Femtosecond beam science:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
2005
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 426 S. graph. Darst. |
ISBN: | 1860943438 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021501946 | ||
003 | DE-604 | ||
005 | 20070831 | ||
007 | t | ||
008 | 060308s2005 d||| |||| 00||| eng d | ||
020 | |a 1860943438 |9 1-86094-343-8 | ||
035 | |a (OCoLC)62343704 | ||
035 | |a (DE-599)BVBBV021501946 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 | ||
050 | 0 | |a QC689.5.L37 | |
050 | 0 | |a QD716.L37 | |
082 | 0 | |a 621.366 |2 22 | |
084 | |a UH 5618 |0 (DE-625)145670: |2 rvk | ||
245 | 1 | 0 | |a Femtosecond beam science |c ed. by Mitsuru Uesaka |
264 | 1 | |a London |b Imperial College Press |c 2005 | |
300 | |a XII, 426 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Faisceaux laser | |
650 | 7 | |a Faisceaux laser |2 ram | |
650 | 4 | |a Femtochimie | |
650 | 7 | |a Femtochimie |2 ram | |
650 | 4 | |a Femtochemistry | |
650 | 4 | |a Laser beams | |
650 | 4 | |a Laser pulses, Ultrashort | |
650 | 4 | |a Laser spectroscopy | |
650 | 0 | 7 | |a Femtosekundenlaser |0 (DE-588)4273256-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kurzzeitphysik |0 (DE-588)4033856-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Femtosekundenlaser |0 (DE-588)4273256-6 |D s |
689 | 0 | 1 | |a Kurzzeitphysik |0 (DE-588)4033856-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Uesaka, Mitsuru |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014718655&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014718655 |
