Principles of helicopter aerodynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2006
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Cambridge aerospace series
12 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Beschreibung für Leser Inhaltsverzeichnis |
Beschreibung: | Spätere Nachdrucke ggf. ohne CD-ROM |
Beschreibung: | XXXVII, 826 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 9780521858601 0521858607 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021405478 | ||
003 | DE-604 | ||
005 | 20170117 | ||
007 | t | ||
008 | 060215s2006 ad|| |||| 00||| eng d | ||
020 | |a 9780521858601 |9 978-0-521-85860-1 | ||
020 | |a 0521858607 |9 0-521-85860-7 | ||
035 | |a (OCoLC)61463625 | ||
035 | |a (DE-599)BVBBV021405478 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-91G |a DE-634 | ||
050 | 0 | |a TL716 | |
082 | 0 | |a 629.133/352 |2 22 | |
084 | |a ZO 7230 |0 (DE-625)157840: |2 rvk | ||
084 | |a VER 505f |2 stub | ||
084 | |a VER 562f |2 stub | ||
100 | 1 | |a Leishman, J. Gordon |e Verfasser |4 aut | |
245 | 1 | 0 | |a Principles of helicopter aerodynamics |c J. Gordon Leishman |
250 | |a 2. ed. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2006 | |
300 | |a XXXVII, 826 S. |b Ill., graph. Darst. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge aerospace series |v 12 | |
500 | |a Spätere Nachdrucke ggf. ohne CD-ROM | ||
650 | 7 | |a Aeroelasticidade de aeronaves |2 larpcal | |
650 | 7 | |a Helicópteros |2 larpcal | |
650 | 4 | |a Hélicoptères - Aérodynamique - Manuels d'enseignement supérieur | |
650 | 4 | |a Rotors (Aéronautique) | |
650 | 4 | |a Helicopters |x Aerodynamics | |
650 | 0 | 7 | |a Aerodynamik |0 (DE-588)4000589-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hubschrauber |0 (DE-588)4025993-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hubschrauber |0 (DE-588)4025993-6 |D s |
689 | 0 | 1 | |a Aerodynamik |0 (DE-588)4000589-6 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Cambridge aerospace series |v 12 |w (DE-604)BV008269320 |9 12 | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip0518/2005025467.html |3 Inhaltsverzeichnis | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0633/2005025467-d.html |3 Beschreibung für Leser | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014657040&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014657040 |
Datensatz im Suchindex
_version_ | 1804135152756981760 |
---|---|
adam_text | PRINCIPLES OF HELICOPTER AERODYNAMICS SECOND EDITION J. GORDON LEISHMAN,
D.SC.(ENG.), PH.D., RR.AE.S. UNIVERSITY OF MARYLAND CAMBRIDGE UNIVERSITY
PRESS CONTENTS PREFACE TO THE SECOND EDITION PAGE XIX PREFACE TO THE
FIRST EDITION XXIII ACKNOWLEDGMENTS XXVII LIST OF MAIN SYMBOLS XXXI 1
INTRODUCTION: A HISTORY OF HELICOPTER FLIGHT 1 1.1 RISING VERTICALLY 1
1.2 PRODUCING THRUST 4 1.3 KEY TECHNICAL PROBLEMS IN ATTAINING VERTICAL
FLIGHT 5 1.4 EARLY THINKING 6 1.5 THE HOPPERS 11 1.6 THE FIRST HOVERERS
17 1.7 NOT QUITE A HELICOPTER 20 1.8 ENGINES: A KEY ENABLING TECHNOLOGY
23 1.9 ON THE VERGE OF SUCCESS 25 1.10 THE FIRST SUCCESSES 28 1.11
TOWARD MASS PRODUCTION 33 1.12 MATURING TECHNOLOGY 40 1.13 COMPOUNDS,
TILT-WINGS, AND TILT-ROTORS 47 1.14 CHAPTER REVIEW 49 1.15 QUESTIONS 50
BIBLIOGRAPHY 51 2 FUNDAMENTALS OF ROTOR AERODYNAMICS 55 2.1 INTRODUCTION
55 2.2 MOMENTUM THEORY ANALYSIS IN HOVERING FLIGHT 58 2.2.1 FLOW NEAR A
HOVERING ROTOR 59 2.2.2 CONSERVATION LAWS OF AERODYNAMICS 60 2.2.3
APPLICATION TO A HOVERING ROTOR 61 2.3 DISK LOADING AND POWER LOADING 65
2.4 INDUCED INFLOW RATIO 66 2.5 THRUST AND POWER COEFFICIENTS 66 2.6
COMPARISON OF THEORY WITH MEASURED ROTOR PERFORMANCE 68 2.7 NONIDEAL
EFFECTS ON ROTOR PERFORMANCE 68 2.8 FIGURE OF MERIT 70 2.9 ESTIMATING
NONIDEAL EFFECTS FROM ROTOR MEASUREMENTS 74 2.10 INDUCED TIP LOSS 74
2.11 ROTOR SOLIDITY AND BLADE LOADING COEFFICIENT 77 2.12 POWER LOADING
80 IX IT CONTENTS 2.13 MOMENTUM ANALYSIS IN AXIAL CLIMB AND DESCENT 81
2.13.1 AXIAL CLIMB 81 2.13.2 AXIAL DESCENT 83 2.13.3 REGION BETWEEN
HOVER AND WINDMILL STATE 86 2.13.4 POWER REQUIRED IN AXIAL CLIMBING AND
DESCENDING FLIGHT 87 2.13.5 FOUR WORKING STATES OF THE ROTOR IN AXIAL
FLIGHT 88 2.13.6 VORTEX RING STATE 90 2.13.7 AUTOROTATION 91 2.14
MOMENTUM ANALYSIS IN FORWARD FLIGHT 93 2.14.1 INDUCED VELOCITY IN
FORWARD FLIGHT 95 2.14.2 SPECIAL CASE, A = 0 96 2.14.3 NUMERICAL
SOLUTION TO INFLOW EQUATION 97 2.14.4 GENERAL FORM OF THE INFLOW
EQUATION 99 2.14.5 VALIDITY OF THE INFLOW EQUATION 99 2.14.6 ROTOR POWER
REQUIREMENTS IN FORWARD FLIGHT 99 2.15 OTHER APPLICATIONS OF THE
MOMENTUM THEORY 101 2.15.1 COAXIAL ROTOR SYSTEMS 101 2.15.2 TANDEM ROTOR
SYSTEMS 106 2.16 CHAPTER REVIEW 110 2.17 QUESTIONS 110 BIBLIOGRAPHY 113
3 BLADE ELEMENT ANALYSIS 115 3.1 INTRODUCTION 115 3.2 BLADE ELEMENT
ANALYSIS IN HOVER AND AXIAL FLIGHT 117 3.2.1 INTEGRATED ROTOR THRUST AND
POWER 119 3.2.2 THRUST APPROXIMATIONS 119 3.2.3 TORQUE-POWER
APPROXIMATIONS 122 3.2.4 TIP-LOSS FACTOR 122 3.3 BLADE ELEMENT MOMENTUM
THEORY (BEMT) 125 3.3.1 ASSUMED RADIAL DISTRIBUTIONS OF INFLOW ON THE
BLADES 126 3.3.2 RADIAL INFLOW EQUATION 127 3.3.3 IDEAL TWIST 128 3.3.4
BEMT: NUMERICAL SOLUTION 130 3.3.5 DISTRIBUTIONS OF INFLOW AND AIRLOADS
131 3.3.6 EFFECTS OF SWIRL VELOCITY 134 3.3.7 THE OPTIMUM HOVERING ROTOR
135 3.3.8 CIRCULATION THEORY OF LIFT 138 3.3.9 POWER ESTIMATES FOR THE
ROTOR 139 3.3.10 PRANDTL S TIP-LOSS FUNCTION 141 3.3.11 BLADE DESIGN AND
