Water resources systems planning and management: an introduction to methods, models and applications
Droughts, floods and pollution are frequently viewed as constraints to economic and social development. How too little, too much or over-polluted water is managed can determine the extent to which this critical resource contributes to human welfare. How can those managing our water resources do so i...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
UNESCO
2005
|
Schriftenreihe: | Studies and reports in hydrology
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Droughts, floods and pollution are frequently viewed as constraints to economic and social development. How too little, too much or over-polluted water is managed can determine the extent to which this critical resource contributes to human welfare. How can those managing our water resources do so in a way that meets society's changing objectives and needs? This publication considers how water resources can become more integrated and sustainable. It introduces the science and art of modelling in support of water resources planning and management. The authors draw on their extensive experience to provide a variety of management tools that can be used in water resources system planning, development and management projects worldwide.--Publisher's description. |
Beschreibung: | XX, 680 S. Ill., graph. Darst., Kt. |
ISBN: | 9231039989 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021506006 | ||
003 | DE-604 | ||
005 | 20060807 | ||
007 | t | ||
008 | 060310s2005 abd| |||| 00||| eng d | ||
020 | |a 9231039989 |9 92-3-103998-9 | ||
035 | |a (OCoLC)65637694 | ||
035 | |a (DE-599)BVBBV021506006 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-634 | ||
050 | 0 | |a TC405 | |
082 | 0 | |a 333.911 |2 22 | |
084 | |a RB 10363 |0 (DE-625)142220:12708 |2 rvk | ||
100 | 1 | |a Loucks, Daniel P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Water resources systems planning and management |b an introduction to methods, models and applications |c Daniel P. Loucks and Eelco van Beek |
264 | 1 | |a Paris |b UNESCO |c 2005 | |
300 | |a XX, 680 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Studies and reports in hydrology | |
520 | 3 | |a Droughts, floods and pollution are frequently viewed as constraints to economic and social development. How too little, too much or over-polluted water is managed can determine the extent to which this critical resource contributes to human welfare. How can those managing our water resources do so in a way that meets society's changing objectives and needs? This publication considers how water resources can become more integrated and sustainable. It introduces the science and art of modelling in support of water resources planning and management. The authors draw on their extensive experience to provide a variety of management tools that can be used in water resources system planning, development and management projects worldwide.--Publisher's description. | |
650 | 4 | |a Ressources en eau - Exploitation - Planification | |
650 | 4 | |a Systèmes, Analyse de | |
650 | 7 | |a Waterhuishouding |2 gtt | |
650 | 7 | |a Wetenschappelijke technieken |2 gtt | |
650 | 4 | |a Wissenschaftliches Arbeiten | |
650 | 4 | |a System analysis | |
650 | 4 | |a Water resources development |x Planning | |
650 | 0 | 7 | |a Wasserwirtschaft |0 (DE-588)4064821-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wasserreserve |0 (DE-588)4124439-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wasserwirtschaft |0 (DE-588)4064821-7 |D s |
689 | 0 | 1 | |a Wasserreserve |0 (DE-588)4124439-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Beek, Eelco van |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014722682&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014722682 |
Datensatz im Suchindex
_version_ | 1804135239494139904 |
---|---|
adam_text | Introduction xix
1. Water Resources Planning and Management:
An Overview 3
1. Introduction 3
2. Planning and Management Issues: Some Case
Studies 4
2.1. Kurds Seek Land, Turks Want Water 4
2.2. Sharing the Water of the Jordan River Basin: Is
There a Way? 6
2.3. Mending the Mighty and Muddy Missouri 7
2.4. The Endangered Salmon 7
2.5. The Yellow River: How to Keep the Water
Flowing 9
2.6. Lake Source Cooling: Aid to Environment or
Threat to Lake? 10
2.7. Managing Water in the Florida Everglades 11
2.8. Restoration of Europe s Rivers and Seas 13
2.8.1. The Rhine 13
2.8.2. The Danube 14
2.8.3. The North and Baltic Seas 15
2.9. Egypt and the Nile: Limits to Agricultural
Growth 16
2.10. Damming the Mekong 16
3. So, Why Plan, Why Manage? 18
3.1. Too Little Water 20
3.2. Too Much Water 20
3.3. Polluted Water 21
3.4. Degradation of Aquatic and Riparian
Ecosystems 21
3.5. Other Planning and Management Issues 21
System Components, Planning Scales and
Sustainability 22
4.1. Spatial Scales for Planning and
Management 22
4.2. Temporal Scales for Planning and
Management 23
4.3. Sustainability 23
Planning and Management 24
5.1. Approaches 24
5.1.1. Top-Down Planning and
Management 25
5.1.2. Bottom-Up Planning and
Management 25
5.1.3. Integrated Water Resources
Management 26
5.2. Planning and Management Aspects 26
5.2.1. Technical Aspects 26
5.2.2. Economic and Financial Aspects 27
5.2.3. Institutional Aspects 28
5.3. Analyses for Planning and Management 28
5.4. Models for Impact Prediction and
Evaluation 30
5.5. Shared-Vision Modelling 31
5.6. Adaptive Integrated Policies 31
5.7. Post-Planning and Management Issues 32
6. Meeting the Planning and Management Challenges:
A Summary 32
7. References 34
2. Water Resource Systems Modelling: Its Role in
Planning and Management 39
1. Introduction 39
2. Modelling of Water Resources Systems 41
2.1. An Example Modelling Approach 41
2.2. Characteristics of Problems to be Modelled 41
3. Challenges in Water Resources Systems
Modelling 43
3.1. Challenges of Planners and Managers 43
3.2. Challenges of Modelling 44
3.3. Challenges of Applying Models in Practice 45
4. Developments in Modelling 46
4.1. Modelling Technology 46
4.2. Decision Support Systems 47
4.2.1. Shared-Vision Modelling 49
4.2.2. Open Modelling Systems 51
4.2.3. Example of a DSS for River Flood
Management 51
5. Conclusions 54
6. References 55
3. Modelling Methods for Evaluating
Alternatives 59
1. Introduction 59
1.2. Model Components 60
2. Plan Formulation and Selection 61
2.1. Plan Formulation 61
2.2. Plan Selection 63
3. Modelling Methods: Simulation or Optimization 64
3.1. A Simple Planning Example 65
3.2. Simulation Modelling Approach 66
3.3. Optimization Modelling Approach 66
3.4. Simulation Versus Optimization 67
3.5. Types of Models 69
3.5.1. Types of Simulation Models 69
3.5.2. Types of Optimization Models 70
4. Model Development 71
5. Managing Modelling Projects 72
5.1. Creating a Model Journal 72
5.2. Initiating the Modelling Project 72
5.3. Selecting the Model 73
5.4. Analysing the Model 74
5.5. Using the Model 74
5.6. Interpreting Model Results 75
5.7. Reporting Model Results 75
6. Issues of Scale 75
6.1. Process Scale 75
6.2. Information Scale 76
6.3. Model Scale 76
6.4. Sampling Scale 76
6.5. Selecting the Right Scales 76
7. Conclusions 77
8. References 77
k. Optimization Methods 81
1. Introduction 81
2. Comparing Time Streams of Economic Benefits
and Costs 81
2.1. Interest Rates 82
2.2. Equivalent Present Value 82
2.3. Equivalent Annual Value 82
3. Non-linear Optimization Models and Solution
Procedures 83
