Inverses and regularity of disjointness preserving operators:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Warszawa
Inst. Matematyczny PAN
2005
|
Schriftenreihe: | Dissertationes mathematicae
433 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 48 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021482755 | ||
003 | DE-604 | ||
005 | 20230628 | ||
007 | t | ||
008 | 060221s2005 |||| 00||| eng d | ||
035 | |a (OCoLC)163396132 | ||
035 | |a (DE-599)BVBBV021482755 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-12 |a DE-91G |a DE-188 | ||
084 | |a SI 390 |0 (DE-625)143141: |2 rvk | ||
084 | |a MAT 060d |2 stub | ||
084 | |a MAT 470d |2 stub | ||
100 | 1 | |a Abramovich, Yuri A. |d 1945-2003 |e Verfasser |0 (DE-588)120117967 |4 aut | |
245 | 1 | 0 | |a Inverses and regularity of disjointness preserving operators |c Y. A. Abramovich ; A. K. Kitover |
264 | 1 | |a Warszawa |b Inst. Matematyczny PAN |c 2005 | |
300 | |a 48 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Dissertationes mathematicae |v 433 | |
650 | 0 | 7 | |a Banach-Verband |0 (DE-588)4273753-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Verband |0 (DE-588)4273753-9 |D s |
689 | 0 | 1 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kitover, A. K. |e Verfasser |0 (DE-588)1294248286 |4 aut | |
830 | 0 | |a Dissertationes mathematicae |v 433 |w (DE-604)BV000003039 |9 433 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014665127&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-014665127 |
Datensatz im Suchindex
_version_ | 1804135164587016192 |
---|---|
adam_text | Titel: Inverses and regularity of disjointness preserving operators
Autor: Abramovich, Yuri A
Jahr: 2005
CONTENTS
1. Introduction....................................................................................................................................................5
2. Basic definitions, notations, and auxiliary results............................................................................6
2.1. Krein-Kakutani representation and related properties of vector lattices........................7
2.2. Vector lattices with some degree of lateral completeness......................................................8
2.3. Disjointness preserving operators..................................................................................................11
2.4. d-dimension and d-independence....................................................................................................12
2.5. Condition fh............................................................................................................................................14
2.6. The Luxemburg condition................................................................................................................17
3. d-universal domains......................................................................................................................................22
3.1. Domains on which each disjointness preserving operator is regular..................................22
3.2. Domains on which x X z Tx XTz for each injective disjointness preserving ope-
rator T......................................................................................................................................................23
4. d-rigid vector lattices. General case........................................................................................................25
5. Weakly co-complete domains....................................................................................................................27
5.1. The main results..................................................................................................................................27
5.2. Proofs of Theorems 5.1.1 and 5.1.3................................................................................................30
5.3. Proofs of Theorems 5.1.4 and 5.1.5................................................................................................34
6. Weakly co-complete domains with the projection property or with the countable sup
property............................................................................................................................................................36
6.1. The general case....................................................................................................................................36
6.2. Dedekind complete domains. Relatively uniformly complete domains with the count-
able sup property..................................................................................................................................38
7. Huijsmans-de Pagter-Koldunov theorem............................................................................................40
7.1. The HPK-theorem. Some improvements....................................................................................40
7.2. The case when the range Y is countably normed....................................................................42
7.3. Range-domain interchange in the HPK-theorem......................................................................44
8. Applications to spaces of continuous functions..................................................................................46
References..............................................................................................................................................................47
2000 Mathematics Subject Classification: Primary 47B60, 47B65, 47B38, 46A40, 46B40, 46B42;
Secondary 54G05.
Received 12.1.2005.
[3]
|
adam_txt |
Titel: Inverses and regularity of disjointness preserving operators
Autor: Abramovich, Yuri A
Jahr: 2005
CONTENTS
1. Introduction.5
2. Basic definitions, notations, and auxiliary results.6
2.1. Krein-Kakutani representation and related properties of vector lattices.7
2.2. Vector lattices with some degree of lateral completeness.8
2.3. Disjointness preserving operators.11
2.4. d-dimension and d-independence.12
2.5. Condition fh.14
2.6. The Luxemburg condition.17
3. d-universal domains.22
3.1. Domains on which each disjointness preserving operator is regular.22
3.2. Domains on which x X z Tx XTz for each injective disjointness preserving ope-
rator T.23
4. d-rigid vector lattices. General case.25
5. Weakly co-complete domains.27
5.1. The main results.27
5.2. Proofs of Theorems 5.1.1 and 5.1.3.30
5.3. Proofs of Theorems 5.1.4 and 5.1.5.34
6. Weakly co-complete domains with the projection property or with the countable sup
property.36
6.1. The general case.36
6.2. Dedekind complete domains. Relatively uniformly complete domains with the count-
able sup property.38
7. Huijsmans-de Pagter-Koldunov theorem.40
7.1. The HPK-theorem. Some improvements.40
7.2. The case when the range Y is countably normed.42
7.3. Range-domain interchange in the HPK-theorem.44
8. Applications to spaces of continuous functions.46
References.47
2000 Mathematics Subject Classification: Primary 47B60, 47B65, 47B38, 46A40, 46B40, 46B42;
Secondary 54G05.