FIGURE OF MERIT 145 3.3.12 BEMT IN CLIMBING FLIGHT 146 3.3.13 FURTHER
COMPARISONS OF BEMT WITH EXPERIMENT 148 3.3.14 COMPRESSIBILITY
CORRECTIONS TO ROTOR PERFORMANCE 150 3.4 EQUIVALENT BLADE CHORDS AND
WEIGHTED SOLIDITY 152 3.4.1 MEAN WING CHORDS 152 3.4.2 THRUST WEIGHTED
SOLIDITY 153 3.4.3 POWER-TORQUE WEIGHTED SOLIDITY 153 3.4.4 WEIGHTED
SOLIDITY OF THE OPTIMUM ROTOR 154 CONTENTS XI 3.4.5 WEIGHTED SOLIDITIES
OF TAPERED BLADES 154 3.4.6 MEAN LIFT COEFFICIENT 155 3.5 BLADE ELEMENT
ANALYSIS IN FORWARD FLIGHT 156 3.5.1 DETERMINING BLADE FORCES 156 3.5.2
DEFINITION OF THE APPROXIMATE INDUCED VELOCITY FIELD 158 3.6 CHAPTER
REVIEW 166 3.7 QUESTIONS 167 BIBLIOGRAPHY 169 4 ROTATING BLADE MOTION
171 4.1 INTRODUCTION 171 4.2 TYPES OF ROTORS 172 4.3 EQUILIBRIUM ABOUT
THE FLAPPING HINGE 174 4.4 EQUILIBRIUM ABOUT THE LEAD-LAG HINGE 176 4.5
EQUATION OF MOTION FOR A FLAPPING BLADE 178 4.6 PHYSICAL DESCRIPTION OF
BLADE FLAPPING 183 4.6.1 CONING ANGLE 183 4.6.2 LONGITUDINAL FLAPPING
ANGLE 183 4.6.3 LATERAL FLAPPING ANGLE 185 4.6.4 HIGHER HARMONICS OF
BLADE FLAPPING 185 4.7 DYNAMICS OF BLADE FLAPPING WITH A HINGE OFFSET
186 4.8 BLADE FEATHERING AND THE SWASHPLATE 188 4.9 REVIEW OF ROTOR
REFERENCE AXES 190 4.10 DYNAMICS OF A LAGGING BLADE WITH A HINGE OFFSET
194 4.11 COUPLED RAP-LAG MOTION 196 4.12 COUPLED PITCH-FLAP MOTION 198
4.13 OTHER TYPES OF ROTORS 199 4.13.1 TEETERING ROTOR 199 4.13.2
SEMI-RIGID OR HINGELESS ROTORS 200 4.14 INTRODUCTION TO ROTOR TRIM 202
4.14.1 EQUATIONS FOR FREE-FLIGHT TRIM 204 4.14.2 TYPICAL TRIM SOLUTION
PROCEDURE FOR LEVEL FLIGHT 207 4.15 CHAPTER REVIEW 209 4.16 QUESTIONS
209 BIBLIOGRAPHY 211 5 HELICOPTER PERFORMANCE 212 5.1 INTRODUCTION 212
5.2 THE INTERNATIONAL STANDARD ATMOSPHERE 212 5.3 HOVERING AND AXIAL
CLIMB PERFORMANCE 215 5.4 FORWARD FLIGHT PERFORMANCE 217 5.4.1 INDUCED
POWER 218 5.4.2 BLADE PROFILE POWER 219 5.4.3 COMPRESSIBILITY LOSSES AND
TIP RELIEF 220 5.4.4 REVERSE FLOW 223 5.4.5 PARASITIC POWER 225 5.4.6
CLIMB POWER 226 5.4.7 TAIL ROTOR POWER 226 5.4.8 TOTAL POWER 227 XII
CONTENTS 5.5 PERFORMANCE ANALYSIS 228 5.5.1 EFFECT OF GROSS WEIGHT 228
5.5.2 EFFECT OF DENSITY ALTITUDE 229 5.5.3 LIFT-TO-DRAG RATIOS 229 5.5.4
CLIMB PERFORMANCE 230 5.5.5 ENGINE FUEL CONSUMPTION 231 5.5.6 SPEED FOR
MINIMUM POWER 233 5.5.7 SPEED FOR MAXIMUM RANGE 235 5.5.8 RANGE-PAYLOAD
AND ENDURANCE-PAYLOAD RELATIONS 237 5.5.9 MAXIMUM ALTITUDE OR CEILING
238 5.5.10 FACTORS AFFECTING MAXIMUM ATTAINABLE FORWARD SPEED 239 5.5.11
PERFORMANCE OF COAXIAL AND TANDEM DUAL ROTOR SYSTEMS 240 5.6
AUTOROTATIONAL PERFORMANCE 242 5.6.1 AUTOROTATION IN FORWARD FLIGHT 246
5.6.2 HEIGHT-VELOCITY (H-V) CURVE 249 5.6.3 AUTOROTATION INDEX 251 5.7
VORTEX RING STATE (VRS) 252 5.7.1 QUANTIFICATION OF VRS EFFECTS 252
5.7.2 IMPLICATIONS OF VRS ON FLIGHT BOUNDARY 256 5.8 GROUND EFFECT 257
5.8.1 HOVERING FLIGHT NEAR THE GROUND 258 5.8.2 FORWARD FLIGHT NEAR THE
GROUND 260 5.9 PERFORMANCE IN MANEUVERING FLIGHT 263 5.9.1 STEADY
MANEUVERS 264 5.9.2 TRANSIENT MANEUVERS 265 5.10 FACTORS INFLUENCING
PERFORMANCE DEGRADATION 269 5.11 CHAPTER REVIEW 271 5.12 QUESTIONS 272
BIBLIOGRAPHY 273 6 AERODYNAMIC DESIGN OF HELICOPTERS 277 6.1
INTRODUCTION 277 6.2 OVERALL DESIGN REQUIREMENTS 277 6.3 CONCEPTUAL AND
PRELIMINARY DESIGN PROCESSES 279 6.4 DESIGN OF THE MAIN ROTOR 280 6.4.1
ROTOR DIAMETER 281 6.4.2 TIP SPEED 283 6.4.3 ROTOR SOLIDITY 285 6.4.4
NUMBER OF BLADES 288 6.4.5 BLADE TWIST 290 6.4.6 BLADE PLANFORM AND TIP
SHAPE 292 6.4.7 AIRFOIL SECTIONS 295 6.5 CASE STUDY: THE BERP ROTOR 301
6.6 FUSELAGE AERODYNAMIC DESIGN ISSUES 304 6.6.1 FUSELAGE DRAG 304 6.6.2
VERTICAL DRAG AND DOWNLOAD PENALTY 307 6.6.3 VERTICAL DRAG RECOVERY 309
6.6.4 FUSELAGE SIDE-FORCE 310 CONTENTS XIII 6.7 EMPENNAGE DESIGN 311
6.7.1 HORIZONTAL STABILIZER 311 6.7.2 VERTICAL STABILIZER 312 6.8 ROLE
OF WIND TUNNELS IN AERODYNAMIC DESIGN 313 6.9 DESIGN OF TAIL ROTORS 314
6.9.1 PHYSICAL SIZE 315 6.9.2 THRUST REQUIREMENTS 315 6.9.3 PRECESSIONAL
STALL ISSUES 317 6.9.4 PUSHERS VERSUS TRACTORS 318 6.9.5 DESIGN
REQUIREMENTS 319 6.9.6 REPRESENTATIVE TAIL ROTOR DESIGNS 320 6.10 OTHER
ANTI-TORQUE DEVICES 321 6.10.1 FAN-IN-FIN 321 6.10.2 NOTAR DESIGN 324
6.11 HIGH-SPEED ROTORCRAFT 325 6.11.1 COMPOUND HELICOPTERS 325 6.11.2
TILT-ROTORS 327 6.11.3 OTHER HIGH-SPEED CONCEPTS 328 6.12 SMART ROTOR
SYSTEMS 330 6.13 HUMAN-POWERED HELICOPTER 331 6.14 HOVERING MICRO AIR
VEHICLES 334 6.15 CHAPTER REVIEW 338 6.16 QUESTIONS 338 BIBLIOGRAPHY 340
7 AERODYNAMICS OF ROTOR AIRFOILS 347 7.1 INTRODUCTION 347 7.2 HELICOPTER
ROTOR AIRFOIL REQUIREMENTS 348 7.3 REYNOLDS NUMBER AND MACH NUMBER
EFFECTS 350 7.3.1 REYNOLDS NUMBER 350 7.3.2 CONCEPT OF THE BOUNDARY
LAYER 352 7.3.3 MACH NUMBER 357 7.3.4 MODEL ROTOR SIMILARITY PARAMETERS
359 7.4 AIRFOIL SHAPE DEFINITION 360 7.5 AIRFOIL PRESSURE DISTRIBUTIONS
363 7.5.1 PRESSURE COEFFICIENT 363 7.5.2 CRITICAL PRESSURE COEFFICIENT
364 7.5.3 SYNTHESIS OF CHORDWISE PRESSURE 365 7.5.4 MEASUREMENTS OF
CHORDWISE PRESSURE 366 7.6 AERODYNAMICS OF A REPRESENTATIVE AIRFOIL
SECTION 368 7.6.1 INTEGRATION OF DISTRIBUTED FORCES 368 7.6.2 PRESSURE
INTEGRATION 370 7.6.3 REPRESENTATIVE FORCE AND MOMENT RESULTS 371 7.7
PITCHING MOMENT AND RELATED ISSUES 374 7.7.1 AERODYNAMIC CENTER 375
7.7.2 CENTER OF PRESSURE 377 7.7.3 EFFECT OF AIRFOIL SHAPE ON PITCHING
MOMENT 378 7.7.4 USE OF TRAILING EDGE TABS 381 7.7.5 REFLEXED AIRFOILS