3.1. Solution Using Calculus 84
3.2. Solution Using Hill Climbing 84
3.3. Solution Using Lagrange Multipliers 86
3.3.1. Approach 86
3.3.2. Meaning of the Lagrange
Multiplier 88
4. Dynamic Programming 90
4.1. Dynamic Programming Networks and Recursive
Equations 90
4.2. Backward-Moving Solution Procedure 92
4.3. Forward-Moving Solution Procedure 95
4.4. Numerical Solutions 96
4.5. Dimensionality 97
4.6. Principle of Optimality 97
4.7. Additional Applications 97
4.7.1. Capacity Expansion 98
4.7.2. Reservoir Operation 102
4.8. General Comments on Dynamic
Programming 112
5. Linear Programming 113
5.1. Reservoir Storage Capacity-Yield Models 114
5.2. A Water Quality Management Problem 117
5.2.1. Model Calibration 118
5.2.2. Management Model 119
5.3. A Groundwater Supply Example 124
5.3.1. A Simplified Model 125
5.3.2. A More Detailed Model 126
5.3.3. An Extended Model 127
5.3.4. Piece wise Linearization Methods 128
5.4. A Review of Linearization Methods 129
6. A Brief Review 132
7. References 132
5. Fuzzy Optimization 135
1. Fuzziness: An Introduction 135
1.1. Fuzzy Membership Functions 135
1.2. Membership Function Operations 136
2. Optimization in Fuzzy Environments 136
3. Fuzzy Sets for Water Allocation 138
4. Fuzzy Sets for Reservoir Storage and
Release Targets 139
5. Fuzzy Sets for Water Quality Management 140
6. Summary 144
7. Additional References (Further Reading) 144
6. Data-Based Models 147
1. Introduction 147
2. Artificial Neural Networks 148
2.1. The Approach 148
2.2. An Example 151
2.3. Recurrent Neural Networks for the Modelling of
Dynamic Hydrological Systems 153
2.4. Some Applications 153
2.4.1. RNN Emulation of a Sewerage System in
the Netherlands 154
2.4.2. Water Balance in Lake IJsselmeer 155
3. Genetic Algorithms 156
3.1. The Approach 156
3.2. Example Iterations 158
4. Genetic Programming 159
5. Data Mining 163
5.1. Data Mining Methods 163
6. Conclusions 164
7. References 165
7. Concepts in Probability, Statistics and
Stochastic Modelling 169
1. Introduction 169
2. Probability Concepts and Methods 170
2.1. Random Variables and Distributions 170
2.2. Expectation 173
2.3. Quantiles, Moments and Their Estimators 173
2.4. L-Moments and Their Estimators 176
3. Distributions of Random Events 179
3.1. Parameter Estimation 179
3.2. Model Adequacy 182
3.3. Normal and Lognormal Distributions 186
3.4. Gamma Distributions 187
3.5. Log-Pearson Type 3 Distribution 189
3.6. Gumbel and GEV Distributions 190
3.7. L-Moment Diagrams 192
4. Analysis of Censored Data 193
5. Regionalization and Index-Flood Method 195
6. Partial Duration Series 196
7. Stochastic Processes and Time Series 197
7.1. Describing Stochastic Processes 198
7.2. Markov Processes and Markov Chains 198
7.3. Properties of Time-Series Statistics 201
8. Synthetic Streamflow Generation 203
8.1. Introduction 203
8.2. Streamflow Generation Models 205
8.3. A Simple Autoregressive Model 206
8.4. Reproducing the Marginal Distribution 208
8.5. Multivariate Models 209
8.6. Multi-Season, Multi-Site Models 211
8.6.1. Disaggregation Models 211
8.6.2. Aggregation Models 213
9. Stochastic Simulation 214
9.1. Generating Random Variables 214
9.2. River Basin Simulation. 215
9.3. The Simulation Model 216
9.4. Simulation of the Basin 216
9.5. Interpreting Simulation Output 217
10. Conclusions 223
11. References 223
8. Modelling Uncertainty 231
1. Introduction 231
2. Generating Values From Known Probability
Distributions 231
3. Monte Carlo Simulation 233
4. Chance Constrained Models 235
5. Markov Processes and Transition
Probabilities 236
6. Stochastic Optimization 239
6.1. Probabilities of Decisions 243
6.2. A Numerical Example 244
7. Conclusions 251
8. References 251
9. Model Sensitivity and Uncertainty
Analysis 255
1. Introduction 255
2. Issues, Concerns and Terminology 256
3. Variability and Uncertainty In Model Output 258
3.1. Natural Variability 259
3.2. Knowledge Uncertainty 260
3.2.1. Parameter Value Uncertainty 260
3.2.2. Model Structural and Computational
Errors 260
3.3. Decision Uncertainty 260
4. Sensitivity and Uncertainty Analyses 261
4.1. Uncertainty Analyses 261
4.1.1. Model and Model Parameter
Uncertainties 262
4.1.2. What Uncertainty Analysis Can
Provide 265
4.2. Sensitivity Analyses 265
4.2.1. Sensitivity Coefficients 267
4.2.2. A Simple Deterministic Sensitivity
Analysis Procedure 267
4.2.3. Multiple Errors and Interactions 269
4.2.4. First-Order Sensitivity Analysis 270
4.2.5. Fractional Factorial Design
Method 272
4.2.6. Monte Carlo Sampling Methods 273
5. Performance Indicator Uncertainties 278
5.1. Performance Measure Target Uncertainty 278
5.2. Distinguishing Differences Between Performance
Indicator Distributions 281
6. Communicating Model Output Uncertainty 283
7. Conclusions 285
8. References 287
10. Performance Criteria 293
1. Introduction 293
2. Informed Decision-Making 294
3. Performance Criteria and General Alternatives 295
3.1. Constraints On Decisions 296
3.2. Tradeoffs 296
4. Quantifying Performance Criteria 297
4.1. Economic Criteria 298
4.1.1. Benefit and Cost Estimation 299
4.1.2. A Note Concerning Costs 302
4.1.3. Long and Short-Run Benefit
Functions 303
4.2. Environmental Criteria 305
4.3. Ecological Criteria 306
4.4. Social Criteria 308
5. Multi-Criteria Analyses 309
5.1. Dominance 310
5.2. The Weighting Method 311
5.3. The Constraint Method 312
5.4. Satisficing 313
5.5. Lexicography 313
5.6. Indifference Analysis 313
5.7. Goal Attainment 314
5.8. Goal-Programming 315
5.9. Interactive Methods 315
5.10. Plan Simulation and Evaluation 316
6. Statistical Summaries of Performance Cntena 320
6.1. Reliability 321
6.2. Resilience 321
6.3. Vulnerability 321
7. Conclusions 321
8. References 322
11. River Basin Planning Models 325
1. Introduction 325
1.1. Scales of River Basin Processes 326
1.2. Model Time Periods 327
1.3. Modelling Approaches for River Basin
Management 328
2. Modelling the Natural Resources System and Related
Infrastructure 328
2.1. Watershed Hydrological Models 328
2.1.1. Classification of Hydrological Models 329
2.1.2. Hydrological Processes: Surface Water 329
2.1.3. Hydrological Processes:
Groundwater 333
2.1.4. Modelling Groundwater: Surface Water
Interactions 336
2.1.5. Streamflow Estimation 339
2.1.6. Streamflow Routing 341
2.2. Lakes and Reservoirs 342
2.2.1. Estimating Active Storage Capacity 343
2.2.2. Reservoir Storage-Yield Functions 344
2.2.3. Evaporation Losses 346
2.2.4. Over and Within-Year Reservoir Storage
and Yields 347
2.2.5. Estimation of Active Reservoir Storage
Capacities for Specified Yields 348
2.3. Wetlands and Swamps 354
2.4. Water Quality and Ecology- 354
3. Modelling the Socio-Economic Functions In a River
Basin 355
3.1. Withdrawals and Diversions 355
3.2. Domestic, Municipal and Industrial Water
Demand 356
3.3. Agricultural Water Demand 357
3.4. Hydroelectric Power Production 357
3.5. Flood Risk Reduction 359
3.5.1. Reservoir Flood Storage Capacity 360
3.5.2. Channel Capacity 362
3.6. Lake-Based Recreation 362
4. River Basin Analysis 363
4.1. Model Synthesis 363
4.2. Modelling Approach Using Optimization 364
4.3. Modelling Approach Using Simulation 365
4.4. Optimization and/or Simulation 368
4.5. Project Scheduling 368
5. Conclusions 371
6. References 371
12. Water Quality Modelling and Prediction 377
1. Introduction 377
2. Establishing Ambient Water Quality Standards 378
2.1. Water-Use Criteria 379
3. Water Quality Model Use 379
3.1. Model Selection Criteria 380
3.2. Model Chains 381
3.3. Model Data 382
4. Water Quality Model Processes 383