Datensatz im Suchindex
_version_ | 1804135233467973632 |
---|---|
adam_text | Contents
Preface v
1. Introduction ,1
2. Femtosecond Beam Generation 7
2.1 Theory and Operation of Femtosecond Terawatt Lasers . . 7
2.1.1 Ultrashort pulses: theory and generation 7
2.1.1.1 Principle of mode locking for short pulse gen¬
eration 7
2.1.1.2 Mode locking techniques 10
2.1.2 Stretching and compressing laser pulses 15
2.1.2.1 Chirped pulse amplification principle .... 15
2.1.2.2 Stretcher/compressor operation 16
2.1.2.3 The Ofiher triplet configuration 17
2.1.2.4 Compressor subsystem 18
2.1.3 Amplification process 18
2.1.3.1 Regenerative amplification 19
2.1.3.2 Multipass amplification 20
2.1.3.3 20 TW laser system 22
2.2 Linear Accelerator 24
2.2.1 Photoinjectors 24
2.2.1.1 RF cavity and laser 24
2.2.1.2 Cathode and quantum efficiency 29
2.2.1.3 Emittance control 31
2.2.2 Magnetic bunch compression 40
vii
vjii Femtosecond Beam Science
2.2.2.1 Analogy with chirped pulse amplification
(CPA) for femtosecond lasers 40
2.2.2.2 Theory 41
2.2.2.3 Experiment 46
2.2.2.4 Other subjects 50
2.2.2.5 Effect of CSR force 50
2.2.3 Velocity bunching 53
2.2.3.1 Theory 54
2.2.3.2 Application to the SPARC project 60
2.2.3.3 Experiments 61
2.2.4 Microbunching 63
2.2.4.1 Staged electron laser acceleration (STELLA) 63
2.2.4.2 Future potential issues 70
2.3 Synchrotron 71
2.3.1 Synchrotron 71
2.3.1.1 Bunch length in synchrotron and storage ring 72
2.3.1.2 Small ap and intrinsic problems 74
2.3.1.3 Intrinsic bunch length in an electron storage
ring 77
2.3.1.4 Microwave instability 78
2.3.2 Femtosecond e beams in storage rings 80
2.3.2.1 Strong longitudinal focusing 80
2.3.2.2 Coherent synchrotron radiation and stability
criteria 82
2.3.2.3 Selected results of computer simulations . . 86
2.3.2.4 Proposed applications of femtosecond elec¬
tron bunches in storage rings 87
2.4 Laser Plasma Acceleration 90
2.4.1 Electron 90
2.4.1.1 Laser plasma wake field acceleration .... 90
2.4.1.2 Laser injected laser accelerator concept
(LILAC) 95
2.4.1.3 Plasma cathode: colliding pulse optical in¬
jection 105
2.4.1.4 Electron injection due to Langmuir wave
breaking 117
2.4.1.5 Plasma cathode by self injection 128
2.4.2 Ion 139
2.4.2.1 Mechanism 139
Contents ix
2.4.2.2 Low intensity laser case 141
2.4.2.3 Moderate intensity laser case 142
2.4.2.4 Ultra intense laser case 145
2.4.2.5 Ion acceleration in a solitary wave 147
2.4.3 X ray . 150
2.4.3.1 Mechanism of laser plasma short X ray gen¬
eration . . 150
2.4.3.2 Measurement 150
2.4.3.3 Numerical analysis to enhance intensity . . . 153
2.4.3.4 Nonlinear Thomson scattering 155
2.4.4 Terahertz (THz) radiation 158
2.4.4.1 Magnetic field enhancement scheme 158
2.4.4.2 Terawatt laser excitation scheme 163
2.4.5 Neutron 165
2.4.5.1 Cluster science 165
2.4.5.2 Characteristics of laser cluster interaction • 166
2.4.5.3 Neutron generation 166
2.4.5.4 Numerical simulation 169
2.4.5.5 High efficiency neutron source 171
2.4.6 Positron 172
2.4.6.1 Processes of positron production using lasers 172
2.4.6.2 Laser solid interaction 174
2.4.6.3 Laser gas jet interaction 175
2.4.6.4 Radioactive isotopes 176
2.5 Inverse Compton Scattering X ray Generation 178
2.5.1 Laser synchrotron source and its applications .... 178
2.5.1.1 Laser synchrotron source 178
2.5.1.2 Fundamental aspects of laser synchrotron
source 180
2.5.1.3 Application of LSS: Polarized photon and
positron production 185
2.5.2 Intra cavity Thomson scattering 193
2.5.2.1 Thomson scattering in the Jefferson Lab in¬
frared FEL 193
2.5.2.2 Measurements of intra cavity Thomson X
ray 196
2.5.2.3 FEL upgrade Thomson X ray possibilities • 198
2.5.2.4 Conclusions and future program 198
2.6 Beam Slicing by Femtosecond Laser 202
x Femtosecond Beam Science
2.7 Free Electron Lasers 207
2.7.1 Femtosecond infrared free electron laser 207
2.7.2 Femtosecond X ray free electron laser 211
2.8 Energy Recovery Linac 214
Bibliography 221
3. Diagnosis and Synchronization 239
