La théorie de l'homotopie de Grothendieck:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | French |
Veröffentlicht: |
Paris
Société Mathématique de France
2005
|
Schriftenreihe: | Astérisque
301 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VI, 140 S. |
ISBN: | 2856291813 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021328578 | ||
003 | DE-604 | ||
005 | 20140408 | ||
007 | t | ||
008 | 060209s2005 |||| 00||| freod | ||
020 | |a 2856291813 |9 2-85629-181-3 | ||
035 | |a (OCoLC)64442199 | ||
035 | |a (DE-599)BVBBV021328578 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a fre | |
049 | |a DE-384 |a DE-19 |a DE-824 |a DE-29T |a DE-83 |a DE-11 |a DE-188 |a DE-355 |a DE-91G | ||
050 | 0 | |a QA612.7 | |
082 | 0 | |a 514.24 |2 22 | |
084 | |a SI 832 |0 (DE-625)143196: |2 rvk | ||
084 | |a MAT 143f |2 stub | ||
084 | |a MAT 185f |2 stub | ||
100 | 1 | |a Maltsiniotis, Georges |e Verfasser |4 aut | |
245 | 1 | 0 | |a La théorie de l'homotopie de Grothendieck |c Georges Maltsiniotis |
264 | 1 | |a Paris |b Société Mathématique de France |c 2005 | |
300 | |a VI, 140 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Astérisque |v 301 | |
600 | 1 | 7 | |a Grothendieck, A - (Alexandre) |2 rasuqam |
650 | 7 | |a Cohomologia |2 larpcal | |
650 | 7 | |a Homotopia de cech (teoria) |2 larpcal | |
650 | 4 | |a Homotopie | |
650 | 7 | |a Homotopie |2 gtt | |
650 | 7 | |a Homotopie |2 rasuqam | |
650 | 7 | |a Théorie des catégories |2 rasuqam | |
650 | 7 | |a Topologia algébrica |2 larpcal | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Homotopieklassifikation |0 (DE-588)4160626-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopieklassifikation |0 (DE-588)4160626-7 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Astérisque |v 301 |w (DE-604)BV002579439 |9 301 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014648890&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014648890 |
Datensatz im Suchindex
_version_ | 1804135140807409664 |
---|---|
adam_text | ASTERISQUE 300 POLARIZABLE TWISTOR ^-MODULES CLAUDE SABBAH SIJB
GOTTINGEN 7 2005 A 22152 SOCIETE MATHEMATIQUE DE FRANCE 2005 PUBLIE AVEC
LE CONCOURS DU CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CONTENTS
INTRODUCTION 1 0. PRELIMINAIRES 11 1. COHERENT AND HOLONOMIC ^^R-MODULES
19 1.1. COHERENT AND GOOD ^^--MODULES 19 1.2. THE INVOLUTIVITY THEOREM
20 1.3. EXAMPLES 23 1.4. DIRECT AND INVERSE IMAGES OF ^^R-MODULES 25
1.5. SESQUILINEAR PAIRINGS ON ^^--MODULES 29 1.6. THE CATEGORY M-
TRIPLES(X) 31 2. SMOOTH TWISTOR STRUCTURES 39 2.1. TWISTOR STRUCTURES IN
DIMENSION 0 39 2.2. SMOOTH TWISTOR STRUCTURES IN ARBITRARY DIMENSION 47
3. SPECIALIZABLE .^^R-MODULES 55 3.1. ^-FILTRATIONS 55 3.2. REVIEW ON
SPECIALIZABLE ^F-MODULES 64 3.3. THE CATEGORY Y 2 {X, T) 66 3.4.
LOCALIZATION AND MINIMAL EXTENSION ACROSS A HYPERSURFACE 81 3.5.
STRICTLY S(UPPORT)-DECOMPOSABLE ^^-MODULES 84 3.6. SPECIALIZATION OF A
SESQUILINEAR PAIRING 87 3.7. NONCHARACTERISTIC INVERSE IMAGE 98 3.8. A
LOCAL COMPUTATION 103 4. POLARIZABLE TWISTOR ^-MODULES 107 4.1.