4.1. Mass-Balance Principles 384
4.1.1. Advective Transport 385
4.1.2. Dispersive Transport 385
4.1.3. Mass Transport by Advection and
Dispersion 385
4.2. Steady-State Models 386
4.3. Design Streamflows for Water Quality 388
4.4. Temperature 389
4.5. Sources and Sinks 390
4.6. First-Order Constituents 390
4.7. Dissolved Oxygen 390
4.8. Nutrients and Eutrophication 393
4.9. Toxic Chemicals 396
4.9.1. Adsorbed and Dissolved Pollutants 396
4.9.2. Heavy Metals 398
4.9.3. Organic Micro-pollutants 399
4.9.4. Radioactive Substances 400
4.10. Sediments 400
4.10.1. Processes and Modelling
Assumptions 401
4.10.2. Sedimentation 401
4.10.3. Resuspension 401
4.10.4. Burial 402
4.10.5. Bed Shear Stress 402
4.11. Lakes and Reservoirs 403
4.11.1. Downstream Characteristics 405
4.11.2. Lake Quality Models 406
4.11.3. Stratified Impoundments 407
5. An Algal Biomass Prediction Model 408
5.1. Nutrient Cycling 408
5.2. Mineralization of Detritus 408
5.3. Settling of Detritus and Inorganic Particulate
Phosphorus 409
5.4. Resuspension of Detritus and Inorganic
Particulate Phosphorus 409
5.5. The Nitrogen Cycle 409
5.5.1. Nitrification and Denitrification 409
5.5.2. Inorganic Nitrogen 410
5.6. Phosphorus Cycle 410
5.7. Silica Cycle 411
5.8. Summary of Nutrient Cycles 411
5.9. Algae Modelling 412
5.9.1. Algae Species Concentrations 412
5.9.2. Nutrient Recycling 413
5.9.3. Energy Limitation 413
5.9.4. Growth Limits 414
5.9.5. Mortality Limits 414
5.9.6. Oxygen-Related Processes 415
6. Simulation Methods 416
6.1. Numerical Accuracy 416
6.2. Traditional Approach 417
6.3. Backtracking Approach 418
6.4. Model Uncertainty 420
7. Conclusions: Implementing a Water Quality
Management Policy 421
8. References 422
13. Urban Water Systems 427
1. Introduction 427
2. Drinking Water 428
2.1. Water Demand 428
2.2. Water Treatment 428
2.3. Water Distribution 430
2.3.1. Open Channel Networks 432
2.3.2. Pressure Pipe Networks 432
2.3.3. Water Quality 434
3. Wastewater 434
3.1. Wastewater Production 434
3.2. Sewer Networks 434
3.3. Wastewater Treatment 435
4. Urban Drainage 437
4.1. Rainfall 437
4.1.1. Time Series Versus Design Storms 437
4.1.2. Spatial-Temporal Distributions 438
4.1.3. Synthetic Rainfall 438
4.1.4. Design Rainfall 438
4.2. Runoff 439
4.2.1. Runoff Modelling 439
4.2.2. The Horton Infiltration Model 441
4.2.3. The US Soil Conservation Method (SCS)
Model 442
4.2.4. Other Rainfall-Runoff Models 444
4.3. Surface Pollutant Loading and Washoff 445
4.3.1. Surface Loading 446
4.3.2. Surface Washoff 446
4.3.3. Stormwater Sewer and Pipe
Flow 447
4.3.4. Sediment Transport 448
4.3.5. Structures and Special Flow
Characteristics 448
4.4. Water Quality Impacts 448
4.4.1. Slime 448
4.4.2. Sediment 448
4.4.3. Pollution Impact on the
Environment 448
4.4.4. Bacteriological and Pathogenic
Factors 451
4.4.5. Oil and Toxic Contaminants 451
4.4.6. Suspended Solids 452
5. Urban Water System Modelling 452
5.1. Model Selection 452
5.2. Optimization 453
5.3. Simulation 455
6. Conclusions 456
7. References 457
14. A Synopsis 461
1. Meeting the Challenge 461
2. The Systems Approach to Planning and
Management 461
2.1. Institutional Decision-Making 462
2.2. The Water Resources Systems 464
2.3. Planning and Management Modelling:
A Review 465
3. Evaluating Modelling Success 466
4. Some Case Studies 467
4.1. Development of a Water Resources Management
Strategy for Trinidad and Tobago 468
4.2. Transboundary Water Quality Management in
the Danube Basin 470
4.3. South Yunnan Lakes Integrated Environmental
Master Planning Project 473
4.4. River Basin Management and Institutional *
Support for Poland 475
4.5. Stormwater Management in The Hague in the
Netherlands 476
5. Summary 478
6. References 478
Appendix A: Natural System Processes and
Interactions 480
1. Introduction 483
2. Rivers 483
2.1. River Comdor 484
2.1.1. Stream Channel Structure
Equilibrium 485
2.1.2. Lateral Structure of Stream or River
Corridors 486
2.1.3. Longitudinal Structure of Stream or River
Corridors 487
2.2. Drainage Patterns 488
2.2.1. Sinuosity 489
2.2.2. Pools and Riffles 489
2.3. Vegetation in the Stream and River
Comdors 489
2.4. The River Continuum Concept 490
2.5. Ecological Impacts of Flow 490
2.6. Geomorphology 490
2.6.1. Channel Classification 491
2.6.2. Channel Sediment Transport and
Deposition 491
2.6.3. Channel Geometry 493
2.6.4. Channel Cross sections and Flow-
Velocities 494
2.6.5. Channel Bed Forms 495
2.6.6. Channel Planforms 495
2.6.7. Anthropogenic Factors 496
2.7. Water Quality 497
2.8. Aquatic Vegetation and Fauna 498
2.9. Ecological Connectivity and Width 500
2.10. Dynamic Equilibrium 301
2.11. Restoring Degraded Aquatic Systems 501
3. Lakes and Reservoirs 504
3.1. Natural Lakes 504
3.2. Constructed Reservoirs 505
3.3. Physical Characteristics 505
3.3.1. Shape and Morphometry 505
3.3.2. Water Quality 506
3.3.3. Downstream Characteristics 507
3.4. Management of Lakes and Reservoirs 508
3.5. Future Reservoir Development 510
4. Wetlands 510
4.1. Characteristics of Wetlands 511
4.1.1. Landscape Position 512
4.1.2. Soil Saturation and Fibre Content 512
4.1.3. Vegetation Density and Type 512
4.1.4. Interaction with Groundwater 513
4.1.5. Oxidation-Reduction 513
4.1.6. Hydrological Flux and Life
Support 513
4.2. Biogeochemical Cycling and Storage 513
4.2.1. Nitrogen (N) 514
4.2.2. Phosphorus (P) 514
4.2.3. Carbon (C) 514
4.2.4. Sulphur (S) 514
4.2.5. Suspended Solids 514
4.2.6. Metals 515
4.3. Wetland Ecology 515
4.4. Wetland Functions 515
4.4.1. Water Quality and Hydrology 515
4.4.2. Flood Protection 516
4.4.3. Shoreline Erosion 516
4.4.4. Fish and Wildlife Habitat 516
4.4.5. Natural Products 516
4.4.6. Recreation and Aesthetics 516
5. Estuaries 516
5.1. Types of Estuaries 517
5.2. Boundaries of an Estuary 518
5.3. Upstream Catchment Areas 519
5.4. Water Movement 519
5.4.1. Ebb and Flood Tides 519
5.4.2. Tidal Excursion 520
5.4.3. Tidal Prism 520
5.4.4. Tidal Pumping 520
5.4.5. Gravitational Circulation 520
5.4.6. Wind-Driven Currents 521
5.5. Mixing Processes 521
5.5.1. Advection and Dispersion 522
5.5.2. Mixing 522
5.6. Salinity Movement 523
5.6.1. Mixing of Salt- and Freshwaters 523
5.6.2. Salinity Regimes 523
5.6.3. Variations due to Freshwater Flow 523
5.7. Sediment Movement 524
5.7.1. Sources of Sediment 524
5.7.2. Factors Affecting Sediment
Movement 524
5.7.3. Wind Effects 525
5.7.4. Ocean Waves and Entrance Effects 525
5.7.5. Movement of Muds 526
5.7.6. Estuarine Turbidity Maximum 527
5.7.7. Biological Effects 527
5.8. Surface Pollutant Movement 528
5.9. Estuarine Food Webs and Habitats 528
5.9.1. Habitat Zones 529
5.10. Estuarine Services 531
5.11. Estuary Protection 531
5.12. Estuarine Restoration 533
5.13. Estuarine Management 533
5.13.1. Engineering Infrastructure 534
5.13.2. Nutrient Overloading 534
5.13.3. Pathogens 534
5.13.4. Toxic Chemicals 534
5.13.5. Habitat Loss and Degradation 534
5.13.6. Introduced Species 535
5.13.7. Alteration of Natural Flow Regimes 535
5.13.8. Declines in Fish and Wildlife
Populations 535
6. Coasts 535
6.1. Coastal Zone Features and Processes 535
6.1.1. Water Waves 536
6.1.2. Tides and Water Levels 538
6.1.3. Coastal Sediment Transport 538
6.1.4. Barrier Islands 538
6.1.5. Tidal Deltas and Inlets 538
6.1.6. Beaches 538
6.1.7. Dunes 539
6.1.8. Longshore Currents 540
6.2. Coasts Under Stress 540
6.3. Management Issues 540
6.3.1. Beaches or Buildings 542
6.3.2. Groundwater 542
6.3.3. Sea Level Rise 542
6.3.4. Subsidence 543
6.3.5. Wastewater 544
6.3.6. Other Pollutants 544