3.1 Pulse Shape Diagnostics 239
3.1.1 Streak camera 239
3.1.1.1 Principle of the streak camera 240
3.1.1.2 Consistent characteristic impedance
matched deflection circuit 240
3.1.1.3 Measurement example 242
3.1.2 Coherent radiation interferometer 245
3.1.2.1 Technique 246
3.1.2.2 Michelson interferometer 249
3.1.2.3 Bunch length measurements with coherent
diffraction radiation 255
3.1.2.4 Pulse shape reconstruction procedure .... 259
3.1.3 Far infrared polychromator 270
3.1.3.1 Single shot measurement 270
3.1.3.2 10 channel polychromator 271
3.1.3.3 Bunch length measurement 272
3.1.4 Fluctuation 275
3.1.4.1 Theory 275
3.1.4.2 Discussion 277
3.1.4.3 Experiment 279
3.1.4.4 Fluctuation in time domain 280
3.1.5 Overall comparison 284
3.1.5.1 Theoretical discussion 284
3.1.5.2 Experimental discussion 285
3.1.6 New trends 291
3.1.6.1 Electro optical method 291
3.1.6.2 T cavity method 293
3.1.7 Low jitter X ray streak camera 295
3.2 Synchronization 300
3.2.1 Laser vs. linac 301
Contents xi
3.2.1.1 S band linacs (thermionic and RF gun vs.
active mode locked Ti:Sapphire laser) .... 301
3.2.1.2 Upgraded timing system 306
3.2.1.3 Timing jitter source in laser oscillators . . . 307
3.2.1.4 Timing jitter source in a linac 312
3.2.1.5 Overall evaluation 314
3.2.2 Laser vs. synchrotron 318
3.2.2.1 Synchronization scheme and timing monitor 319
3.2.2.2 Performance of the synchronization at
SPring 8 321
3.2.2.3 Synchronous mechanical chopper 326
3.2.2.4 Time resolved measurements using an X ray
streak camera 327
3.2.2.5 Prospects for femtosecond timing control . . 329
Bibliography 331
4. Applications 337
4.1 Radiation Chemistry 337
4.1.1 Subpicosecond pulse radiolysis 337
4.1.1.1 History of picosecond and subpicosecond
pulse radiolysis 337
4.1.1.2 Time resolution of pulse radiolysis 341
4.1.1.3 Subpicosecond pulse radiolysis system . . . 343
4.1.1.4 Jitter compensation system for highly time
resolved measurements 345
4.1.1.5 Early processes of radiation chemistry . . . 346
4.1.1.6 Application to materials for nanotechnology 349
4.1.2 Radiolysis by RF gun 351
4.1.2.1 Supercritical xenon chemistry 351
4.1.2.2 Ultrafast water chemistry 356
4.1.3 Supercritical water 361
4.1.3.1 Supercritical water and its importance . . . 361
4.1.3.2 Pulse radiolysis experimental setup for su¬
percritical water 362
4.1.3.3 Examples of pulse radiolysis studies on su¬
percritical water 363
4.1.3.4 Future subjects 364
xii Femtosecond Beam Science
4.2 Time Resolved X ray Diffraction 366
4.2.1 Phonon dynamics in semiconductors 366
4.2.1.1 Ultrafast microscopic dynamics 366
4.2.1.2 Strain wave in crystals 368
4.2.1.3 Experiments 369
4.2.2 Shock wave propagation in semiconductors 375
4.2.2.1 Shock compression science 375
4.2.2.2 X ray diffraction of shocked solids 376
4.2.2.3 Laser shock 377
4.2.2.4 Laser plasma hard X ray pulses 378
4.2.2.5 Ultrafast time resolved X ray diffraction of
shock compressed silicon 380
4.2.2.6 Summary 384
4.2.3 Fast X ray shutter using laser induced lattice expan¬
sion at SR source 385
4.2.3.1 Optical switching of X rays using transient
expansion of crystal lattice 385
4.2.3.2 X ray shutter using optical switch 387
4.3 Protein Dynamics 390
4.4 Molecular Dynamics Simulation 399
4.4.1 Ultrafast phenomena and numerical modeling .... 399
4.4.2 Molecular dynamics simulation including light inter¬
actions 401
4.4.3 Quantum molecular dynamics simulation including
light interactions 405
Bibliography 411
Index 421
|
adam_txt |
Contents
Preface v
1. Introduction ,1
2. Femtosecond Beam Generation 7
2.1 Theory and Operation of Femtosecond Terawatt Lasers . . 7
2.1.1 Ultrashort pulses: theory and generation 7
2.1.1.1 Principle of mode locking for short pulse gen¬
eration 7
2.1.1.2 Mode locking techniques 10
2.1.2 Stretching and compressing laser pulses 15
2.1.2.1 Chirped pulse amplification principle . 15
2.1.2.2 Stretcher/compressor operation 16
2.1.2.3 The Ofiher triplet configuration 17