DEFINITION OF A TWISTOR ^-MODULE 107 4.2. POLARIZATION 117 CONTENTS 5.
POLARIZABLE REGULAR TWISTOR ^-MODULES ON CURVES 123 5.1. A BASIC EXAMPLE
123 5.2. REVIEW OF SOME RESULTS OF C. SIMPSON AND O. BIQUARD 128 5.3.
PROOF OF THEOREM 5.0.1, FIRST PART 132 5.4. PROOF OF THEOREM 5.0.1,
SECOND PART 145 5.A. MELLIN TRANSFORM AND ASYMPTOTIC EXPANSIONS 149 5.B.
SOME RESULTS OF O. BIQUARD 151 6. THE DECOMPOSITION THEOREM FOR
POLARIZABLE REGULAR TWISTOR ^-MODULES 155 6.1. STATEMENT OF THE MAIN
RESULTS AND PROOF OF THE MAIN THEOREMS 155 6.2. PROOF OF (6.1.1)^ O N
WHEN SUPP 8F IS SMOOTH 156 6.3. PROOF OF(6.1.1) (NM) ^(6.1.1) (N+LM+IR
170 6.4. PROOF OF (6.1.1)/ / N _ 1 ^ O N AND ((6.1.1)^ 0 WITH SUPP
8F SMOOTH) = * (6.1.1) (N 0) FOR N 1 .. . . 171 6.5. PROOF OF
THEOREM 6.1.3 174 7. INTEGRABILITY 177 7.1. INTEGRABLE %% -MODULES AND
INTEGRABLE TRIPLES 177 7.2. INTEGRABLE SMOOTH TWISTOR STRUCTURES 181
7.3. INTEGRABILITY AND SPECIALIZATION 185 7.4. INTEGRABLE POLARIZABLE
REGULAR TWISTOR ^-MODULES 188 APPENDIX. MONODROMY AT INFLNITY AND
PARTIAL FOURIER LAPLACE TRANSFORM 191 A.L. EXPONENTIAL TWIST 191 A.2.
PARTIAL FOURIER-LAPLACE TRANSFORM OF ^^F-MODULES 193 A.3. PARTIAL
FOURIER-LAPLACE TRANSFORM AND SPECIALIZATION 197 A.4. PARTIAL
FOURIER-LAPLACE TRANSFORM OF REGULAR TWISTOR ^-MODULES ,. 198
BIBLIOGRAPHY 201 NOTATION 207 ASTERISQUE 300
|
adam_txt |
ASTERISQUE 300 POLARIZABLE TWISTOR ^-MODULES CLAUDE SABBAH SIJB
GOTTINGEN 7 2005 A 22152 SOCIETE MATHEMATIQUE DE FRANCE 2005 PUBLIE AVEC
LE CONCOURS DU CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CONTENTS
INTRODUCTION 1 0. PRELIMINAIRES 11 1. COHERENT AND HOLONOMIC ^^R-MODULES
19 1.1. COHERENT AND GOOD ^^--MODULES 19 1.2. THE INVOLUTIVITY THEOREM
20 1.3. EXAMPLES 23 1.4. DIRECT AND INVERSE IMAGES OF ^^R-MODULES 25
1.5. SESQUILINEAR PAIRINGS ON ^^--MODULES 29 1.6. THE CATEGORY M-
TRIPLES(X) 31 2. SMOOTH TWISTOR STRUCTURES 39 2.1. TWISTOR STRUCTURES IN
DIMENSION 0 39 2.2. SMOOTH TWISTOR STRUCTURES IN ARBITRARY DIMENSION 47
3. SPECIALIZABLE .^^R-MODULES 55 3.1. ^-FILTRATIONS 55 3.2. REVIEW ON
SPECIALIZABLE ^F-MODULES 64 3.3. THE CATEGORY Y 2 {X, T) 66 3.4.