6.3.7. Mining of Beach Materials 544
6.4. Management Measures 545
6.4.1. Conforming Use 546
6.4.2. Structures 546
6.4.3. Artificial Beach Nourishment 547
7. Conclusion 548
8. References 549
Appendix B: Monitoring and Adaptive
Management 559
1. Introduction 559
2. System Status 561
2.1. System Status Indicators 562
3. Information Needs 562
3.1. Information Objectives and Priorities 563
4. Monitoring Plans 563
5. Adaptive Monitoring 564
5.1. Risk Assessments For Monitoring 564
5.2. Use of Models 565
6. Network Design 565
6.1. Site Selection 566
6.2. Sampling/Measurement Frequencies 566
6.3. Quality Control 566
6.4. Water Quantity Monitoring 567
6.5. Water Quality Monitoring 568
6.6. Ecological Monitoring 569
6.7. Early-Waming Stations 569
6.8. Effluent Monitoring 570
7. Data Sampling, Collection and Storage 570
7.1. Overview 570
7.2. Remote Sensing 571
7.2.1. Optical Remote Sensing for Water
Quality 571
7.2.2. Applications in the North Sea 572
8. Data Analyses 572
9. Reporting Results 573
9.1. Trend Plots 573
9.2. Comparison Plots 573
9.3. Map Plots 576
10. Information Use: Adaptive Management 576
11. Summary 578
12. References 578
Appendix C: Drought Management 581
1. Introduction 581
2. Drought Impacts 581
3. Defining Droughts 584
4. Causes of Droughts 585
4.1. Global Patterns 586
4.2. Teleconnections 588
4.3. Climate Change 588
4.4. Land Use 590
5. Drought Indices 590
5.1. Percent of Normal Indices 590
5.2. Standardized Precipitation Index 590
5.3. Palmer Drought Severity Index 591
5.4. Crop Moisture Index 592
5.5. Surface Water Supply Index 592
5.6. Reclamation Drought Index 593
5.7. Deciles 594
5.8. Method of Truncation 594
5.9. Water Availability Index 594
5.10. Days of Supply Remaining 595
6. Drought Triggers 596
7. Virtual Drought Exercises 596
8. Conclusion 598
9. References 599
Appendix D: Flood Management 603
1. Introduction 603
2. Managing Floods in the Netherlands 605
2.1. Flood Frequency and Protection 605
2.2. The Rhine River Basin 605
2.3. Problems and Solutions 609
2.4. Managing Risk 609
2.4.1. Storage 610
2.4.2. Discharge-Increasing Measures 612
2.4.3. Green Rivers 614
2.4.4. Use of Existing Water Courses 615
2.4.5. The Overall Picture 615
2.5. Dealing With Uncertainties 615
2.6. Summary 617
3. Flood Management on the Mississippi 617
3.1. General History 619
3.2. Other Considerations 623
3.3. Interactions Among User Groups 624
3.4. Creating a Flood Management Strategy 626
3.5. The Role of the Government and
NGOs 626
4. Flood Risk Reduction 627
4.1. Reservoir Flood Storage Capacity 627
4.2. Channel Capacity 630
4.3. Estimating Risk of Levee Failures 631
4.4. Annual Expected Damage From Levee
Failure 633
4.4.1. Risk-Based Analyses 634
5. Decision Support and Prediction 635
5.1. Floodplain Modelling 636
5.2. Integrated 1D-2D Modelling 637
6. Conclusions 638
7. References 640
Appendix E: Project Planning and Analysis:
Putting it All Together 644
1. Basic Concepts and Definitions 645
1.1. The Water Resources System 645
1.2. Functions of the Water Resources System 646
1.2.1. Subsistence Functions 646
1.2.2. Commercial Functions 646
1.2.3. Environmental Functions 647
1.2.4. Ecological Values 647
1.3. Policies, Strategies, Measures and
Scenarios 647
1.4. Systems Analysis 648
2. Analytical Description of WRS 649
2.1. System Characteristics of the Natural Resources
System 650
2.1.1. System Boundaries 650
2.1.2. Physical, Chemical and Biological
Characteristics 650
2.1.3. Control Variables: Possible
Measures 651
2.2. System Characteristics of the Socio-Economic
System 651
2.2.1. System Boundaries 651
2.2.2. System Elements and System
Parameters 651
2.2.3. Control Variables: Possible Measures 652
2.3. System Characteristics of the Administrative and
Institutional System 652
2.3.1. System Elements 652
2.3.2. Control Variables: Possible
Measures 652
3. Analytical Framework: Phases of Analysis 652
4. Inception Phase 654
4.1. Initial Analysis 655
4.1.1. Inventory of Characteristics,
Developments and Policies 655
4.1.2. Problem Analysis 655
4.1.3. Objectives and Criteria 656
4.1.4. Data Availability 656
4.2. Specification of the Approach 657
4.2.1. Analysis Steps 657
4.2.2. Delineation of System 657
4.2.3. Computational Framework 658
4.2.4. Analysis Conditions 659
4.2.5. Work Plan 660
4.3. Inception Report 660
4.4. Communication with Decision-Makers and
Stakeholders 661
5. Development Phase 661
5.1. Model Development and Data Collection 661
5.1.1. Analysis of the Natural Resources System
(NRS) 661
5.1.2. Analysis of the Socio-Economic System
(SES) 664
5.1.3. Analysis of the Administrative and
Institutional System (AIS) 666
5.1.4. Integration into a Computational
Framework 667
5.2. Preliminary Analysis 668
5.2.1. Base Case Analysis 669
5.2.2. Bottleneck (Reference Case)
Analysis 669
5.2.3. Identification and Screening of
Measures 669
5.2.4. Finalization of the Computational
Framework 669
6. Selection Phase 670
6.1. Strategy Design and Impact
Assessment 670
6.2. Evaluation of Alternative Strategies 671
6.3. Scenario and Sensitivity Analysis 672
6.4. Presentation of Results 672
7. Conclusions 672
Index 677
|
adam_txt |
Introduction xix
1. Water Resources Planning and Management:
An Overview 3
1. Introduction 3
2. Planning and Management Issues: Some Case
Studies 4
2.1. Kurds Seek Land, Turks Want Water 4
2.2. Sharing the Water of the Jordan River Basin: Is
There a Way? 6
2.3. Mending the 'Mighty and Muddy' Missouri 7
2.4. The Endangered Salmon 7
2.5. The Yellow River: How to Keep the Water
Flowing 9
2.6. Lake Source Cooling: Aid to Environment or
Threat to Lake? 10
2.7. Managing Water in the Florida Everglades 11
2.8. Restoration of Europe's Rivers and Seas 13
2.8.1. The Rhine 13
2.8.2. The Danube 14
2.8.3. The North and Baltic Seas 15
2.9. Egypt and the Nile: Limits to Agricultural
Growth 16
2.10. Damming the Mekong 16
3. So, Why Plan, Why Manage? 18
3.1. Too Little Water 20
3.2. Too Much Water 20
3.3. Polluted Water 21
3.4. Degradation of Aquatic and Riparian
Ecosystems 21
3.5. Other Planning and Management Issues 21
System Components, Planning Scales and
Sustainability 22
4.1. Spatial Scales for Planning and
Management 22
4.2. Temporal Scales for Planning and
Management 23
4.3. Sustainability 23
Planning and Management 24
5.1. Approaches 24
5.1.1. Top-Down Planning and
Management 25
5.1.2. Bottom-Up Planning and
Management 25
5.1.3. Integrated Water Resources
Management 26
5.2. Planning and Management Aspects 26
5.2.1. Technical Aspects 26
5.2.2. Economic and Financial Aspects 27
5.2.3. Institutional Aspects 28
5.3. Analyses for Planning and Management 28
5.4. Models for Impact Prediction and
Evaluation 30
5.5. Shared-Vision Modelling 31
5.6. Adaptive Integrated Policies 31
5.7. Post-Planning and Management Issues 32
6. Meeting the Planning and Management Challenges:
A Summary 32
7. References 34
2. Water Resource Systems Modelling: Its Role in
Planning and Management 39
1. Introduction 39
2. Modelling of Water Resources Systems 41
2.1. An Example Modelling Approach 41
2.2. Characteristics of Problems to be Modelled 41
3. Challenges in Water Resources Systems
Modelling 43
3.1. Challenges of Planners and Managers 43
3.2. Challenges of Modelling 44
3.3. Challenges of Applying Models in Practice 45
4. Developments in Modelling 46
4.1. Modelling Technology 46
4.2. Decision Support Systems 47
4.2.1. Shared-Vision Modelling 49
4.2.2. Open Modelling Systems 51
4.2.3. Example of a DSS for River Flood
Management 51
5. Conclusions 54
6. References 55