383 XIV CONTENTS 7.8 DRAG 383 7.9 MAXIMUM LIFT AND STALL CHARACTERISTICS
385 7.9.1 EFFECTS OF REYNOLDS NUMBER 389 7.9.2 EFFECTS OF MACH NUMBER
392 7.10 ADVANCED ROTOR AIRFOIL DESIGN 398 7.11 REPRESENTING STATIC
AIRFOIL CHARACTERISTICS 401 7.11.1 LINEAR AERODYNAMIC MODELS 401 7.11.2
NONLINEAR AERODYNAMIC MODELS 403 7.11.3 TABLE LOOK-UP 403 7.11.4 DIRECT
CURVE FITTING 403 7.11.5 BEDDOES METHOD 404 7.11.6 HIGH ANGLE OF ATTACK
RANGE 407 7.12 CIRCULATION CONTROLLED AIRFOILS 409 7.13 VERY LOW
REYNOLDS NUMBER AIRFOIL CHARACTERISTICS 411 7.14 EFFECTS OF DAMAGE ON
AIRFOIL PERFORMANCE 412 7.15 CHAPTER REVIEW 415 7.16 QUESTIONS 416
BIBLIOGRAPHY 418 8 UNSTEADY AIRFOIL BEHAVIOR 423 8.1 INTRODUCTION 423
8.2 SOURCES OF UNSTEADY AERODYNAMIC LOADING 424 8.3 CONCEPTS OF THE
BLADE WAKE 424 8.4 REDUCED FREQUENCY AND REDUCED TIME 427 8.5 UNSTEADY
ATTACHED FLOW 428 8.6 PRINCIPLES OF QUASI-STEADY THIN-AIRFOIL THEORY 429
8.7 THEODORSEN S THEORY 431 8.7.1 PURE ANGLE OF ATTACK OSCILLATIONS 434
8.7.2 PURE PLUNGING OSCILLATIONS 436 8.7.3 PITCHING OSCILLATIONS 438 8.8
THE RETURNING WAKE: LOEWY S PROBLEM 441 8.9 SINUSOIDAL GUST: SEARS S
PROBLEM 442 8.10 INDICIAL RESPONSE: WAGNER S PROBLEM 446 8.11
SHARP-EDGED GUST: KIISSNER S PROBLEM 448 8.12 TRAVELING SHARP-EDGED
GUST: MILES S PROBLEM 450 8.13 TIME-VARYING INCIDENT VELOCITY 453 8.14
GENERAL APPLICATION OF THE INDICIAL RESPONSE METHOD 457 8.14.1
RECURRENCE SOLUTION TO THE DUHAMEL INTEGRAL 459 8.14.2 STATE-SPACE
SOLUTION FOR ARBITRARY MOTION 463 8.15 INDICIAL METHOD FOR SUBSONIC
COMPRESSIBLE FLOW 465 8.15.1 APPROXIMATIONS TO THE INDICIAL RESPONSE 467
8.15.2 INDICIAL LIFT FROM ANGLE OF ATTACK 469 8.15.3 INDICIAL LIFT FROM
PITCH RATE 470 8.15.4 DETERMINATION OF INDICIAL FUNCTION COEFFICIENTS
471 8.15.5 INDICIAL PITCHING MOMENT FROM ANGLE OF ATTACK 474 8.15.6
INDICIAL PITCHING MOMENT FROM PITCH RATE 474 8.15.7 UNSTEADY AXIAL FORCE
AND AIRFOIL DRAG 476 8.15.8 STATE-SPACE AERODYNAMIC MODEL FOR
COMPRESSIBLE FLOW 478 8.15.9 COMPARISON WITH EXPERIMENT 480 CONTENTS XV
8.16 NONUNIFORM VERTICAL VELOCITY FIELDS 483 8.16.1 EXACT SUBSONIC
LINEAR THEORY 48 3 8.16.2 APPROXIMATIONS TO THE SHARP-EDGED GUST
FUNCTIONS 484 8.16.3 RESPONSE TO AN ARBITRARY VERTICAL GUST 487 8.16.4
BLADE-VORTEX INTERACTION (B VI) PROBLEM 488 8.16.5 CONVECTING VERTICAL
GUSTS IN SUBSONIC FLOW 490 8.17 TIME-VARY ING INCIDENT MACH NUMBER 492
8.18 UNSTEADY AERODYNAMICS OF FLAPS 492 8.18.1 INCOMPRESSIBLE FLOW
THEORY 493 8.18.2 SUBSONIC FLOW THEORY 497 8.18.3 COMPARISON WITH
MEASUREMENTS 500 8.19 PRINCIPLES OF NOISE PRODUCED BY UNSTEADY FORCES
502 8.19.1 RETARDED TIME AND SOURCE TIME 504 8.19.2 WAVE TRACING 505
8.19.3 COMPACTNESS 506 8.19.4 TRACE OR PHASE MACH NUMBER 507 8.19.5
FFOWCS-WILLIAMS-HAWKINS EQUATION 508 8.19.6 BVI ACOUSTIC MODEL PROBLEM
510 8.19.7 COMPARISON OF AEROACOUSTIC METHODS 513 8.19.8 METHODS OF
ROTOR NOISE REDUCTION 515 8.20 CHAPTER REVIEW 516 8.21 QUESTIONS 517
BIBLIOGRAPHY 519 9 DYNAMIC STALL 525 9.1 INTRODUCTION 525 9.2 FLOW
MORPHOLOGY OF DYNAMIC STALL 527 9.3 DYNAMIC STALL IN THE ROTOR
ENVIRONMENT 529 9.4 EFFECTS OF FORCING CONDITIONS ON DYNAMIC STALL 531
9.5 MODELING OF DYNAMIC STALL 535 9.5.1 SEMI-EMPIRICAL MODELS OF DYNAMIC
STALL 536 9.5.2 CAPABILITIES OF DYNAMIC STALL MODELING 541 9.5.3 FUTURE
MODELING GOALS WITH SEMI-EMPIRICAL MODELS 543 9.6 TORSIONAL DAMPING 545
9.7 EFFECTS OF SWEEP ANGLE ON DYNAMIC STALL 547 9.8 EFFECT OF AIRFOIL
SHAPE ON DYNAMIC STALL 551 9.9 THREE-DIMENSIONAL EFFECTS ON DYNAMIC
STALL 553 9.10 TIME-VARYING VELOCITY EFFECTS ON DYNAMIC STALL 556 9.11
PREDICTION OF IN-FLIGHT AIRLOADS 557 9.12 STALL CONTROL 559 9.13 CHAPTER
REVIEW 560 9.14 QUESTIONS 561 BIBLIOGRAPHY 562 10 ROTOR WAKES AND BLADE
TIP VORTICES 567 10.1 INTRODUCTION 567 10.2 FLOW VISUALIZATION
TECHNIQUES 568 10.2.1 NATURAL CONDENSATION EFFECTS 568 10.2.2 SMOKE FLOW
VISUALIZATION 569 10.2.3 DENSITY GRADIENT METHODS 570 XVI CONTENTS 10.3
CHARACTERISTICS OF THE ROTOR WAKE IN HOVER 572 10.3.1 GENERAL FEATURES
572 10.3.2 WAKE GEOMETRY IN HOVER 573 10.4 CHARACTERISTICS OF THE ROTOR
WAKE IN FORWARD FLIGHT 575 10.4.1 WAKE BOUNDARIES 577 10.4.2
BLADE-VORTEX INTERACTIONS (BVIS) 578 10.5 OTHER CHARACTERISTICS OF ROTOR
WAKES 582 10.5.1 PERIODICITY VERSUS APERIODICITY 582 10.5.2 VORTEX
PERTURBATIONS AND INSTABILITIES 582 10.6 DETAILED STRUCTURE OF THE TIP
VORTICES 584 10.6.1 VELOCITY FIELD 585 10.6.2 MODELS FOR THE TIP VORTEX
586 10.6.3 VORTICITY DIFFUSION EFFECTS AND VORTEX CORE GROWTH 592 10.6.4
CORRELATION OF ROTOR TIP VORTEX DATA 594 10.6.5 FLOW ROTATION EFFECTS ON
TURBULENCE INSIDE VORTICES 595 10.7 VORTEX MODELS OF THE ROTOR WAKE 598
10.7.1 BIOT-SAVART LAW 599 10.7.2 VORTEX SEGMENTATION 601 10.7.3
GOVERNING EQUATIONS FOR THE CONVECTING VORTEX WAKE 602 10.7.4 PRESCRIBED
WAKE MODELS FOR HOVERING FLIGHT 604 10.7.5 PRESCRIBED VORTEX WAKE MODELS
FOR FORWARD FLIGHT 607 10.7.6 FREE-VORTEX WAKE ANALYSES 614 10.8
APERIODIC WAKE DEVELOPMENTS 627 10.8.1 WAKE STABILITY ANALYSIS 627
10.8.2 FLOW VISUALIZATION OF TRANSIENT WAKE PROBLEMS 630 10.8.3 DYNAMIC
INFLOW 631 10.8.4 TIME-MARCHING FREE-VORTEX WAKES 633 10.8.5 SIMULATION
OF CARPENTER & FRIEDOVICH PROBLEM 633 10.9 GENERAL DYNAMIC INFLOW MODELS
635 10.10 DESCENDING FLIGHT AND THE VORTEX RING STATE 638 10.11 WAKE
DEVELOPMENTS IN MANEUVERING FLIGHT 640 10.12 CHAPTER REVIEW 645 10.13
QUESTIONS 646 BIBLIOGRAPHY 647 11 ROTOR-AIRFRAME INTERACTIONAL
AERODYNAMICS 655 11.1 INTRODUCTION 655 11.2 ROTOR-FUSELAGE INTERACTIONS