LOCALIZATION AND MINIMAL EXTENSION ACROSS A HYPERSURFACE 81 3.5.
STRICTLY S(UPPORT)-DECOMPOSABLE ^^-MODULES 84 3.6. SPECIALIZATION OF A
SESQUILINEAR PAIRING 87 3.7. NONCHARACTERISTIC INVERSE IMAGE 98 3.8. A
LOCAL COMPUTATION 103 4. POLARIZABLE TWISTOR ^-MODULES 107 4.1.
DEFINITION OF A TWISTOR ^-MODULE 107 4.2. POLARIZATION 117 CONTENTS 5.
POLARIZABLE REGULAR TWISTOR ^-MODULES ON CURVES 123 5.1. A BASIC EXAMPLE
123 5.2. REVIEW OF SOME RESULTS OF C. SIMPSON AND O. BIQUARD 128 5.3.
PROOF OF THEOREM 5.0.1, FIRST PART 132 5.4. PROOF OF THEOREM 5.0.1,
SECOND PART 145 5.A. MELLIN TRANSFORM AND ASYMPTOTIC EXPANSIONS 149 5.B.
SOME RESULTS OF O. BIQUARD 151 6. THE DECOMPOSITION THEOREM FOR
POLARIZABLE REGULAR TWISTOR ^-MODULES 155 6.1. STATEMENT OF THE MAIN
RESULTS AND PROOF OF THE MAIN THEOREMS 155 6.2. PROOF OF (6.1.1)^ O N
WHEN SUPP 8F IS SMOOTH 156 6.3. PROOF OF(6.1.1) (NM) ^(6.1.1) (N+LM+IR
170 6.4. PROOF OF (6.1.1)/ / N _ 1 ^ O N AND ((6.1.1)^ 0 \ WITH SUPP
8F SMOOTH) = * (6.1.1) (N 0) FOR N 1 . '. .' 171 6.5. PROOF OF
THEOREM 6.1.3 174 7. INTEGRABILITY 177 7.1. INTEGRABLE %% -MODULES AND
INTEGRABLE TRIPLES 177 7.2. INTEGRABLE SMOOTH TWISTOR STRUCTURES 181
7.3. INTEGRABILITY AND SPECIALIZATION 185 7.4. INTEGRABLE POLARIZABLE
REGULAR TWISTOR ^-MODULES 188 APPENDIX. MONODROMY AT INFLNITY AND
PARTIAL FOURIER LAPLACE TRANSFORM 191 A.L. EXPONENTIAL TWIST 191 A.2.
PARTIAL FOURIER-LAPLACE TRANSFORM OF ^^F-MODULES 193 A.3. PARTIAL
FOURIER-LAPLACE TRANSFORM AND SPECIALIZATION 197 A.4. PARTIAL
FOURIER-LAPLACE TRANSFORM OF REGULAR TWISTOR ^-MODULES ,. 198
BIBLIOGRAPHY 201 NOTATION 207 ASTERISQUE 300 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Maltsiniotis, Georges |
author_facet | Maltsiniotis, Georges |
author_role | aut |
author_sort | Maltsiniotis, Georges |
author_variant | g m gm |
building | Verbundindex |
bvnumber | BV021328578 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.7 |
callnumber-search | QA612.7 |
callnumber-sort | QA 3612.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 832 |
classification_tum | MAT 143f MAT 185f |
ctrlnum | (OCoLC)64442199 (DE-599)BVBBV021328578 |
dewey-full | 514.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.24 |
dewey-search | 514.24 |
dewey-sort | 3514.24 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01809nam a2200493 cb4500</leader><controlfield tag="001">BV021328578</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140408 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060209s2005 |||| 00||| freod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">2856291813</subfield><subfield code="9">2-85629-181-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)64442199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021328578</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 143f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 185f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maltsiniotis, Georges</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">La théorie de l'homotopie de Grothendieck</subfield><subfield code="c">Georges Maltsiniotis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Société Mathématique de France</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 140 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">301</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Grothendieck, A - (Alexandre)</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cohomologia</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopia de cech (teoria)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopie</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie des catégories</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologia algébrica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopieklassifikation</subfield><subfield code="0">(DE-588)4160626-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopieklassifikation</subfield><subfield code="0">(DE-588)4160626-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">301</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">301</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014648890&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014648890</subfield></datafield></record></collection> |
id | DE-604.BV021328578 |
illustrated | Not Illustrated |
index_date | 2024-07-02T14:01:00Z |
indexdate | 2024-07-09T20:35:47Z |
institution | BVB |
isbn | 2856291813 |
language | French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014648890 |
oclc_num | 64442199 |
open_access_boolean | |
owner | DE-384 DE-19 DE-BY-UBM DE-824 DE-29T DE-83 DE-11 DE-188 DE-355 DE-BY-UBR DE-91G DE-BY-TUM |
owner_facet | DE-384 DE-19 DE-BY-UBM DE-824 DE-29T DE-83 DE-11 DE-188 DE-355 DE-BY-UBR DE-91G DE-BY-TUM |
physical | VI, 140 S. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Société Mathématique de France |
record_format | marc |
series | Astérisque |
series2 | Astérisque |
spelling | Maltsiniotis, Georges Verfasser aut La théorie de l'homotopie de Grothendieck Georges Maltsiniotis Paris Société Mathématique de France 2005 VI, 140 S. txt rdacontent n rdamedia nc rdacarrier Astérisque 301 Grothendieck, A - (Alexandre) rasuqam Cohomologia larpcal Homotopia de cech (teoria) larpcal Homotopie Homotopie gtt Homotopie rasuqam Théorie des catégories rasuqam Topologia algébrica larpcal Homotopy theory Homotopieklassifikation (DE-588)4160626-7 gnd rswk-swf Homotopieklassifikation (DE-588)4160626-7 s DE-604 Astérisque 301 (DE-604)BV002579439 301 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014648890&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Maltsiniotis, Georges La théorie de l'homotopie de Grothendieck Astérisque Grothendieck, A - (Alexandre) rasuqam Cohomologia larpcal Homotopia de cech (teoria) larpcal Homotopie Homotopie gtt Homotopie rasuqam Théorie des catégories rasuqam Topologia algébrica larpcal Homotopy theory Homotopieklassifikation (DE-588)4160626-7 gnd |
subject_GND | (DE-588)4160626-7 |
title | La théorie de l'homotopie de Grothendieck |
title_auth | La théorie de l'homotopie de Grothendieck |
title_exact_search | La théorie de l'homotopie de Grothendieck |
title_exact_search_txtP | La théorie de l'homotopie de Grothendieck |
title_full | La théorie de l'homotopie de Grothendieck Georges Maltsiniotis |
title_fullStr | La théorie de l'homotopie de Grothendieck Georges Maltsiniotis |
title_full_unstemmed | La théorie de l'homotopie de Grothendieck Georges Maltsiniotis |
title_short | La théorie de l'homotopie de Grothendieck |
title_sort | la theorie de l homotopie de grothendieck |
topic | Grothendieck, A - (Alexandre) rasuqam Cohomologia larpcal Homotopia de cech (teoria) larpcal Homotopie Homotopie gtt Homotopie rasuqam Théorie des catégories rasuqam Topologia algébrica larpcal Homotopy theory Homotopieklassifikation (DE-588)4160626-7 gnd |
topic_facet | Grothendieck, A - (Alexandre) Cohomologia Homotopia de cech (teoria) Homotopie Théorie des catégories Topologia algébrica Homotopy theory Homotopieklassifikation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014648890&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002579439 |
work_keys_str_mv | AT maltsiniotisgeorges latheoriedelhomotopiedegrothendieck |