3. Modelling Methods for Evaluating
Alternatives 59
1. Introduction 59
1.2. Model Components 60
2. Plan Formulation and Selection 61
2.1. Plan Formulation 61
2.2. Plan Selection 63
3. Modelling Methods: Simulation or Optimization 64
3.1. A Simple Planning Example 65
3.2. Simulation Modelling Approach 66
3.3. Optimization Modelling Approach 66
3.4. Simulation Versus Optimization 67
3.5. Types of Models 69
3.5.1. Types of Simulation Models 69
3.5.2. Types of Optimization Models 70
4. Model Development 71
5. Managing Modelling Projects 72
5.1. Creating a Model Journal 72
5.2. Initiating the Modelling Project 72
5.3. Selecting the Model 73
5.4. Analysing the Model 74
5.5. Using the Model 74
5.6. Interpreting Model Results 75
5.7. Reporting Model Results 75
6. Issues of Scale 75
6.1. Process Scale 75
6.2. Information Scale 76
6.3. Model Scale 76
6.4. Sampling Scale 76
6.5. Selecting the Right Scales 76
7. Conclusions 77
8. References 77
k. Optimization Methods 81
1. Introduction 81
2. Comparing Time Streams of Economic Benefits
and Costs 81
2.1. Interest Rates 82
2.2. Equivalent Present Value 82
2.3. Equivalent Annual Value 82
3. Non-linear Optimization Models and Solution
Procedures 83
3.1. Solution Using Calculus 84
3.2. Solution Using Hill Climbing 84
3.3. Solution Using Lagrange Multipliers 86
3.3.1. Approach 86
3.3.2. Meaning of the Lagrange
Multiplier 88
4. Dynamic Programming 90
4.1. Dynamic Programming Networks and Recursive
Equations 90
4.2. Backward-Moving Solution Procedure 92
4.3. Forward-Moving Solution Procedure 95
4.4. Numerical Solutions 96
4.5. Dimensionality 97
4.6. Principle of Optimality 97
4.7. Additional Applications 97
4.7.1. Capacity Expansion 98
4.7.2. Reservoir Operation 102
4.8. General Comments on Dynamic
Programming 112
5. Linear Programming 113
5.1. Reservoir Storage Capacity-Yield Models 114
5.2. A Water Quality Management Problem 117
5.2.1. Model Calibration 118
5.2.2. Management Model 119
5.3. A Groundwater Supply Example 124
5.3.1. A Simplified Model 125
5.3.2. A More Detailed Model 126
5.3.3. An Extended Model 127
5.3.4. Piece wise Linearization Methods 128
5.4. A Review of Linearization Methods 129
6. A Brief Review 132
7. References 132
5. Fuzzy Optimization 135
1. Fuzziness: An Introduction 135
1.1. Fuzzy Membership Functions 135
1.2. Membership Function Operations 136
2. Optimization in Fuzzy Environments 136
3. Fuzzy Sets for Water Allocation 138
4. Fuzzy Sets for Reservoir Storage and
Release Targets 139
5. Fuzzy Sets for Water Quality Management 140
6. Summary 144
7. Additional References (Further Reading) 144
6. Data-Based Models 147
1. Introduction 147
2. Artificial Neural Networks 148
2.1. The Approach 148
2.2. An Example 151
2.3. Recurrent Neural Networks for the Modelling of
Dynamic Hydrological Systems 153
2.4. Some Applications 153
2.4.1. RNN Emulation of a Sewerage System in
the Netherlands 154
2.4.2. Water Balance in Lake IJsselmeer 155
3. Genetic Algorithms 156
3.1. The Approach 156
3.2. Example Iterations 158
4. Genetic Programming 159
5. Data Mining 163
5.1. Data Mining Methods 163
6. Conclusions 164
7. References 165
7. Concepts in Probability, Statistics and
Stochastic Modelling 169
1. Introduction 169
2. Probability Concepts and Methods 170
2.1. Random Variables and Distributions 170
2.2. Expectation 173
2.3. Quantiles, Moments and Their Estimators 173
2.4. L-Moments and Their Estimators 176
3. Distributions of Random Events 179
3.1. Parameter Estimation 179
3.2. Model Adequacy 182
3.3. Normal and Lognormal Distributions 186
3.4. Gamma Distributions 187
3.5. Log-Pearson Type 3 Distribution 189
3.6. Gumbel and GEV Distributions 190
3.7. L-Moment Diagrams 192
4. Analysis of Censored Data 193
5. Regionalization and Index-Flood Method 195
6. Partial Duration Series 196
7. Stochastic Processes and Time Series 197
7.1. Describing Stochastic Processes 198
7.2. Markov Processes and Markov Chains 198
7.3. Properties of Time-Series Statistics 201
8. Synthetic Streamflow Generation 203
8.1. Introduction 203
8.2. Streamflow Generation Models 205
8.3. A Simple Autoregressive Model 206
8.4. Reproducing the Marginal Distribution 208
8.5. Multivariate Models 209
8.6. Multi-Season, Multi-Site Models 211
8.6.1. Disaggregation Models 211
8.6.2. Aggregation Models 213
9. Stochastic Simulation 214
9.1. Generating Random Variables 214
9.2. River Basin Simulation. 215
9.3. The Simulation Model 216
9.4. Simulation of the Basin 216
9.5. Interpreting Simulation Output 217
10. Conclusions 223
11. References 223
8. Modelling Uncertainty 231
1. Introduction 231
2. Generating Values From Known Probability
Distributions 231
3. Monte Carlo Simulation 233
4. Chance Constrained Models 235
5. Markov Processes and Transition
Probabilities 236
6. Stochastic Optimization 239
6.1. Probabilities of Decisions 243
6.2. A Numerical Example 244
7. Conclusions 251
8. References 251
9. Model Sensitivity and Uncertainty
Analysis 255
1. Introduction 255
2. Issues, Concerns and Terminology 256
3. Variability and Uncertainty In Model Output 258
3.1. Natural Variability 259
3.2. Knowledge Uncertainty 260
3.2.1. Parameter Value Uncertainty 260
3.2.2. Model Structural and Computational
Errors 260
3.3. Decision Uncertainty 260
4. Sensitivity and Uncertainty Analyses 261
4.1. Uncertainty Analyses 261
4.1.1. Model and Model Parameter
Uncertainties 262
4.1.2. What Uncertainty Analysis Can
Provide 265
4.2. Sensitivity Analyses 265
4.2.1. Sensitivity Coefficients 267
4.2.2. A Simple Deterministic Sensitivity
Analysis Procedure 267
4.2.3. Multiple Errors and Interactions 269
4.2.4. First-Order Sensitivity Analysis 270
4.2.5. Fractional Factorial Design
Method 272
4.2.6. Monte Carlo Sampling Methods 273
5. Performance Indicator Uncertainties 278
5.1. Performance Measure Target Uncertainty 278
5.2. Distinguishing Differences Between Performance
Indicator Distributions 281
6. Communicating Model Output Uncertainty 283
7. Conclusions 285
8. References 287
10. Performance Criteria 293
1. Introduction 293
2. Informed Decision-Making 294
3. Performance Criteria and General Alternatives 295
3.1. Constraints On Decisions 296
3.2. Tradeoffs 296
4. Quantifying Performance Criteria 297
4.1. Economic Criteria 298
4.1.1. Benefit and Cost Estimation 299
4.1.2. A Note Concerning Costs 302
4.1.3. Long and Short-Run Benefit
Functions 303
4.2. Environmental Criteria 305
4.3. Ecological Criteria 306
4.4. Social Criteria 308
5. Multi-Criteria Analyses 309
5.1. Dominance 310
5.2. The Weighting Method 311
5.3. The Constraint Method 312
5.4. Satisficing 313
5.5. Lexicography 313
5.6. Indifference Analysis 313
5.7. Goal Attainment 314
5.8. Goal-Programming 315
5.9. Interactive Methods 315
5.10. Plan Simulation and Evaluation 316
6. Statistical Summaries of Performance Cntena 320
6.1. Reliability 321
6.2. Resilience 321
6.3. Vulnerability 321
7. Conclusions 321
8. References 322
11. River Basin Planning Models 325
1. Introduction 325
1.1. Scales of River Basin Processes 326
1.2. Model Time Periods 327
1.3. Modelling Approaches for River Basin
Management 328
2. Modelling the Natural Resources System and Related
Infrastructure 328
2.1. Watershed Hydrological Models 328
2.1.1. Classification of Hydrological Models 329
2.1.2. Hydrological Processes: Surface Water 329
2.1.3. Hydrological Processes:
Groundwater 333
2.1.4. Modelling Groundwater: Surface Water
Interactions 336
2.1.5. Streamflow Estimation 339
2.1.6. Streamflow Routing 341
2.2. Lakes and Reservoirs 342
2.2.1. Estimating Active Storage Capacity 343
