 3
1. Introduction 3
2. Slightly unconventional terminology 3
3. Problems involving the homotopy category 5
4. Problem involving the homotopy colimit functors 8
5. The emergence of the current monograph 11
6. A preview of part II 12
Chapter II. Model Categories and Their Homotopy Categories 19
7. Introduction 19
8. Categorical and homotopical preliminaries 22
9. Model categories 25
10. The homotopy category 29
11. Homotopical comments 32
Chapter III. Quillen Functors 35
12. Introduction 35
13. Homotopical uniqueness 38
14. Quillen functors 40
15. Approximations 42
16. Derived adjunctions 44
17. Quillen equivalences 48
18. Homotopical comments 51
Chapter IV. Homotopical Cocompleteness and Completeness of Model
Categories 55
19. Introduction 55
20. Homotopy colimit and limit functors 59
21. Homotopical cocompleteness and completeness 62
22. Reedy model categories 65
23. Virtually cofibrant and fibrant diagrams 69
24. Homotopical comments 72
Part II. Homotopical Categories 75
Chapter V. Summary of Part II 77
25. Introduction 77
v
vi CONTENTS
26. Homotopical categories 78
27. The hom sets of the homotopy categories 80
28. Homotopical uniqueness 82
29. Deformable functors 83
30. Homotopy colimit and limit functors and homotopical ones 85
Chapter VI. Homotopical Categories and Homotopical Functors 89
31. Introduction 89
32. Universes and categories 93
33. Homotopical categories 96
34. A colimit description of the hom sets of the homotopy category 101
35. A Grothendieck construction 103
36. 3 arrow calculi 107
37. Homotopical uniqueness 112
38. Homotopically initial and terminal objects 115
Chapter VII. Deformable Functors and Their Approximations 119
39. Introduction 119
40. Deformable functors 123
41. Approximations 126
42. Compositions 130
43. Induced partial adjunctions 133
44. Derived adjunctions 138
45. The Quillen condition 143
Chapter VIII. Homotopy Colimit and Limit Functors
and Homotopical Ones 147
46. Introduction 147
47. Homotopy colimit and limit functors 148
48. Left and right systems 152
49. Homotopical cocompleteness and completeness (special case) 159
50. Homotopical colimit and limit functors 161
51. Homotopical cocompleteness and completeness (general case) 166
Index 171
Bibliography 181
|
adam_txt |
Contents
Preface vii
Part I. Model Categories 1
Chapter I. An Overview 3
1. Introduction 3
2. Slightly unconventional terminology 3
3. Problems involving the homotopy category 5
4. Problem involving the homotopy colimit functors 8
5. The emergence of the current monograph 11
6. A preview of part II 12
Chapter II. Model Categories and Their Homotopy Categories 19
7. Introduction 19
8. Categorical and homotopical preliminaries 22
9. Model categories 25
10. The homotopy category 29
11. Homotopical comments 32
Chapter III. Quillen Functors 35
12. Introduction 35
13. Homotopical uniqueness 38
14. Quillen functors 40
15. Approximations 42
16. Derived adjunctions 44
17. Quillen equivalences 48
18. Homotopical comments 51
Chapter IV. Homotopical Cocompleteness and Completeness of Model
Categories 55
19. Introduction 55
20. Homotopy colimit and limit functors 59
21. Homotopical cocompleteness and completeness 62
22. Reedy model categories 65
23. Virtually cofibrant and fibrant diagrams 69
24. Homotopical comments 72
Part II. Homotopical Categories 75
Chapter V. Summary of Part II 77
25. Introduction 77
v
vi CONTENTS
26. Homotopical categories 78
27. The hom sets of the homotopy categories 80
28. Homotopical uniqueness 82
29. Deformable functors 83
30. Homotopy colimit and limit functors and homotopical ones 85
Chapter VI. Homotopical Categories and Homotopical Functors 89
31. Introduction 89
32. Universes and categories 93
33. Homotopical categories 96
34. A colimit description of the hom sets of the homotopy category 101
35. A Grothendieck construction 103
36. 3 arrow calculi 107
37. Homotopical uniqueness 112
38. Homotopically initial and terminal objects 115
Chapter VII. Deformable Functors and Their Approximations 119
39. Introduction 119
40. Deformable functors 123
41. Approximations 126
42. Compositions 130
43. Induced partial adjunctions 133
44. Derived adjunctions 138
45. The Quillen condition 143
Chapter VIII. Homotopy Colimit and Limit Functors
and Homotopical Ones 147
46. Introduction 147
47. Homotopy colimit and limit functors 148
48. Left and right systems 152
49. Homotopical cocompleteness and completeness (special case) 159
50. Homotopical colimit and limit functors 161
51. Homotopical cocompleteness and completeness (general case) 166
Index 171
Bibliography 181 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dwyer, William G. 1947- Hirschhorn, Philip S. 1952- Kan, Daniel Marinus Smith, Jeffrey H. |
author_GND | (DE-588)17322590X (DE-588)140253068 (DE-588)1027793592 |
author_facet | Dwyer, William G. 1947- Hirschhorn, Philip S. 1952- Kan, Daniel Marinus Smith, Jeffrey H. |
author_role | aut aut aut aut |
author_sort | Dwyer, William G. 1947- |
author_variant | w g d wg wgd p s h ps psh d m k dm dmk j h s jh jhs |
building | Verbundindex |
bvnumber | BV021513228 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.7 |
callnumber-search | QA612.7 |
callnumber-sort | QA 3612.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 300 SK 320 |