657 11.2.1 EFFECTS OF THE FUSELAGE ON ROTOR PERFORMANCE 658 11.2.2
TIME-AVERAGED EFFECTS ON THE AIRFRAME 662 11.2.3 UNSTEADY ROTOR-FUSELAGE
INTERACTIONS 666 11.2.4 FUSELAGE SIDE-FORCES 673 11.2.5 MODELING OF
ROTOR-FUSELAGE INTERACTIONS 674 11.3 ROTOR-EMPENNAGE INTERACTIONS 676
11.3.1 AIRLOADS ON THE HORIZONTAL TAIL 679 11.3.2 MODELING OF
ROTOR-EMPENNAGE INTERACTIONS 680 11.4 ROTOR-TAIL ROTOR INTERACTIONS 682
11.5 CHAPTER REVIEW 685 11.6 QUESTIONS 686 BIBLIOGRAPHY 687 CONTENTS
XVII 12 AUTOGIROS AND GYROPLANES 692 12.1 INTRODUCTION 692 12.2 THE
CURIOUS PHENOMENON OF AUTOROTATION 693 12.3 REVIEW OF AUTOROTATIONAL
PHYSICS 694 12.4 ROLLING ROTORS: THE DILEMMA OF ASYMMETRIC LIFT 699 12.5
INNOVATION OF THE FLAPPING AND LAGGING HINGES 700 12.6 PREROTATING THE
ROTOR 701 12.7 AUTOGIRO THEORY MEETS PRACTICE 702 12.8 VERTICAL FLIGHT
PERFORMANCE OF THE AUTOGIRO 704 12.9 FORWARD FLIGHT PERFORMANCE OF THE
AUTOGIRO 705 12.10 COMPARISON OF AUTOGIRO PERFORMANCE WITH THE
HELICOPTER 708 12.11 AIRFOILS FOR AUTOGIROS 709 12.12 NAC A RESEARCH ON
AUTOGIROS 710 12.13 GIVING BETTER CONTROL: ORIENTABLE ROTORS 712 12.14
IMPROVING PERFORMANCE: JUMP AND TOWERING TAKEOFFS 713 12.15 GROUND AND
AIR RESONANCE 715 12.16 HELICOPTERS ECLIPSE AUTOGIROS 716 12.17
RENAISSANCE OF THE AUTOGIRO? 717 12.18 CHAPTER REVIEW 719 12.19
QUESTIONS 720 BIBLIOGRAPHY 720 13 AERODYNAMICS OF WIND TURBINES 723 13.1
INTRODUCTION 723 13.2 HISTORY OF WIND TURBINE DEVELOPMENT 724 13.3 POWER
IN THE WIND 726 13.4 MOMENTUM THEORY ANALYSIS FOR A WIND TURBINE 727
13.4.1 POWER AND THRUST COEFFICIENTS FOR A WIND TURBINE 729 13.4.2
THEORETICAL MAXIMUM EFFICIENCY 730 13.5 REPRESENTATIVE POWER CURVE FOR A
WIND TURBINE 731 13.6 ELEMENTARY WIND MODELS 733 13.7 BLADE ELEMENT
MODEL FOR THE WIND TURBINE 735 13.8 BLADE ELEMENT MOMENTUM THEORY FOR A
WIND TURBINE 738 13.8.1 EFFECT OF NUMBER OF BLADES 742 13.8.2 EFFECT OF
VISCOUS DRAG 742 13.8.3 TIP-LOSS EFFECTS 743 13.8.4 TIP LOSSES AND OTHER
VISCOUS LOSSES 745 , 13.8.5 EFFECTS OF STALL 747 , 13.9 AIRFOILS FOR
WIND TURBINES 747 . 13.10 YAWED FLOW OPERATION 750 13.11 VORTEX WAKE
CONSIDERATIONS 751 13.12 UNSTEADY AERODYNAMIC EFFECTS ON WIND TURBINES
757 13.12.1 TOWER SHADOW 760 13.12.2 DYNAMIC STALL AND STALL DELAY 761
13.13 ADVANCED AERODYNAMIC MODELING REQUIREMENTS 763 13.14 CHAPTER
REVIEW 764 13.15 QUESTIONS 765 BIBLIOGRAPHY 767 XVIII CONTENTS 14
COMPUTATIONAL METHODS FOR HELICOPTER AERODYNAMICS 771 14.1 INTRODUCTION
771 14.2 FUNDAMENTAL GOVERNING EQUATIONS OF AERODYNAMICS 772 14.2.1
NAVIER-STOKES EQUATIONS 773 14.2.2 EULER EQUATIONS 776 14.3 VORTICITY
TRANSPORT EQUATIONS 777 14.4 VORTEX METHODS 779 14.5 BOUNDARY LAYER
EQUATIONS 780 14.6 POTENTIAL EQUATIONS 783 14.7 SURFACE SINGULARITY
METHODS 783 14.8 THIN AIRFOIL THEORY 786 14.9 LIFTING-LINE BLADE MODEL
787 14.10 APPLICATIONS OF ADVANCED COMPUTATIONAL METHODS 790 14.10.1
UNSTEADY AIRFOIL PERFORMANCE 790 14.10.2 TIP VORTEX FORMATION 794
14.10.3 CFD MODELING OF THE ROTOR WAKE 797 14.10.4 AIRFRAME FLOWS 798
14.10.5 VIBRATIONS AND ACOUSTICS 801 14.10.6 GROUND EFFECT 803 14.10.7
VORTEX RING STATE 803 14.11 COMPREHENSIVE ROTOR ANALYSES 805 14.12
CHAPTER REVIEW 808 14.13 QUESTIONS 809 BIBLIOGRAPHY 810 APPENDIX 815
INDEX 817
|
adam_txt |
PRINCIPLES OF HELICOPTER AERODYNAMICS SECOND EDITION J. GORDON LEISHMAN,
D.SC.(ENG.), PH.D., RR.AE.S. UNIVERSITY OF MARYLAND CAMBRIDGE UNIVERSITY
PRESS CONTENTS PREFACE TO THE SECOND EDITION PAGE XIX PREFACE TO THE
FIRST EDITION XXIII ACKNOWLEDGMENTS XXVII LIST OF MAIN SYMBOLS XXXI 1
INTRODUCTION: A HISTORY OF HELICOPTER FLIGHT 1 1.1 RISING VERTICALLY 1
1.2 PRODUCING THRUST 4 1.3 KEY TECHNICAL PROBLEMS IN ATTAINING VERTICAL
FLIGHT 5 1.4 EARLY THINKING 6 1.5 THE HOPPERS 11 1.6 THE FIRST HOVERERS
17 1.7 NOT QUITE A HELICOPTER 20 1.8 ENGINES: A KEY ENABLING TECHNOLOGY
23 1.9 ON THE VERGE OF SUCCESS 25 1.10 THE FIRST SUCCESSES 28 1.11
TOWARD MASS PRODUCTION 33 1.12 MATURING TECHNOLOGY 40 1.13 COMPOUNDS,
TILT-WINGS, AND TILT-ROTORS 47 1.14 CHAPTER REVIEW 49 1.15 QUESTIONS 50
BIBLIOGRAPHY 51 2 FUNDAMENTALS OF ROTOR AERODYNAMICS 55 2.1 INTRODUCTION
55 2.2 MOMENTUM THEORY ANALYSIS IN HOVERING FLIGHT 58 2.2.1 FLOW NEAR A
HOVERING ROTOR 59 2.2.2 CONSERVATION LAWS OF AERODYNAMICS 60 2.2.3
APPLICATION TO A HOVERING ROTOR 61 2.3 DISK LOADING AND POWER LOADING 65
2.4 INDUCED INFLOW RATIO 66 2.5 THRUST AND POWER COEFFICIENTS 66 2.6
COMPARISON OF THEORY WITH MEASURED ROTOR PERFORMANCE 68 2.7 NONIDEAL
EFFECTS ON ROTOR PERFORMANCE 68 2.8 FIGURE OF MERIT 70 2.9 ESTIMATING
NONIDEAL EFFECTS FROM ROTOR MEASUREMENTS 74 2.10 INDUCED TIP LOSS 74
2.11 ROTOR SOLIDITY AND BLADE LOADING COEFFICIENT 77 2.12 POWER LOADING
80 IX IT CONTENTS 2.13 MOMENTUM ANALYSIS IN AXIAL CLIMB AND DESCENT 81
2.13.1 AXIAL CLIMB 81 2.13.2 AXIAL DESCENT 83 2.13.3 REGION BETWEEN
HOVER AND WINDMILL STATE 86 2.13.4 POWER REQUIRED IN AXIAL CLIMBING AND
DESCENDING FLIGHT 87 2.13.5 FOUR WORKING STATES OF THE ROTOR IN AXIAL
FLIGHT 88 2.13.6 VORTEX RING STATE 90 2.13.7 AUTOROTATION 91 2.14
MOMENTUM ANALYSIS IN FORWARD FLIGHT 93 2.14.1 INDUCED VELOCITY IN
FORWARD FLIGHT 95 2.14.2 SPECIAL CASE, A = 0 96 2.14.3 NUMERICAL
SOLUTION TO INFLOW EQUATION 97 2.14.4 GENERAL FORM OF THE INFLOW
EQUATION 99 2.14.5 VALIDITY OF THE INFLOW EQUATION 99 2.14.6 ROTOR POWER
REQUIREMENTS IN FORWARD FLIGHT 99 2.15 OTHER APPLICATIONS OF THE
MOMENTUM THEORY 101 2.15.1 COAXIAL ROTOR SYSTEMS 101 2.15.2 TANDEM ROTOR