2.2.2. Reservoir Storage-Yield Functions 344
2.2.3. Evaporation Losses 346
2.2.4. Over and Within-Year Reservoir Storage
and Yields 347
2.2.5. Estimation of Active Reservoir Storage
Capacities for Specified Yields 348
2.3. Wetlands and Swamps 354
2.4. Water Quality and Ecology- 354
3. Modelling the Socio-Economic Functions In a River
Basin 355
3.1. Withdrawals and Diversions 355
3.2. Domestic, Municipal and Industrial Water
Demand 356
3.3. Agricultural Water Demand 357
3.4. Hydroelectric Power Production 357
3.5. Flood Risk Reduction 359
3.5.1. Reservoir Flood Storage Capacity 360
3.5.2. Channel Capacity 362
3.6. Lake-Based Recreation 362
4. River Basin Analysis 363
4.1. Model Synthesis 363
4.2. Modelling Approach Using Optimization 364
4.3. Modelling Approach Using Simulation 365
4.4. Optimization and/or Simulation 368
4.5. Project Scheduling 368
5. Conclusions 371
6. References 371
12. Water Quality Modelling and Prediction 377
1. Introduction 377
2. Establishing Ambient Water Quality Standards 378
2.1. Water-Use Criteria 379
3. Water Quality Model Use 379
3.1. Model Selection Criteria 380
3.2. Model Chains 381
3.3. Model Data 382
4. Water Quality Model Processes 383
4.1. Mass-Balance Principles 384
4.1.1. Advective Transport 385
4.1.2. Dispersive Transport 385
4.1.3. Mass Transport by Advection and
Dispersion 385
4.2. Steady-State Models 386
4.3. Design Streamflows for Water Quality 388
4.4. Temperature 389
4.5. Sources and Sinks 390
4.6. First-Order Constituents 390
4.7. Dissolved Oxygen 390
4.8. Nutrients and Eutrophication 393
4.9. Toxic Chemicals 396
4.9.1. Adsorbed and Dissolved Pollutants 396
4.9.2. Heavy Metals 398
4.9.3. Organic Micro-pollutants 399
4.9.4. Radioactive Substances 400
4.10. Sediments 400
4.10.1. Processes and Modelling
Assumptions 401
4.10.2. Sedimentation 401
4.10.3. Resuspension 401
4.10.4. Burial 402
4.10.5. Bed Shear Stress 402
4.11. Lakes and Reservoirs 403
4.11.1. Downstream Characteristics 405
4.11.2. Lake Quality Models 406
4.11.3. Stratified Impoundments 407
5. An Algal Biomass Prediction Model 408
5.1. Nutrient Cycling 408
5.2. Mineralization of Detritus 408
5.3. Settling of Detritus and Inorganic Particulate
Phosphorus 409
5.4. Resuspension of Detritus and Inorganic
Particulate Phosphorus 409
5.5. The Nitrogen Cycle 409
5.5.1. Nitrification and Denitrification 409
5.5.2. Inorganic Nitrogen 410
5.6. Phosphorus Cycle 410
5.7. Silica Cycle 411
5.8. Summary of Nutrient Cycles 411
5.9. Algae Modelling 412
5.9.1. Algae Species Concentrations 412
5.9.2. Nutrient Recycling 413
5.9.3. Energy Limitation 413
5.9.4. Growth Limits 414
5.9.5. Mortality Limits 414
5.9.6. Oxygen-Related Processes 415
6. Simulation Methods 416
6.1. Numerical Accuracy 416
6.2. Traditional Approach 417
6.3. Backtracking Approach 418
6.4. Model Uncertainty 420
7. Conclusions: Implementing a Water Quality
Management Policy 421
8. References 422
13. Urban Water Systems 427
1. Introduction 427
2. Drinking Water 428
2.1. Water Demand 428
2.2. Water Treatment 428
2.3. Water Distribution 430
2.3.1. Open Channel Networks 432
2.3.2. Pressure Pipe Networks 432
2.3.3. Water Quality 434
3. Wastewater 434
3.1. Wastewater Production 434
3.2. Sewer Networks 434
3.3. Wastewater Treatment 435
4. Urban Drainage 437
4.1. Rainfall 437
4.1.1. Time Series Versus Design Storms 437
4.1.2. Spatial-Temporal Distributions 438
4.1.3. Synthetic Rainfall 438
4.1.4. Design Rainfall 438
4.2. Runoff 439
4.2.1. Runoff Modelling 439
4.2.2. The Horton Infiltration Model 441
4.2.3. The US Soil Conservation Method (SCS)
Model 442
4.2.4. Other Rainfall-Runoff Models 444
4.3. Surface Pollutant Loading and Washoff 445
4.3.1. Surface Loading 446
4.3.2. Surface Washoff 446
4.3.3. Stormwater Sewer and Pipe
Flow 447
4.3.4. Sediment Transport 448
4.3.5. Structures and Special Flow
Characteristics 448
4.4. Water Quality Impacts 448
4.4.1. Slime 448
4.4.2. Sediment 448
4.4.3. Pollution Impact on the
Environment 448
4.4.4. Bacteriological and Pathogenic
Factors 451
4.4.5. Oil and Toxic Contaminants 451
4.4.6. Suspended Solids 452
5. Urban Water System Modelling 452
5.1. Model Selection 452
5.2. Optimization 453
5.3. Simulation 455
6. Conclusions 456
7. References 457
14. A Synopsis 461
1. Meeting the Challenge 461
2. The Systems Approach to Planning and
Management 461
2.1. Institutional Decision-Making 462
2.2. The Water Resources Systems 464
2.3. Planning and Management Modelling:
A Review 465
3. Evaluating Modelling Success 466
4. Some Case Studies 467
4.1. Development of a Water Resources Management
Strategy for Trinidad and Tobago 468
4.2. Transboundary Water Quality Management in
the Danube Basin 470
4.3. South Yunnan Lakes Integrated Environmental
Master Planning Project 473
4.4. River Basin Management and Institutional *
Support for Poland 475
4.5. Stormwater Management in The Hague in the
Netherlands 476
5. Summary 478
6. References 478
Appendix A: Natural System Processes and
Interactions 480
1. Introduction 483
2. Rivers 483
2.1. River Comdor 484
2.1.1. Stream Channel Structure
Equilibrium 485
2.1.2. Lateral Structure of Stream or River
Corridors 486
2.1.3. Longitudinal Structure of Stream or River
Corridors 487
2.2. Drainage Patterns 488
2.2.1. Sinuosity 489
2.2.2. Pools and Riffles 489
2.3. Vegetation in the Stream and River
Comdors 489
2.4. The River Continuum Concept 490
2.5. Ecological Impacts of Flow 490
2.6. Geomorphology 490
2.6.1. Channel Classification 491
2.6.2. Channel Sediment Transport and
Deposition 491
2.6.3. Channel Geometry 493
2.6.4. Channel Cross sections and Flow-
Velocities 494
2.6.5. Channel Bed Forms 495
2.6.6. Channel Planforms 495
2.6.7. Anthropogenic Factors 496
2.7. Water Quality 497
2.8. Aquatic Vegetation and Fauna 498
2.9. Ecological Connectivity and Width 500
2.10. Dynamic Equilibrium 301
2.11. Restoring Degraded Aquatic Systems 501
3. Lakes and Reservoirs 504
3.1. Natural Lakes 504
3.2. Constructed Reservoirs 505
3.3. Physical Characteristics 505
3.3.1. Shape and Morphometry 505
3.3.2. Water Quality 506
3.3.3. Downstream Characteristics 507
3.4. Management of Lakes and Reservoirs 508
3.5. Future Reservoir Development 510
4. Wetlands 510
4.1. Characteristics of Wetlands 511
4.1.1. Landscape Position 512
4.1.2. Soil Saturation and Fibre Content 512
4.1.3. Vegetation Density and Type 512
4.1.4. Interaction with Groundwater 513
4.1.5. Oxidation-Reduction 513
4.1.6. Hydrological Flux and Life
Support 513
4.2. Biogeochemical Cycling and Storage 513
4.2.1. Nitrogen (N) 514
4.2.2. Phosphorus (P) 514
4.2.3. Carbon (C) 514
4.2.4. Sulphur (S) 514
4.2.5. Suspended Solids 514
4.2.6. Metals 515
4.3. Wetland Ecology 515
4.4. Wetland Functions 515
4.4.1. Water Quality and Hydrology 515
4.4.2. Flood Protection 516
4.4.3. Shoreline Erosion 516
4.4.4. Fish and Wildlife Habitat 516
4.4.5. Natural Products 516
4.4.6. Recreation and Aesthetics 516
5. Estuaries 516
5.1. Types of Estuaries 517
5.2. Boundaries of an Estuary 518
5.3. Upstream Catchment Areas 519
5.4. Water Movement 519
5.4.1. Ebb and Flood Tides 519
5.4.2. Tidal Excursion 520
5.4.3. Tidal Prism 520
5.4.4. Tidal Pumping 520
5.4.5. Gravitational Circulation 520
5.4.6. Wind-Driven Currents 521
5.5. Mixing Processes 521
5.5.1. Advection and Dispersion 522
5.5.2. Mixing 522
5.6. Salinity Movement 523
5.6.1. Mixing of Salt- and Freshwaters 523
5.6.2. Salinity Regimes 523
5.6.3. Variations due to Freshwater Flow 523
5.7. Sediment Movement 524
5.7.1. Sources of Sediment 524
5.7.2. Factors Affecting Sediment