ctrlnum | (OCoLC)56615653 (DE-599)BVBBV021513228 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02135nam a2200517 cb4500</leader><controlfield tag="001">BV021513228</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230907 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060316s2004 xxu|||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004059481</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821837036</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-8218-3703-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821839756</subfield><subfield code="9">0-8218-3975-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821839751</subfield><subfield code="9">978-0-8218-3975-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56615653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021513228</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dwyer, William G.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)17322590X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homotopy limit functors on model categories and homotopical categories</subfield><subfield code="c">William G. Dwyer Philip S. Hirschhorn Daniel M. Kan Jeffrey H. Smith</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2004]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 181 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">27 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 113</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria das categorias</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hirschhorn, Philip S.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140253068</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kan, Daniel Marinus</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027793592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Jeffrey H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-1340-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 113</subfield><subfield code="w">(DE-604)BV000018014</subfield><subfield code="9">113</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014729819&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014729819</subfield></datafield></record></collection> |
id | DE-604.BV021513228 |
illustrated | Not Illustrated |
index_date | 2024-07-02T14:19:34Z |
indexdate | 2024-07-09T20:37:31Z |
institution | BVB |
isbn | 0821837036 0821839756 9780821839751 |
language | English |
lccn | 2004059481 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014729819 |
oclc_num | 56615653 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-384 DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-355 DE-BY-UBR DE-384 DE-11 DE-19 DE-BY-UBM |
physical | vii, 181 Seiten Diagramme 27 cm |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | American Mathematical Society |
record_format | marc |
series | Mathematical surveys and monographs |
series2 | Mathematical surveys and monographs |
spelling | Dwyer, William G. 1947- Verfasser (DE-588)17322590X aut Homotopy limit functors on model categories and homotopical categories William G. Dwyer Philip S. Hirschhorn Daniel M. Kan Jeffrey H. Smith Providence, Rhode Island American Mathematical Society [2004] © 2004 vii, 181 Seiten Diagramme 27 cm txt rdacontent n rdamedia nc rdacarrier Mathematical surveys and monographs Volume 113 Teoria das categorias larpcal Álgebra larpcal Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 s b DE-604 Hirschhorn, Philip S. 1952- Verfasser (DE-588)140253068 aut Kan, Daniel Marinus Verfasser (DE-588)1027793592 aut Smith, Jeffrey H. Verfasser aut Erscheint auch als Online-Ausgabe 978-1-4704-1340-8 Mathematical surveys and monographs Volume 113 (DE-604)BV000018014 113 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014729819&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dwyer, William G. 1947- Hirschhorn, Philip S. 1952- Kan, Daniel Marinus Smith, Jeffrey H. Homotopy limit functors on model categories and homotopical categories Mathematical surveys and monographs Teoria das categorias larpcal Álgebra larpcal Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd |
subject_GND | (DE-588)4128142-1 |
title | Homotopy limit functors on model categories and homotopical categories |
title_auth | Homotopy limit functors on model categories and homotopical categories |
title_exact_search | Homotopy limit functors on model categories and homotopical categories |
title_exact_search_txtP | Homotopy limit functors on model categories and homotopical categories |
title_full | Homotopy limit functors on model categories and homotopical categories William G. Dwyer Philip S. Hirschhorn Daniel M. Kan Jeffrey H. Smith |
title_fullStr | Homotopy limit functors on model categories and homotopical categories William G. Dwyer Philip S. Hirschhorn Daniel M. Kan Jeffrey H. Smith |
title_full_unstemmed | Homotopy limit functors on model categories and homotopical categories William G. Dwyer Philip S. Hirschhorn Daniel M. Kan Jeffrey H. Smith |
title_short | Homotopy limit functors on model categories and homotopical categories |
title_sort | homotopy limit functors on model categories and homotopical categories |
topic | Teoria das categorias larpcal Álgebra larpcal Homotopy theory Homotopietheorie (DE-588)4128142-1 gnd |
topic_facet | Teoria das categorias Álgebra Homotopy theory Homotopietheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014729819&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000018014 |
work_keys_str_mv | AT dwyerwilliamg homotopylimitfunctorsonmodelcategoriesandhomotopicalcategories AT hirschhornphilips homotopylimitfunctorsonmodelcategoriesandhomotopicalcategories AT kandanielmarinus homotopylimitfunctorsonmodelcategoriesandhomotopicalcategories AT smithjeffreyh homotopylimitfunctorsonmodelcategoriesandhomotopicalcategories |