SYSTEMS 106 2.16 CHAPTER REVIEW 110 2.17 QUESTIONS 110 BIBLIOGRAPHY 113
3 BLADE ELEMENT ANALYSIS 115 3.1 INTRODUCTION 115 3.2 BLADE ELEMENT
ANALYSIS IN HOVER AND AXIAL FLIGHT 117 3.2.1 INTEGRATED ROTOR THRUST AND
POWER 119 3.2.2 THRUST APPROXIMATIONS 119 3.2.3 TORQUE-POWER
APPROXIMATIONS 122 3.2.4 TIP-LOSS FACTOR 122 3.3 BLADE ELEMENT MOMENTUM
THEORY (BEMT) 125 3.3.1 ASSUMED RADIAL DISTRIBUTIONS OF INFLOW ON THE
BLADES 126 3.3.2 RADIAL INFLOW EQUATION 127 3.3.3 IDEAL TWIST 128 3.3.4
BEMT: NUMERICAL SOLUTION 130 3.3.5 DISTRIBUTIONS OF INFLOW AND AIRLOADS
131 3.3.6 EFFECTS OF SWIRL VELOCITY 134 3.3.7 THE OPTIMUM HOVERING ROTOR
135 3.3.8 CIRCULATION THEORY OF LIFT 138 3.3.9 POWER ESTIMATES FOR THE
ROTOR 139 3.3.10 PRANDTL'S TIP-LOSS FUNCTION 141 3.3.11 BLADE DESIGN AND
FIGURE OF MERIT 145 3.3.12 BEMT IN CLIMBING FLIGHT 146 3.3.13 FURTHER
COMPARISONS OF BEMT WITH EXPERIMENT 148 3.3.14 COMPRESSIBILITY
CORRECTIONS TO ROTOR PERFORMANCE 150 3.4 EQUIVALENT BLADE CHORDS AND
WEIGHTED SOLIDITY 152 3.4.1 MEAN WING CHORDS 152 3.4.2 THRUST WEIGHTED
SOLIDITY 153 3.4.3 POWER-TORQUE WEIGHTED SOLIDITY 153 3.4.4 WEIGHTED
SOLIDITY OF THE OPTIMUM ROTOR 154 CONTENTS XI 3.4.5 WEIGHTED SOLIDITIES
OF TAPERED BLADES 154 3.4.6 MEAN LIFT COEFFICIENT 155 3.5 BLADE ELEMENT
ANALYSIS IN FORWARD FLIGHT 156 3.5.1 DETERMINING BLADE FORCES 156 3.5.2
DEFINITION OF THE APPROXIMATE INDUCED VELOCITY FIELD 158 3.6 CHAPTER
REVIEW 166 3.7 QUESTIONS 167 BIBLIOGRAPHY 169 4 ROTATING BLADE MOTION
171 4.1 INTRODUCTION 171 4.2 TYPES OF ROTORS 172 4.3 EQUILIBRIUM ABOUT
THE FLAPPING HINGE 174 4.4 EQUILIBRIUM ABOUT THE LEAD-LAG HINGE 176 4.5
EQUATION OF MOTION FOR A FLAPPING BLADE 178 4.6 PHYSICAL DESCRIPTION OF
BLADE FLAPPING 183 4.6.1 CONING ANGLE 183 4.6.2 LONGITUDINAL FLAPPING
ANGLE 183 4.6.3 LATERAL FLAPPING ANGLE 185 4.6.4 HIGHER HARMONICS OF
BLADE FLAPPING 185 4.7 DYNAMICS OF BLADE FLAPPING WITH A HINGE OFFSET
186 4.8 BLADE FEATHERING AND THE SWASHPLATE 188 4.9 REVIEW OF ROTOR
REFERENCE AXES 190 4.10 DYNAMICS OF A LAGGING BLADE WITH A HINGE OFFSET
194 4.11 COUPLED RAP-LAG MOTION 196 4.12 COUPLED PITCH-FLAP MOTION 198
4.13 OTHER TYPES OF ROTORS 199 4.13.1 TEETERING ROTOR 199 4.13.2
SEMI-RIGID OR HINGELESS ROTORS 200 4.14 INTRODUCTION TO ROTOR TRIM 202
4.14.1 EQUATIONS FOR FREE-FLIGHT TRIM 204 4.14.2 TYPICAL TRIM SOLUTION
PROCEDURE FOR LEVEL FLIGHT 207 4.15 CHAPTER REVIEW 209 4.16 QUESTIONS
209 BIBLIOGRAPHY 211 5 HELICOPTER PERFORMANCE 212 5.1 INTRODUCTION 212
5.2 THE INTERNATIONAL STANDARD ATMOSPHERE 212 5.3 HOVERING AND AXIAL
CLIMB PERFORMANCE 215 5.4 FORWARD FLIGHT PERFORMANCE 217 5.4.1 INDUCED
POWER 218 5.4.2 BLADE PROFILE POWER 219 5.4.3 COMPRESSIBILITY LOSSES AND
TIP RELIEF 220 5.4.4 REVERSE FLOW 223 5.4.5 PARASITIC POWER 225 5.4.6
CLIMB POWER 226 5.4.7 TAIL ROTOR POWER 226 5.4.8 TOTAL POWER 227 XII
CONTENTS 5.5 PERFORMANCE ANALYSIS 228 5.5.1 EFFECT OF GROSS WEIGHT 228
5.5.2 EFFECT OF DENSITY ALTITUDE 229 5.5.3 LIFT-TO-DRAG RATIOS 229 5.5.4
CLIMB PERFORMANCE 230 5.5.5 ENGINE FUEL CONSUMPTION 231 5.5.6 SPEED FOR
MINIMUM POWER 233 5.5.7 SPEED FOR MAXIMUM RANGE 235 5.5.8 RANGE-PAYLOAD
AND ENDURANCE-PAYLOAD RELATIONS 237 5.5.9 MAXIMUM ALTITUDE OR CEILING
238 5.5.10 FACTORS AFFECTING MAXIMUM ATTAINABLE FORWARD SPEED 239 5.5.11
PERFORMANCE OF COAXIAL AND TANDEM DUAL ROTOR SYSTEMS 240 5.6
AUTOROTATIONAL PERFORMANCE 242 5.6.1 AUTOROTATION IN FORWARD FLIGHT 246
5.6.2 HEIGHT-VELOCITY (H-V) CURVE 249 5.6.3 AUTOROTATION INDEX 251 5.7
VORTEX RING STATE (VRS) 252 5.7.1 QUANTIFICATION OF VRS EFFECTS 252
5.7.2 IMPLICATIONS OF VRS ON FLIGHT BOUNDARY 256 5.8 GROUND EFFECT 257
5.8.1 HOVERING FLIGHT NEAR THE GROUND 258 5.8.2 FORWARD FLIGHT NEAR THE
GROUND 260 5.9 PERFORMANCE IN MANEUVERING FLIGHT 263 5.9.1 STEADY
MANEUVERS 264 5.9.2 TRANSIENT MANEUVERS 265 5.10 FACTORS INFLUENCING
PERFORMANCE DEGRADATION 269 5.11 CHAPTER REVIEW 271 5.12 QUESTIONS 272
BIBLIOGRAPHY 273 6 AERODYNAMIC DESIGN OF HELICOPTERS 277 6.1
INTRODUCTION 277 6.2 OVERALL DESIGN REQUIREMENTS 277 6.3 CONCEPTUAL AND
PRELIMINARY DESIGN PROCESSES 279 6.4 DESIGN OF THE MAIN ROTOR 280 6.4.1
ROTOR DIAMETER 281 6.4.2 TIP SPEED 283 6.4.3 ROTOR SOLIDITY 285 6.4.4
NUMBER OF BLADES 288 6.4.5 BLADE TWIST 290 6.4.6 BLADE PLANFORM AND TIP
SHAPE 292 6.4.7 AIRFOIL SECTIONS 295 6.5 CASE STUDY: THE BERP ROTOR 301
6.6 FUSELAGE AERODYNAMIC DESIGN ISSUES 304 6.6.1 FUSELAGE DRAG 304 6.6.2
VERTICAL DRAG AND DOWNLOAD PENALTY 307 6.6.3 VERTICAL DRAG RECOVERY 309
6.6.4 FUSELAGE SIDE-FORCE 310 CONTENTS XIII 6.7 EMPENNAGE DESIGN 311
6.7.1 HORIZONTAL STABILIZER 311 6.7.2 VERTICAL STABILIZER 312 6.8 ROLE
OF WIND TUNNELS IN AERODYNAMIC DESIGN 313 6.9 DESIGN OF TAIL ROTORS 314
6.9.1 PHYSICAL SIZE 315 6.9.2 THRUST REQUIREMENTS 315 6.9.3 PRECESSIONAL
STALL ISSUES 317 6.9.4 "PUSHERS" VERSUS "TRACTORS" 318 6.9.5 DESIGN
REQUIREMENTS 319 6.9.6 REPRESENTATIVE TAIL ROTOR DESIGNS 320 6.10 OTHER
ANTI-TORQUE DEVICES 321 6.10.1 FAN-IN-FIN 321 6.10.2 NOTAR DESIGN 324
6.11 HIGH-SPEED ROTORCRAFT 325 6.11.1 COMPOUND HELICOPTERS 325 6.11.2
TILT-ROTORS 327 6.11.3 OTHER HIGH-SPEED CONCEPTS 328 6.12 SMART ROTOR
SYSTEMS 330 6.13 HUMAN-POWERED HELICOPTER 331 6.14 HOVERING MICRO AIR
VEHICLES 334 6.15 CHAPTER REVIEW 338 6.16 QUESTIONS 338 BIBLIOGRAPHY 340
7 AERODYNAMICS OF ROTOR AIRFOILS 347 7.1 INTRODUCTION 347 7.2 HELICOPTER
ROTOR AIRFOIL REQUIREMENTS 348 7.3 REYNOLDS NUMBER AND MACH NUMBER