Movement 524
5.7.3. Wind Effects 525
5.7.4. Ocean Waves and Entrance Effects 525
5.7.5. Movement of Muds 526
5.7.6. Estuarine Turbidity Maximum 527
5.7.7. Biological Effects 527
5.8. Surface Pollutant Movement 528
5.9. Estuarine Food Webs and Habitats 528
5.9.1. Habitat Zones 529
5.10. Estuarine Services 531
5.11. Estuary Protection 531
5.12. Estuarine Restoration 533
5.13. Estuarine Management 533
5.13.1. Engineering Infrastructure 534
5.13.2. Nutrient Overloading 534
5.13.3. Pathogens 534
5.13.4. Toxic Chemicals 534
5.13.5. Habitat Loss and Degradation 534
5.13.6. Introduced Species 535
5.13.7. Alteration of Natural Flow Regimes 535
5.13.8. Declines in Fish and Wildlife
Populations 535
6. Coasts 535
6.1. Coastal Zone Features and Processes 535
6.1.1. Water Waves 536
6.1.2. Tides and Water Levels 538
6.1.3. Coastal Sediment Transport 538
6.1.4. Barrier Islands 538
6.1.5. Tidal Deltas and Inlets 538
6.1.6. Beaches 538
6.1.7. Dunes 539
6.1.8. Longshore Currents 540
6.2. Coasts Under Stress 540
6.3. Management Issues 540
6.3.1. Beaches or Buildings 542
6.3.2. Groundwater 542
6.3.3. Sea Level Rise 542
6.3.4. Subsidence 543
6.3.5. Wastewater 544
6.3.6. Other Pollutants 544
6.3.7. Mining of Beach Materials 544
6.4. Management Measures 545
6.4.1. 'Conforming Use' 546
6.4.2. Structures 546
6.4.3. Artificial Beach Nourishment 547
7. Conclusion 548
8. References 549
Appendix B: Monitoring and Adaptive
Management 559
1. Introduction 559
2. System Status 561
2.1. System Status Indicators 562
3. Information Needs 562
3.1. Information Objectives and Priorities 563
4. Monitoring Plans 563
5. Adaptive Monitoring 564
5.1. Risk Assessments For Monitoring 564
5.2. Use of Models 565
6. Network Design 565
6.1. Site Selection 566
6.2. Sampling/Measurement Frequencies 566
6.3. Quality Control 566
6.4. Water Quantity Monitoring 567
6.5. Water Quality Monitoring 568
6.6. Ecological Monitoring 569
6.7. Early-Waming Stations 569
6.8. Effluent Monitoring 570
7. Data Sampling, Collection and Storage 570
7.1. Overview 570
7.2. Remote Sensing 571
7.2.1. Optical Remote Sensing for Water
Quality 571
7.2.2. Applications in the North Sea 572
8. Data Analyses 572
9. Reporting Results 573
9.1. Trend Plots 573
9.2. Comparison Plots 573
9.3. Map Plots 576
10. Information Use: Adaptive Management 576
11. Summary 578
12. References 578
Appendix C: Drought Management 581
1. Introduction 581
2. Drought Impacts 581
3. Defining Droughts 584
4. Causes of Droughts 585
4.1. Global Patterns 586
4.2. Teleconnections 588
4.3. Climate Change 588
4.4. Land Use 590
5. Drought Indices 590
5.1. Percent of Normal Indices 590
5.2. Standardized Precipitation Index 590
5.3. Palmer Drought Severity Index 591
5.4. Crop Moisture Index 592
5.5. Surface Water Supply Index 592
5.6. Reclamation Drought Index 593
5.7. Deciles 594
5.8. Method of Truncation 594
5.9. Water Availability Index 594
5.10. Days of Supply Remaining 595
6. Drought Triggers 596
7. Virtual Drought Exercises 596
8. Conclusion 598
9. References 599
Appendix D: Flood Management 603
1. Introduction 603
2. Managing Floods in the Netherlands 605
2.1. Flood Frequency and Protection 605
2.2. The Rhine River Basin 605
2.3. Problems and Solutions 609
2.4. Managing Risk 609
2.4.1. Storage 610
2.4.2. Discharge-Increasing Measures 612
2.4.3. Green Rivers 614
2.4.4. Use of Existing Water Courses 615
2.4.5. The Overall Picture 615
2.5. Dealing With Uncertainties 615
2.6. Summary 617
3. Flood Management on the Mississippi 617
3.1. General History 619
3.2. Other Considerations 623
3.3. Interactions Among User Groups 624
3.4. Creating a Flood Management Strategy 626
3.5. The Role of the Government and
NGOs 626
4. Flood Risk Reduction 627
4.1. Reservoir Flood Storage Capacity 627
4.2. Channel Capacity 630
4.3. Estimating Risk of Levee Failures 631
4.4. Annual Expected Damage From Levee
Failure 633
4.4.1. Risk-Based Analyses 634
5. Decision Support and Prediction 635
5.1. Floodplain Modelling 636
5.2. Integrated 1D-2D Modelling 637
6. Conclusions 638
7. References 640
Appendix E: Project Planning and Analysis:
Putting it All Together 644
1. Basic Concepts and Definitions 645
1.1. The Water Resources System 645
1.2. Functions of the Water Resources System 646
1.2.1. Subsistence Functions 646
1.2.2. Commercial Functions 646
1.2.3. Environmental Functions 647
1.2.4. Ecological Values 647
1.3. Policies, Strategies, Measures and
Scenarios 647
1.4. Systems Analysis 648
2. Analytical Description of WRS 649
2.1. System Characteristics of the Natural Resources
System 650
2.1.1. System Boundaries 650
2.1.2. Physical, Chemical and Biological
Characteristics 650
2.1.3. Control Variables: Possible
Measures 651
2.2. System Characteristics of the Socio-Economic
System 651
2.2.1. System Boundaries 651
2.2.2. System Elements and System
Parameters 651
2.2.3. Control Variables: Possible Measures 652
2.3. System Characteristics of the Administrative and
Institutional System 652
2.3.1. System Elements 652
2.3.2. Control Variables: Possible
Measures 652
3. Analytical Framework: Phases of Analysis 652
4. Inception Phase 654
4.1. Initial Analysis 655
4.1.1. Inventory of Characteristics,
Developments and Policies 655
4.1.2. Problem Analysis 655
4.1.3. Objectives and Criteria 656
4.1.4. Data Availability 656
4.2. Specification of the Approach 657
4.2.1. Analysis Steps 657
4.2.2. Delineation of System 657
4.2.3. Computational Framework 658
4.2.4. Analysis Conditions 659
4.2.5. Work Plan 660
4.3. Inception Report 660
4.4. Communication with Decision-Makers and
Stakeholders 661
5. Development Phase 661
5.1. Model Development and Data Collection 661
5.1.1. Analysis of the Natural Resources System
(NRS) 661
5.1.2. Analysis of the Socio-Economic System
(SES) 664
5.1.3. Analysis of the Administrative and
Institutional System (AIS) 666
5.1.4. Integration into a Computational
Framework 667
5.2. Preliminary Analysis 668
5.2.1. Base Case Analysis 669
5.2.2. Bottleneck (Reference Case)
Analysis 669
5.2.3. Identification and Screening of
Measures 669
5.2.4. Finalization of the Computational
Framework 669
6. Selection Phase 670
6.1. Strategy Design and Impact
Assessment 670
6.2. Evaluation of Alternative Strategies 671
6.3. Scenario and Sensitivity Analysis 672
6.4. Presentation of Results 672
7. Conclusions 672
Index 677 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Loucks, Daniel P. Beek, Eelco van |
author_facet | Loucks, Daniel P. Beek, Eelco van |
author_role | aut aut |
author_sort | Loucks, Daniel P. |
author_variant | d p l dp dpl e v b ev evb |
building | Verbundindex |
bvnumber | BV021506006 |
callnumber-first | T - Technology |
callnumber-label | TC405 |
callnumber-raw | TC405 |
callnumber-search | TC405 |
callnumber-sort | TC 3405 |
callnumber-subject | TC - Hydraulic and Ocean Engineering |
classification_rvk | RB 10363 |
ctrlnum | (OCoLC)65637694 (DE-599)BVBBV021506006 |
dewey-full | 333.911 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.911 |
dewey-search | 333.911 |
dewey-sort | 3333.911 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften Geographie |