2.1.2.4 Compressor subsystem 18
2.1.3 Amplification process 18
2.1.3.1 Regenerative amplification 19
2.1.3.2 Multipass amplification 20
2.1.3.3 20 TW laser system 22
2.2 Linear Accelerator 24
2.2.1 Photoinjectors 24
2.2.1.1 RF cavity and laser 24
2.2.1.2 Cathode and quantum efficiency 29
2.2.1.3 Emittance control 31
2.2.2 Magnetic bunch compression 40
vii
vjii Femtosecond Beam Science
2.2.2.1 Analogy with chirped pulse amplification
(CPA) for femtosecond lasers 40
2.2.2.2 Theory 41
2.2.2.3 Experiment 46
2.2.2.4 Other subjects 50
2.2.2.5 Effect of CSR force 50
2.2.3 Velocity bunching 53
2.2.3.1 Theory 54
2.2.3.2 Application to the SPARC project 60
2.2.3.3 Experiments 61
2.2.4 Microbunching 63
2.2.4.1 Staged electron laser acceleration (STELLA) 63
2.2.4.2 Future potential issues 70
2.3 Synchrotron 71
2.3.1 Synchrotron 71
2.3.1.1 Bunch length in synchrotron and storage ring 72
2.3.1.2 Small ap and intrinsic problems 74
2.3.1.3 Intrinsic bunch length in an electron storage
ring 77
2.3.1.4 Microwave instability 78
2.3.2 Femtosecond e beams in storage rings 80
2.3.2.1 Strong longitudinal focusing 80
2.3.2.2 Coherent synchrotron radiation and stability
criteria 82
2.3.2.3 Selected results of computer simulations . . 86
2.3.2.4 Proposed applications of femtosecond elec¬
tron bunches in storage rings 87
2.4 Laser Plasma Acceleration 90
2.4.1 Electron 90
2.4.1.1 Laser plasma wake field acceleration . 90
2.4.1.2 Laser injected laser accelerator concept
(LILAC) 95
2.4.1.3 Plasma cathode: colliding pulse optical in¬
jection 105
2.4.1.4 Electron injection due to Langmuir wave
breaking 117
2.4.1.5 Plasma cathode by self injection 128
2.4.2 Ion 139
2.4.2.1 Mechanism 139
Contents ix
2.4.2.2 Low intensity laser case 141
2.4.2.3 Moderate intensity laser case 142
2.4.2.4 Ultra intense laser case 145
2.4.2.5 Ion acceleration in a solitary wave 147
2.4.3 X ray . 150
2.4.3.1 Mechanism of laser plasma short X ray gen¬
eration . . 150
2.4.3.2 Measurement 150
2.4.3.3 Numerical analysis to enhance intensity . . . 153
2.4.3.4 Nonlinear Thomson scattering 155
2.4.4 Terahertz (THz) radiation 158
2.4.4.1 Magnetic field enhancement scheme 158
2.4.4.2 Terawatt laser excitation scheme 163
2.4.5 Neutron 165
2.4.5.1 Cluster science 165
2.4.5.2 Characteristics of laser cluster interaction • 166
2.4.5.3 Neutron generation 166
2.4.5.4 Numerical simulation 169
2.4.5.5 High efficiency neutron source 171
2.4.6 Positron 172
2.4.6.1 Processes of positron production using lasers 172
2.4.6.2 Laser solid interaction 174
2.4.6.3 Laser gas jet interaction 175
2.4.6.4 Radioactive isotopes 176
2.5 Inverse Compton Scattering X ray Generation 178
2.5.1 Laser synchrotron source and its applications . 178
2.5.1.1 Laser synchrotron source 178
2.5.1.2 Fundamental aspects of laser synchrotron
source 180
2.5.1.3 Application of LSS: Polarized photon and
positron production 185
2.5.2 Intra cavity Thomson scattering 193
2.5.2.1 Thomson scattering in the Jefferson Lab in¬
frared FEL 193
2.5.2.2 Measurements of intra cavity Thomson X
ray 196
2.5.2.3 FEL upgrade Thomson X ray possibilities • 198
2.5.2.4 Conclusions and future program 198
2.6 Beam Slicing by Femtosecond Laser 202
x Femtosecond Beam Science
2.7 Free Electron Lasers 207
2.7.1 Femtosecond infrared free electron laser 207
2.7.2 Femtosecond X ray free electron laser 211
2.8 Energy Recovery Linac 214
Bibliography 221
3. Diagnosis and Synchronization 239
3.1 Pulse Shape Diagnostics 239
3.1.1 Streak camera 239
3.1.1.1 Principle of the streak camera 240
3.1.1.2 Consistent characteristic impedance
matched deflection circuit 240
3.1.1.3 Measurement example 242
3.1.2 Coherent radiation interferometer 245
3.1.2.1 Technique 246
3.1.2.2 Michelson interferometer 249
3.1.2.3 Bunch length measurements with coherent
diffraction radiation 255
3.1.2.4 Pulse shape reconstruction procedure . 259
3.1.3 Far infrared polychromator 270
3.1.3.1 Single shot measurement 270
3.1.3.2 10 channel polychromator 271