EFFECTS 350 7.3.1 REYNOLDS NUMBER 350 7.3.2 CONCEPT OF THE BOUNDARY
LAYER 352 7.3.3 MACH NUMBER 357 7.3.4 MODEL ROTOR SIMILARITY PARAMETERS
359 7.4 AIRFOIL SHAPE DEFINITION 360 7.5 AIRFOIL PRESSURE DISTRIBUTIONS
363 7.5.1 PRESSURE COEFFICIENT 363 7.5.2 CRITICAL PRESSURE COEFFICIENT
364 7.5.3 SYNTHESIS OF CHORDWISE PRESSURE 365 7.5.4 MEASUREMENTS OF
CHORDWISE PRESSURE 366 7.6 AERODYNAMICS OF A REPRESENTATIVE AIRFOIL
SECTION 368 7.6.1 INTEGRATION OF DISTRIBUTED FORCES 368 7.6.2 PRESSURE
INTEGRATION 370 7.6.3 REPRESENTATIVE FORCE AND MOMENT RESULTS 371 7.7
PITCHING MOMENT AND RELATED ISSUES 374 7.7.1 AERODYNAMIC CENTER 375
7.7.2 CENTER OF PRESSURE 377 7.7.3 EFFECT OF AIRFOIL SHAPE ON PITCHING
MOMENT 378 7.7.4 USE OF TRAILING EDGE TABS 381 7.7.5 REFLEXED AIRFOILS
383 XIV CONTENTS 7.8 DRAG 383 7.9 MAXIMUM LIFT AND STALL CHARACTERISTICS
385 7.9.1 EFFECTS OF REYNOLDS NUMBER 389 7.9.2 EFFECTS OF MACH NUMBER
392 7.10 ADVANCED ROTOR AIRFOIL DESIGN 398 7.11 REPRESENTING STATIC
AIRFOIL CHARACTERISTICS 401 7.11.1 LINEAR AERODYNAMIC MODELS 401 7.11.2
NONLINEAR AERODYNAMIC MODELS 403 7.11.3 TABLE LOOK-UP 403 7.11.4 DIRECT
CURVE FITTING 403 7.11.5 BEDDOES METHOD 404 7.11.6 HIGH ANGLE OF ATTACK
RANGE 407 7.12 CIRCULATION CONTROLLED AIRFOILS 409 7.13 VERY LOW
REYNOLDS NUMBER AIRFOIL CHARACTERISTICS 411 7.14 EFFECTS OF DAMAGE ON
AIRFOIL PERFORMANCE 412 7.15 CHAPTER REVIEW 415 7.16 QUESTIONS 416
BIBLIOGRAPHY 418 8 UNSTEADY AIRFOIL BEHAVIOR 423 8.1 INTRODUCTION 423
8.2 SOURCES OF UNSTEADY AERODYNAMIC LOADING 424 8.3 CONCEPTS OF THE
BLADE WAKE 424 8.4 REDUCED FREQUENCY AND REDUCED TIME 427 8.5 UNSTEADY
ATTACHED FLOW 428 8.6 PRINCIPLES OF QUASI-STEADY THIN-AIRFOIL THEORY 429
8.7 THEODORSEN'S THEORY 431 8.7.1 PURE ANGLE OF ATTACK OSCILLATIONS 434
8.7.2 PURE PLUNGING OSCILLATIONS 436 8.7.3 PITCHING OSCILLATIONS 438 8.8
THE RETURNING WAKE: LOEWY'S PROBLEM 441 8.9 SINUSOIDAL GUST: SEARS'S
PROBLEM 442 8.10 INDICIAL RESPONSE: WAGNER'S PROBLEM 446 8.11
SHARP-EDGED GUST: KIISSNER'S PROBLEM 448 8.12 TRAVELING SHARP-EDGED
GUST: MILES'S PROBLEM 450 8.13 TIME-VARYING INCIDENT VELOCITY 453 8.14
GENERAL APPLICATION OF THE INDICIAL RESPONSE METHOD 457 8.14.1
RECURRENCE SOLUTION TO THE DUHAMEL INTEGRAL 459 8.14.2 STATE-SPACE
SOLUTION FOR ARBITRARY MOTION 463 8.15 INDICIAL METHOD FOR SUBSONIC
COMPRESSIBLE FLOW 465 8.15.1 APPROXIMATIONS TO THE INDICIAL RESPONSE 467
8.15.2 INDICIAL LIFT FROM ANGLE OF ATTACK 469 8.15.3 INDICIAL LIFT FROM
PITCH RATE 470 8.15.4 DETERMINATION OF INDICIAL FUNCTION COEFFICIENTS
471 8.15.5 INDICIAL PITCHING MOMENT FROM ANGLE OF ATTACK 474 8.15.6
INDICIAL PITCHING MOMENT FROM PITCH RATE 474 8.15.7 UNSTEADY AXIAL FORCE
AND AIRFOIL DRAG 476 8.15.8 STATE-SPACE AERODYNAMIC MODEL FOR
COMPRESSIBLE FLOW 478 8.15.9 COMPARISON WITH EXPERIMENT 480 CONTENTS XV
8.16 NONUNIFORM VERTICAL VELOCITY FIELDS 483 8.16.1 EXACT SUBSONIC
LINEAR THEORY 48 3 8.16.2 APPROXIMATIONS TO THE SHARP-EDGED GUST
FUNCTIONS 484 8.16.3 RESPONSE TO AN ARBITRARY VERTICAL GUST 487 8.16.4
BLADE-VORTEX INTERACTION (B VI) PROBLEM 488 8.16.5 CONVECTING VERTICAL
GUSTS IN SUBSONIC FLOW 490 8.17 TIME-VARY ING INCIDENT MACH NUMBER 492
8.18 UNSTEADY AERODYNAMICS OF FLAPS 492 8.18.1 INCOMPRESSIBLE FLOW
THEORY 493 8.18.2 SUBSONIC FLOW THEORY 497 8.18.3 COMPARISON WITH
MEASUREMENTS 500 8.19 PRINCIPLES OF NOISE PRODUCED BY UNSTEADY FORCES
502 8.19.1 RETARDED TIME AND SOURCE TIME 504 8.19.2 WAVE TRACING 505
8.19.3 COMPACTNESS 506 8.19.4 TRACE OR PHASE MACH NUMBER 507 8.19.5
FFOWCS-WILLIAMS-HAWKINS EQUATION 508 8.19.6 BVI ACOUSTIC MODEL PROBLEM
510 8.19.7 COMPARISON OF AEROACOUSTIC METHODS 513 8.19.8 METHODS OF
ROTOR NOISE REDUCTION 515 8.20 CHAPTER REVIEW 516 8.21 QUESTIONS 517
BIBLIOGRAPHY 519 9 DYNAMIC STALL 525 9.1 INTRODUCTION 525 9.2 FLOW
MORPHOLOGY OF DYNAMIC STALL 527 9.3 DYNAMIC STALL IN THE ROTOR
ENVIRONMENT 529 9.4 EFFECTS OF FORCING CONDITIONS ON DYNAMIC STALL 531
9.5 MODELING OF DYNAMIC STALL 535 9.5.1 SEMI-EMPIRICAL MODELS OF DYNAMIC
STALL 536 9.5.2 CAPABILITIES OF DYNAMIC STALL MODELING 541 9.5.3 FUTURE
MODELING GOALS WITH SEMI-EMPIRICAL MODELS 543 9.6 TORSIONAL DAMPING 545
9.7 EFFECTS OF SWEEP ANGLE ON DYNAMIC STALL 547 9.8 EFFECT OF AIRFOIL
SHAPE ON DYNAMIC STALL 551 9.9 THREE-DIMENSIONAL EFFECTS ON DYNAMIC
STALL 553 9.10 TIME-VARYING VELOCITY EFFECTS ON DYNAMIC STALL 556 9.11
PREDICTION OF IN-FLIGHT AIRLOADS 557 9.12 STALL CONTROL 559 9.13 CHAPTER
REVIEW 560 9.14 QUESTIONS 561 BIBLIOGRAPHY 562 10 ROTOR WAKES AND BLADE
TIP VORTICES 567 10.1 INTRODUCTION 567 10.2 FLOW VISUALIZATION
TECHNIQUES 568 10.2.1 NATURAL CONDENSATION EFFECTS 568 10.2.2 SMOKE FLOW
VISUALIZATION 569 10.2.3 DENSITY GRADIENT METHODS 570 XVI CONTENTS 10.3
CHARACTERISTICS OF THE ROTOR WAKE IN HOVER 572 10.3.1 GENERAL FEATURES
572 10.3.2 WAKE GEOMETRY IN HOVER 573 10.4 CHARACTERISTICS OF THE ROTOR
WAKE IN FORWARD FLIGHT 575 10.4.1 WAKE BOUNDARIES 577 10.4.2
BLADE-VORTEX INTERACTIONS (BVIS) 578 10.5 OTHER CHARACTERISTICS OF ROTOR
WAKES 582 10.5.1 PERIODICITY VERSUS APERIODICITY 582 10.5.2 VORTEX
PERTURBATIONS AND INSTABILITIES 582 10.6 DETAILED STRUCTURE OF THE TIP
VORTICES 584 10.6.1 VELOCITY FIELD 585 10.6.2 MODELS FOR THE TIP VORTEX
586 10.6.3 VORTICITY DIFFUSION EFFECTS AND VORTEX CORE GROWTH 592 10.6.4
CORRELATION OF ROTOR TIP VORTEX DATA 594 10.6.5 FLOW ROTATION EFFECTS ON
TURBULENCE INSIDE VORTICES 595 10.7 VORTEX MODELS OF THE ROTOR WAKE 598