discipline_str_mv | Wirtschaftswissenschaften Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02610nam a2200481 c 4500</leader><controlfield tag="001">BV021506006</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060807 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060310s2005 abd| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9231039989</subfield><subfield code="9">92-3-103998-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)65637694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021506006</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC405</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.911</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10363</subfield><subfield code="0">(DE-625)142220:12708</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Loucks, Daniel P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Water resources systems planning and management</subfield><subfield code="b">an introduction to methods, models and applications</subfield><subfield code="c">Daniel P. Loucks and Eelco van Beek</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">UNESCO</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 680 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies and reports in hydrology</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Droughts, floods and pollution are frequently viewed as constraints to economic and social development. How too little, too much or over-polluted water is managed can determine the extent to which this critical resource contributes to human welfare. How can those managing our water resources do so in a way that meets society's changing objectives and needs? This publication considers how water resources can become more integrated and sustainable. It introduces the science and art of modelling in support of water resources planning and management. The authors draw on their extensive experience to provide a variety of management tools that can be used in water resources system planning, development and management projects worldwide.--Publisher's description.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ressources en eau - Exploitation - Planification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systèmes, Analyse de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Waterhuishouding</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wetenschappelijke technieken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wissenschaftliches Arbeiten</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water resources development</subfield><subfield code="x">Planning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserwirtschaft</subfield><subfield code="0">(DE-588)4064821-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserreserve</subfield><subfield code="0">(DE-588)4124439-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wasserwirtschaft</subfield><subfield code="0">(DE-588)4064821-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wasserreserve</subfield><subfield code="0">(DE-588)4124439-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beek, Eelco van</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014722682&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014722682</subfield></datafield></record></collection> |
id | DE-604.BV021506006 |
illustrated | Illustrated |
index_date | 2024-07-02T14:17:09Z |
indexdate | 2024-07-09T20:37:21Z |
institution | BVB |
isbn | 9231039989 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014722682 |
oclc_num | 65637694 |
open_access_boolean | |
owner | DE-703 DE-634 |
owner_facet | DE-703 DE-634 |
physical | XX, 680 S. Ill., graph. Darst., Kt. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | UNESCO |
record_format | marc |
series2 | Studies and reports in hydrology |
spelling | Loucks, Daniel P. Verfasser aut Water resources systems planning and management an introduction to methods, models and applications Daniel P. Loucks and Eelco van Beek Paris UNESCO 2005 XX, 680 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Studies and reports in hydrology Droughts, floods and pollution are frequently viewed as constraints to economic and social development. How too little, too much or over-polluted water is managed can determine the extent to which this critical resource contributes to human welfare. How can those managing our water resources do so in a way that meets society's changing objectives and needs? This publication considers how water resources can become more integrated and sustainable. It introduces the science and art of modelling in support of water resources planning and management. The authors draw on their extensive experience to provide a variety of management tools that can be used in water resources system planning, development and management projects worldwide.--Publisher's description. Ressources en eau - Exploitation - Planification Systèmes, Analyse de Waterhuishouding gtt Wetenschappelijke technieken gtt Wissenschaftliches Arbeiten System analysis Water resources development Planning Wasserwirtschaft (DE-588)4064821-7 gnd rswk-swf Wasserreserve (DE-588)4124439-4 gnd rswk-swf Wasserwirtschaft (DE-588)4064821-7 s Wasserreserve (DE-588)4124439-4 s DE-604 Beek, Eelco van Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014722682&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Loucks, Daniel P. Beek, Eelco van Water resources systems planning and management an introduction to methods, models and applications Ressources en eau - Exploitation - Planification Systèmes, Analyse de Waterhuishouding gtt Wetenschappelijke technieken gtt Wissenschaftliches Arbeiten System analysis Water resources development Planning Wasserwirtschaft (DE-588)4064821-7 gnd Wasserreserve (DE-588)4124439-4 gnd |
subject_GND | (DE-588)4064821-7 (DE-588)4124439-4 |
title | Water resources systems planning and management an introduction to methods, models and applications |
title_auth | Water resources systems planning and management an introduction to methods, models and applications |
title_exact_search | Water resources systems planning and management an introduction to methods, models and applications |
title_exact_search_txtP | Water resources systems planning and management an introduction to methods, models and applications |
title_full | Water resources systems planning and management an introduction to methods, models and applications Daniel P. Loucks and Eelco van Beek |
title_fullStr | Water resources systems planning and management an introduction to methods, models and applications Daniel P. Loucks and Eelco van Beek |
title_full_unstemmed | Water resources systems planning and management an introduction to methods, models and applications Daniel P. Loucks and Eelco van Beek |
title_short | Water resources systems planning and management |
title_sort | water resources systems planning and management an introduction to methods models and applications |
title_sub | an introduction to methods, models and applications |
topic | Ressources en eau - Exploitation - Planification Systèmes, Analyse de Waterhuishouding gtt Wetenschappelijke technieken gtt Wissenschaftliches Arbeiten System analysis Water resources development Planning Wasserwirtschaft (DE-588)4064821-7 gnd Wasserreserve (DE-588)4124439-4 gnd |
topic_facet | Ressources en eau - Exploitation - Planification Systèmes, Analyse de Waterhuishouding Wetenschappelijke technieken Wissenschaftliches Arbeiten System analysis Water resources development Planning Wasserwirtschaft Wasserreserve |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014722682&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT loucksdanielp waterresourcessystemsplanningandmanagementanintroductiontomethodsmodelsandapplications AT beekeelcovan waterresourcessystemsplanningandmanagementanintroductiontomethodsmodelsandapplications |