Received 12.1.2005.
[3] |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Abramovich, Yuri A. 1945-2003 Kitover, A. K. |
author_GND | (DE-588)120117967 (DE-588)1294248286 |
author_facet | Abramovich, Yuri A. 1945-2003 Kitover, A. K. |
author_role | aut aut |
author_sort | Abramovich, Yuri A. 1945-2003 |
author_variant | y a a ya yaa a k k ak akk |
building | Verbundindex |
bvnumber | BV021482755 |
classification_rvk | SI 390 |
classification_tum | MAT 060d MAT 470d |
ctrlnum | (OCoLC)163396132 (DE-599)BVBBV021482755 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01575nam a2200397 cb4500</leader><controlfield tag="001">BV021482755</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230628 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060221s2005 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)163396132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021482755</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 390</subfield><subfield code="0">(DE-625)143141:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 060d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 470d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abramovich, Yuri A.</subfield><subfield code="d">1945-2003</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120117967</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverses and regularity of disjointness preserving operators</subfield><subfield code="c">Y. A. Abramovich ; A. K. Kitover</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Warszawa</subfield><subfield code="b">Inst. Matematyczny PAN</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">48 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">433</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Verband</subfield><subfield code="0">(DE-588)4273753-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Verband</subfield><subfield code="0">(DE-588)4273753-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kitover, A. K.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1294248286</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dissertationes mathematicae</subfield><subfield code="v">433</subfield><subfield code="w">(DE-604)BV000003039</subfield><subfield code="9">433</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014665127&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014665127</subfield></datafield></record></collection> |
id | DE-604.BV021482755 |
illustrated | Not Illustrated |
index_date | 2024-07-02T14:05:02Z |
indexdate | 2024-07-09T20:36:09Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014665127 |
oclc_num | 163396132 |
open_access_boolean | |
owner | DE-703 DE-12 DE-91G DE-BY-TUM DE-188 |
owner_facet | DE-703 DE-12 DE-91G DE-BY-TUM DE-188 |
physical | 48 S. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Inst. Matematyczny PAN |
record_format | marc |
series | Dissertationes mathematicae |
series2 | Dissertationes mathematicae |
spelling | Abramovich, Yuri A. 1945-2003 Verfasser (DE-588)120117967 aut Inverses and regularity of disjointness preserving operators Y. A. Abramovich ; A. K. Kitover Warszawa Inst. Matematyczny PAN 2005 48 S. txt rdacontent n rdamedia nc rdacarrier Dissertationes mathematicae 433 Banach-Verband (DE-588)4273753-9 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Banach-Verband (DE-588)4273753-9 s Operatortheorie (DE-588)4075665-8 s DE-604 Kitover, A. K. Verfasser (DE-588)1294248286 aut Dissertationes mathematicae 433 (DE-604)BV000003039 433 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014665127&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Abramovich, Yuri A. 1945-2003 Kitover, A. K. Inverses and regularity of disjointness preserving operators Dissertationes mathematicae Banach-Verband (DE-588)4273753-9 gnd Operatortheorie (DE-588)4075665-8 gnd |
subject_GND | (DE-588)4273753-9 (DE-588)4075665-8 |
title | Inverses and regularity of disjointness preserving operators |
title_auth | Inverses and regularity of disjointness preserving operators |
title_exact_search | Inverses and regularity of disjointness preserving operators |
title_exact_search_txtP | Inverses and regularity of disjointness preserving operators |
title_full | Inverses and regularity of disjointness preserving operators Y. A. Abramovich ; A. K. Kitover |
title_fullStr | Inverses and regularity of disjointness preserving operators Y. A. Abramovich ; A. K. Kitover |
title_full_unstemmed | Inverses and regularity of disjointness preserving operators Y. A. Abramovich ; A. K. Kitover |
title_short | Inverses and regularity of disjointness preserving operators |
title_sort | inverses and regularity of disjointness preserving operators |
topic | Banach-Verband (DE-588)4273753-9 gnd Operatortheorie (DE-588)4075665-8 gnd |
topic_facet | Banach-Verband Operatortheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014665127&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003039 |
work_keys_str_mv | AT abramovichyuria inversesandregularityofdisjointnesspreservingoperators AT kitoverak inversesandregularityofdisjointnesspreservingoperators |