3.1.3.3 Bunch length measurement 272
3.1.4 Fluctuation 275
3.1.4.1 Theory 275
3.1.4.2 Discussion 277
3.1.4.3 Experiment 279
3.1.4.4 Fluctuation in time domain 280
3.1.5 Overall comparison 284
3.1.5.1 Theoretical discussion 284
3.1.5.2 Experimental discussion 285
3.1.6 New trends 291
3.1.6.1 Electro optical method 291
3.1.6.2 T cavity method 293
3.1.7 Low jitter X ray streak camera 295
3.2 Synchronization 300
3.2.1 Laser vs. linac 301
Contents xi
3.2.1.1 S band linacs (thermionic and RF gun vs.
active mode locked Ti:Sapphire laser) . 301
3.2.1.2 Upgraded timing system 306
3.2.1.3 Timing jitter source in laser oscillators . . . 307
3.2.1.4 Timing jitter source in a linac 312
3.2.1.5 Overall evaluation 314
3.2.2 Laser vs. synchrotron 318
3.2.2.1 Synchronization scheme and timing monitor 319
3.2.2.2 Performance of the synchronization at
SPring 8 321
3.2.2.3 Synchronous mechanical chopper 326
3.2.2.4 Time resolved measurements using an X ray
streak camera 327
3.2.2.5 Prospects for femtosecond timing control . . 329
Bibliography 331
4. Applications 337
4.1 Radiation Chemistry 337
4.1.1 Subpicosecond pulse radiolysis 337
4.1.1.1 History of picosecond and subpicosecond
pulse radiolysis 337
4.1.1.2 Time resolution of pulse radiolysis 341
4.1.1.3 Subpicosecond pulse radiolysis system . . . 343
4.1.1.4 Jitter compensation system for highly time
resolved measurements 345
4.1.1.5 Early processes of radiation chemistry . . . 346
4.1.1.6 Application to materials for nanotechnology 349
4.1.2 Radiolysis by RF gun 351
4.1.2.1 Supercritical xenon chemistry 351
4.1.2.2 Ultrafast water chemistry 356
4.1.3 Supercritical water 361
4.1.3.1 Supercritical water and its importance . . . 361
4.1.3.2 Pulse radiolysis experimental setup for su¬
percritical water 362
4.1.3.3 Examples of pulse radiolysis studies on su¬
percritical water 363
4.1.3.4 Future subjects 364
xii Femtosecond Beam Science
4.2 Time Resolved X ray Diffraction 366
4.2.1 Phonon dynamics in semiconductors 366
4.2.1.1 Ultrafast microscopic dynamics 366
4.2.1.2 Strain wave in crystals 368
4.2.1.3 Experiments 369
4.2.2 Shock wave propagation in semiconductors 375
4.2.2.1 Shock compression science 375
4.2.2.2 X ray diffraction of shocked solids 376
4.2.2.3 Laser shock 377
4.2.2.4 Laser plasma hard X ray pulses 378
4.2.2.5 Ultrafast time resolved X ray diffraction of
shock compressed silicon 380
4.2.2.6 Summary 384
4.2.3 Fast X ray shutter using laser induced lattice expan¬
sion at SR source 385
4.2.3.1 Optical switching of X rays using transient
expansion of crystal lattice 385
4.2.3.2 X ray shutter using optical switch 387
4.3 Protein Dynamics 390
4.4 Molecular Dynamics Simulation 399
4.4.1 Ultrafast phenomena and numerical modeling . 399
4.4.2 Molecular dynamics simulation including light inter¬
actions 401
4.4.3 Quantum molecular dynamics simulation including
light interactions 405
Bibliography 411
Index 421 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV021501946 |
callnumber-first | Q - Science |
callnumber-label | QC689 |
callnumber-raw | QC689.5.L37 QD716.L37 |
callnumber-search | QC689.5.L37 QD716.L37 |
callnumber-sort | QC 3689.5 L37 |
callnumber-subject | QC - Physics |
classification_rvk | UH 5618 |
ctrlnum | (OCoLC)62343704 (DE-599)BVBBV021501946 |
dewey-full | 621.366 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.366 |
dewey-search | 621.366 |