10.7.1 BIOT-SAVART LAW 599 10.7.2 VORTEX SEGMENTATION 601 10.7.3
GOVERNING EQUATIONS FOR THE CONVECTING VORTEX WAKE 602 10.7.4 PRESCRIBED
WAKE MODELS FOR HOVERING FLIGHT 604 10.7.5 PRESCRIBED VORTEX WAKE MODELS
FOR FORWARD FLIGHT 607 10.7.6 FREE-VORTEX WAKE ANALYSES 614 10.8
APERIODIC WAKE DEVELOPMENTS 627 10.8.1 WAKE STABILITY ANALYSIS 627
10.8.2 FLOW VISUALIZATION OF TRANSIENT WAKE PROBLEMS 630 10.8.3 DYNAMIC
INFLOW 631 10.8.4 TIME-MARCHING FREE-VORTEX WAKES 633 10.8.5 SIMULATION
OF CARPENTER & FRIEDOVICH PROBLEM 633 10.9 GENERAL DYNAMIC INFLOW MODELS
635 10.10 DESCENDING FLIGHT AND THE VORTEX RING STATE 638 10.11 WAKE
DEVELOPMENTS IN MANEUVERING FLIGHT 640 10.12 CHAPTER REVIEW 645 10.13
QUESTIONS 646 BIBLIOGRAPHY 647 11 ROTOR-AIRFRAME INTERACTIONAL
AERODYNAMICS 655 11.1 INTRODUCTION 655 11.2 ROTOR-FUSELAGE INTERACTIONS
657 11.2.1 EFFECTS OF THE FUSELAGE ON ROTOR PERFORMANCE 658 11.2.2
TIME-AVERAGED EFFECTS ON THE AIRFRAME 662 11.2.3 UNSTEADY ROTOR-FUSELAGE
INTERACTIONS 666 11.2.4 FUSELAGE SIDE-FORCES 673 11.2.5 MODELING OF
ROTOR-FUSELAGE INTERACTIONS 674 11.3 ROTOR-EMPENNAGE INTERACTIONS 676
11.3.1 AIRLOADS ON THE HORIZONTAL TAIL 679 11.3.2 MODELING OF
ROTOR-EMPENNAGE INTERACTIONS 680 11.4 ROTOR-TAIL ROTOR INTERACTIONS 682
11.5 CHAPTER REVIEW 685 11.6 QUESTIONS 686 BIBLIOGRAPHY 687 CONTENTS
XVII 12 AUTOGIROS AND GYROPLANES 692 12.1 INTRODUCTION 692 12.2 THE
CURIOUS PHENOMENON OF AUTOROTATION 693 12.3 REVIEW OF AUTOROTATIONAL
PHYSICS 694 12.4 ROLLING ROTORS: THE DILEMMA OF ASYMMETRIC LIFT 699 12.5
INNOVATION OF THE FLAPPING AND LAGGING HINGES 700 12.6 PREROTATING THE
ROTOR 701 12.7 AUTOGIRO THEORY MEETS PRACTICE 702 12.8 VERTICAL FLIGHT
PERFORMANCE OF THE AUTOGIRO 704 12.9 FORWARD FLIGHT PERFORMANCE OF THE
AUTOGIRO 705 12.10 COMPARISON OF AUTOGIRO PERFORMANCE WITH THE
HELICOPTER 708 12.11 AIRFOILS FOR AUTOGIROS 709 12.12 NAC A RESEARCH ON
AUTOGIROS 710 12.13 GIVING BETTER CONTROL: ORIENTABLE ROTORS 712 12.14
IMPROVING PERFORMANCE: JUMP AND TOWERING TAKEOFFS 713 12.15 GROUND AND
AIR RESONANCE 715 12.16 HELICOPTERS ECLIPSE AUTOGIROS 716 12.17
RENAISSANCE OF THE AUTOGIRO? 717 12.18 CHAPTER REVIEW 719 12.19
QUESTIONS 720 BIBLIOGRAPHY 720 13 AERODYNAMICS OF WIND TURBINES 723 13.1
INTRODUCTION 723 13.2 HISTORY OF WIND TURBINE DEVELOPMENT 724 13.3 POWER
IN THE WIND 726 13.4 MOMENTUM THEORY ANALYSIS FOR A WIND TURBINE 727
13.4.1 POWER AND THRUST COEFFICIENTS FOR A WIND TURBINE 729 13.4.2
THEORETICAL MAXIMUM EFFICIENCY 730 13.5 REPRESENTATIVE POWER CURVE FOR A
WIND TURBINE 731 13.6 ELEMENTARY WIND MODELS 733 13.7 BLADE ELEMENT
MODEL FOR THE WIND TURBINE 735 13.8 BLADE ELEMENT MOMENTUM THEORY FOR A
WIND TURBINE 738 13.8.1 EFFECT OF NUMBER OF BLADES 742 13.8.2 EFFECT OF
VISCOUS DRAG 742 13.8.3 TIP-LOSS EFFECTS 743 13.8.4 TIP LOSSES AND OTHER
VISCOUS LOSSES 745 , 13.8.5 EFFECTS OF STALL 747 , 13.9 AIRFOILS FOR
WIND TURBINES 747 . 13.10 YAWED FLOW OPERATION 750 13.11 VORTEX WAKE
CONSIDERATIONS 751 13.12 UNSTEADY AERODYNAMIC EFFECTS ON WIND TURBINES
757 13.12.1 TOWER SHADOW 760 13.12.2 DYNAMIC STALL AND STALL DELAY 761
13.13 ADVANCED AERODYNAMIC MODELING REQUIREMENTS 763 13.14 CHAPTER
REVIEW 764 13.15 QUESTIONS 765 BIBLIOGRAPHY 767 XVIII CONTENTS 14
COMPUTATIONAL METHODS FOR HELICOPTER AERODYNAMICS 771 14.1 INTRODUCTION
771 14.2 FUNDAMENTAL GOVERNING EQUATIONS OF AERODYNAMICS 772 14.2.1
NAVIER-STOKES EQUATIONS 773 14.2.2 EULER EQUATIONS 776 14.3 VORTICITY
TRANSPORT EQUATIONS 777 14.4 VORTEX METHODS 779 14.5 BOUNDARY LAYER
EQUATIONS 780 14.6 POTENTIAL EQUATIONS 783 14.7 SURFACE SINGULARITY
METHODS 783 14.8 THIN AIRFOIL THEORY 786 14.9 LIFTING-LINE BLADE MODEL
787 14.10 APPLICATIONS OF ADVANCED COMPUTATIONAL METHODS 790 14.10.1
UNSTEADY AIRFOIL PERFORMANCE 790 14.10.2 TIP VORTEX FORMATION 794
14.10.3 CFD MODELING OF THE ROTOR WAKE 797 14.10.4 AIRFRAME FLOWS 798
14.10.5 VIBRATIONS AND ACOUSTICS 801 14.10.6 GROUND EFFECT 803 14.10.7
VORTEX RING STATE 803 14.11 COMPREHENSIVE ROTOR ANALYSES 805 14.12
CHAPTER REVIEW 808 14.13 QUESTIONS 809 BIBLIOGRAPHY 810 APPENDIX 815
INDEX 817 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Leishman, J. Gordon |
author_facet | Leishman, J. Gordon |
author_role | aut |
author_sort | Leishman, J. Gordon |
author_variant | j g l jg jgl |
building | Verbundindex |
bvnumber | BV021405478 |
callnumber-first | T - Technology |
callnumber-label | TL716 |
callnumber-raw | TL716 |
callnumber-search | TL716 |
callnumber-sort | TL 3716 |
callnumber-subject | TL - Motor Vehicles and Aeronautics |
classification_rvk | ZO 7230 |
classification_tum | VER 505f VER 562f |
ctrlnum | (OCoLC)61463625 (DE-599)BVBBV021405478 |
dewey-full | 629.133/352 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.133/352 |
dewey-search | 629.133/352 |
dewey-sort | 3629.133 3352 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Verkehrstechnik Verkehr / Transport |