dewey-sort | 3621.366 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01619nam a2200469 c 4500</leader><controlfield tag="001">BV021501946</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070831 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060308s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860943438</subfield><subfield code="9">1-86094-343-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62343704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021501946</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC689.5.L37</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD716.L37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.366</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5618</subfield><subfield code="0">(DE-625)145670:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Femtosecond beam science</subfield><subfield code="c">ed. by Mitsuru Uesaka</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 426 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faisceaux laser</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Faisceaux laser</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Femtochimie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Femtochimie</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Femtochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser beams</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser pulses, Ultrashort</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser spectroscopy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Femtosekundenlaser</subfield><subfield code="0">(DE-588)4273256-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kurzzeitphysik</subfield><subfield code="0">(DE-588)4033856-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Femtosekundenlaser</subfield><subfield code="0">(DE-588)4273256-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kurzzeitphysik</subfield><subfield code="0">(DE-588)4033856-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uesaka, Mitsuru</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014718655&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014718655</subfield></datafield></record></collection> |
id | DE-604.BV021501946 |
illustrated | Illustrated |
index_date | 2024-07-02T14:15:46Z |
indexdate | 2024-07-09T20:37:15Z |
institution | BVB |
isbn | 1860943438 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014718655 |
oclc_num | 62343704 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-19 DE-BY-UBM |
physical | XII, 426 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Imperial College Press |
record_format | marc |
spelling | Femtosecond beam science ed. by Mitsuru Uesaka London Imperial College Press 2005 XII, 426 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Faisceaux laser Faisceaux laser ram Femtochimie Femtochimie ram Femtochemistry Laser beams Laser pulses, Ultrashort Laser spectroscopy Femtosekundenlaser (DE-588)4273256-6 gnd rswk-swf Kurzzeitphysik (DE-588)4033856-3 gnd rswk-swf Femtosekundenlaser (DE-588)4273256-6 s Kurzzeitphysik (DE-588)4033856-3 s DE-604 Uesaka, Mitsuru Sonstige oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014718655&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Femtosecond beam science Faisceaux laser Faisceaux laser ram Femtochimie Femtochimie ram Femtochemistry Laser beams Laser pulses, Ultrashort Laser spectroscopy Femtosekundenlaser (DE-588)4273256-6 gnd Kurzzeitphysik (DE-588)4033856-3 gnd |
subject_GND | (DE-588)4273256-6 (DE-588)4033856-3 |
title | Femtosecond beam science |
title_auth | Femtosecond beam science |
title_exact_search | Femtosecond beam science |
title_exact_search_txtP | Femtosecond beam science |
title_full | Femtosecond beam science ed. by Mitsuru Uesaka |
title_fullStr | Femtosecond beam science ed. by Mitsuru Uesaka |
title_full_unstemmed | Femtosecond beam science ed. by Mitsuru Uesaka |
title_short | Femtosecond beam science |
title_sort | femtosecond beam science |
topic | Faisceaux laser Faisceaux laser ram Femtochimie Femtochimie ram Femtochemistry Laser beams Laser pulses, Ultrashort Laser spectroscopy Femtosekundenlaser (DE-588)4273256-6 gnd Kurzzeitphysik (DE-588)4033856-3 gnd |
topic_facet | Faisceaux laser Femtochimie Femtochemistry Laser beams Laser pulses, Ultrashort Laser spectroscopy Femtosekundenlaser Kurzzeitphysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014718655&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT uesakamitsuru femtosecondbeamscience |