discipline_str_mv | Verkehrstechnik Verkehr / Transport |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02140nam a2200529 cb4500</leader><controlfield tag="001">BV021405478</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170117 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060215s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521858601</subfield><subfield code="9">978-0-521-85860-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521858607</subfield><subfield code="9">0-521-85860-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61463625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021405478</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL716</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.133/352</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 7230</subfield><subfield code="0">(DE-625)157840:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VER 505f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VER 562f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leishman, J. Gordon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of helicopter aerodynamics</subfield><subfield code="c">J. Gordon Leishman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVII, 826 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge aerospace series</subfield><subfield code="v">12</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Spätere Nachdrucke ggf. ohne CD-ROM</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aeroelasticidade de aeronaves</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Helicópteros</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hélicoptères - Aérodynamique - Manuels d'enseignement supérieur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotors (Aéronautique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Helicopters</subfield><subfield code="x">Aerodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hubschrauber</subfield><subfield code="0">(DE-588)4025993-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hubschrauber</subfield><subfield code="0">(DE-588)4025993-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge aerospace series</subfield><subfield code="v">12</subfield><subfield code="w">(DE-604)BV008269320</subfield><subfield code="9">12</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip0518/2005025467.html</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0633/2005025467-d.html</subfield><subfield code="3">Beschreibung für Leser</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014657040&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014657040</subfield></datafield></record></collection> |
id | DE-604.BV021405478 |
illustrated | Illustrated |
index_date | 2024-07-02T14:02:55Z |
indexdate | 2024-07-09T20:35:58Z |
institution | BVB |
isbn | 9780521858601 0521858607 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014657040 |
oclc_num | 61463625 |
open_access_boolean | |
owner | DE-20 DE-91G DE-BY-TUM DE-634 |
owner_facet | DE-20 DE-91G DE-BY-TUM DE-634 |
physical | XXXVII, 826 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Cambridge aerospace series |
series2 | Cambridge aerospace series |
spelling | Leishman, J. Gordon Verfasser aut Principles of helicopter aerodynamics J. Gordon Leishman 2. ed. Cambridge [u.a.] Cambridge Univ. Press 2006 XXXVII, 826 S. Ill., graph. Darst. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Cambridge aerospace series 12 Spätere Nachdrucke ggf. ohne CD-ROM Aeroelasticidade de aeronaves larpcal Helicópteros larpcal Hélicoptères - Aérodynamique - Manuels d'enseignement supérieur Rotors (Aéronautique) Helicopters Aerodynamics Aerodynamik (DE-588)4000589-6 gnd rswk-swf Hubschrauber (DE-588)4025993-6 gnd rswk-swf Hubschrauber (DE-588)4025993-6 s Aerodynamik (DE-588)4000589-6 s DE-604 Cambridge aerospace series 12 (DE-604)BV008269320 12 http://www.loc.gov/catdir/toc/ecip0518/2005025467.html Inhaltsverzeichnis http://www.loc.gov/catdir/enhancements/fy0633/2005025467-d.html Beschreibung für Leser HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014657040&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Leishman, J. Gordon Principles of helicopter aerodynamics Cambridge aerospace series Aeroelasticidade de aeronaves larpcal Helicópteros larpcal Hélicoptères - Aérodynamique - Manuels d'enseignement supérieur Rotors (Aéronautique) Helicopters Aerodynamics Aerodynamik (DE-588)4000589-6 gnd Hubschrauber (DE-588)4025993-6 gnd |
subject_GND | (DE-588)4000589-6 (DE-588)4025993-6 |
title | Principles of helicopter aerodynamics |
title_auth | Principles of helicopter aerodynamics |
title_exact_search | Principles of helicopter aerodynamics |
title_exact_search_txtP | Principles of helicopter aerodynamics |
title_full | Principles of helicopter aerodynamics J. Gordon Leishman |
title_fullStr | Principles of helicopter aerodynamics J. Gordon Leishman |
title_full_unstemmed | Principles of helicopter aerodynamics J. Gordon Leishman |
title_short | Principles of helicopter aerodynamics |
title_sort | principles of helicopter aerodynamics |
topic | Aeroelasticidade de aeronaves larpcal Helicópteros larpcal Hélicoptères - Aérodynamique - Manuels d'enseignement supérieur Rotors (Aéronautique) Helicopters Aerodynamics Aerodynamik (DE-588)4000589-6 gnd Hubschrauber (DE-588)4025993-6 gnd |
topic_facet | Aeroelasticidade de aeronaves Helicópteros Hélicoptères - Aérodynamique - Manuels d'enseignement supérieur Rotors (Aéronautique) Helicopters Aerodynamics Aerodynamik Hubschrauber |
url | http://www.loc.gov/catdir/toc/ecip0518/2005025467.html http://www.loc.gov/catdir/enhancements/fy0633/2005025467-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014657040&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008269320 |
work_keys_str_mv | AT leishmanjgordon principlesofhelicopteraerodynamics |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis