Optics: learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Medienkombination Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2007
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Undergraduate texts in contemporary physics
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVI, 453 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 9780387694924 0387261680 9780387261683 |
Internformat
MARC
LEADER | 00000nom a2200000 c 4500 | ||
---|---|---|---|
001 | BV021321525 | ||
003 | DE-604 | ||
005 | 20101203 | ||
008 | 060206s2007 ||| 0| bneng d | ||
015 | |a 05,N20,0054 |2 dnb | ||
016 | 7 | |a 974531200 |2 DE-101 | |
020 | |a 9780387694924 |9 978-0-387-69492-4 | ||
020 | |a 0387261680 |9 0-387-26168-0 | ||
020 | |a 9780387261683 |9 978-0-387-26168-3 | ||
024 | 3 | |a 9780387261683 | |
028 | 5 | 2 | |a 11370833 |
035 | |a (OCoLC)634854065 | ||
035 | |a (DE-599)BVBBV021321525 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-1050 |a DE-1102 |a DE-355 |a DE-29T |a DE-92 |a DE-11 | ||
084 | |a ST 620 |0 (DE-625)143684: |2 rvk | ||
084 | |a UH 5000 |0 (DE-625)145647: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Möller, Karl Dieter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optics |b learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple |c K. D. Moeller |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Springer |c 2007 | |
300 | |a XVI, 453 S. |b Ill., graph. Darst. |e 1 CD-ROM (12 cm) | ||
490 | 0 | |a Undergraduate texts in contemporary physics | |
650 | 0 | 7 | |a Optik |0 (DE-588)4043650-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathcad |0 (DE-588)4417846-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optik |0 (DE-588)4043650-0 |D s |
689 | 0 | 1 | |a Mathcad |0 (DE-588)4417846-3 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2623953&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014641911&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014641911 |
Datensatz im Suchindex
_version_ | 1804135130510393344 |
---|---|
adam_text | Contents
Preface
vii
1
Geometrical Optics
1
1.1
Introduction
................................ 1
1.2
Fermat s Principle and the Law of Refraction
............... 2
1.3
Prisms
................................... 7
1.3.1
Angle of Deviation
........................ 7
1.4
Convex Spherical Surfaces
........................ 9
1.4.1
Image Formation and Conjugate Points
.............. 9
1.4.2
Sign Convention
.......................... 11
1.4.3
Object and Image Distance, Object and Image Focus, Real and
Virtual Objects, and Singularities
................. 11
1.4.4
Real Objects, Geometrical Constructions,
and Magnification
......................... 15
1.4.5
Virtual Objects, Geometrical Constructions,
and Magnification
......................... 17
1.5
Concave Spherical Surfaces
........................ 19
1.6
Thin Lens Equation
............................ 23
1.6.1
Thin Lens Equation
........................ 23
1.6.2
Object Focus and Image Focus
.................. 24
1.6.3
Magnification
........................... 25
1.6.4
Positive Lens, Graph, Calculations of Image Positions, and
Graphical Constructions of Images
................ 25
1.6.5
Negative Lens, Graph, Calculations of Image Positions, and
Graphical Constructions of Images
................ 30
1.6.6
Thin Lens and Two Different Media on the Outside
....... 33
1.7
Optical Instruments
............................ 35
ix
X
CONTENTS
1.7.1
Two Lens
System......................... 36
1.7.2
Magnifier
and Object
Positions
.................. 37
1.7.3
Microscope
............................ 42
1.7.4
Telescope
............................. 44
1.8
Matrix Formulation for Thick Lenses
................... 48
1.8.1
Refraction and Translation Matrices
............... 48
1.8.2
Two Spherical Surfaces at Distance
d
and Prinicipal Planes
... 51
1.8.3
System of Lenses
......................... 59
1.9
Plane and Spherical Mirrors
........................ 67
1.9.1
Plane Mirrors and Virtual Images
................. 67
1.9.2
Spherical Mirrors and Mirror Equation
.............. 67
1.9.3
Sign Convention
.......................... 69
1.9.4
Magnification
........................... 69
1.9.5
Graphical Method and Graphs of x,
;
Depending on x0
...... 70
1.10
Matrices for a Reflecting Cavity and the Eigenvalue Problem
...... 73
2
Interference
79
2.1
Introduction
................................ 79
2.2
Harmonic Waves
.............................. 80
2.3
Superposition of Harmonic Waves
.................... 82
2.3.1
Superposition of Two Waves Depending on Space and
Time Coordinates
......................... 82
2.3.2
Intensities
............................. 86
2.3.3
Normalization
........................... 88
2.4
Two-Beam
Wavefront
Dividing
Interferometry
.............. 89
2.4.1
Model Description for
Wavefront
Division
............ 89
2.4.2
Young s Experiment
........................ 90
2.5
Two-Beam Amplitude Dividing
Interferometry
.............. 96
2.5.1
Model Description for Amplitude Division
............ 96
2.5.2
Plane Parallel Plate
........................ 97
2.5.3
Michelson Interferometer and Heidinger and Fizeau Fringes
. . 103
2.6
Multiple Beam
Interferometry
....................... 110
2.6.1
Plane Parallel Plate
........................ 110
2.6.2
Fabry-Perot
Etalon
........................ 115
2.6.3
Fabry-Perot Spectrometer and Resolution
............ 118
2.6.4
Array of Source Points
...................... 121
2.7
Random Arrangement of Source Points
.................. 125
3
Diffraction
129
3.1
Introduction
................................ 129
3.2
Kirchhoff-Fresnel Integral
........................ 131
3.2.1
The Integral
............................ 131
3.2.2
On Axis Observation for the Circular Opening
.......... 133
CONTENTS
XI
3.2.3
On Axis Observation
for Circular
Stop
.............. 135
3.3
Fresnel
Diffraction,
Far Field Approximation, and
Fraunhofer
Observation
.......................... 136
3.3.1
Small Angle Approximation in Cartesian Coordinates
...... 137
3.3.2
Fresnel, Far Field, and
Fraunhofer
Diffraction
.......... 138
3.4
Far Field and
Fraunhofer
Diffraction
................... 139
3.4.1
Diffraction on a Slit
........................ 140
3.4.2
Diffraction on a Slit and Fourier Transformation
......... 144
3.4.3
Rectangular Aperture
....................... 145
3.4.4
Circular Aperture
......................... 148
3.4.5
Gratings
.............................. 152
3.4.6
Resolution
............................. 162
3.5
Babinet s Theorem
............................. 166
3.6
Apertures in Random Arrangement
.................... 169
3.7
Fresnel Diffraction
............................. 172
3.7.1
Coordinates for Diffraction on a Slit and
Fresnels Integrals
......................... 172
3.7.2
Fresnel Diffraction on a Slit
.................... 173
3.7.3
Fresnel Diffraction on an Edge
.................. 175
A3.1.1 Step Grating
............................ 178
A3.2.1 Cornu s Spiral
........................... 181
A3.2.2
Babinet s Principle and Cornu s Spiral
.............. 182
Coherence
185
4.1
Spatial Coherence
............................. 185
4.1.1
Introduction
............................ 185
4.1.2
Two Source Points
........................ 185
4.1.3
Coherence Condition
....................... 189
4.1.4
Extended Source
......................... 190
4.1.5
Visibility
.............................. 194
4.1.6
Michelson Stellar Interferometer
................. 197
4.2
Temporal Coherence
............................ 200
4.2.1
Wavetrains and Quasimonochromatic Light
........... 200
4.2.2
Superposition of Wavetrains
................... 201
4.2.3
Length of Wavetrains
....................... 202
A4.1.1
Fourier
Tranform Spectometer
and
Blackbody
Radiation
.... 203
Maxwell s Theory
205
5.1
Introduction
................................ 205
5.2
Harmonic Plane Waves and the Superposition Principle
......... 206
5.2.1
Plane Waves
............................ 206
5.2.2
The Superposition Principle
.................... 208
5.3
Differentiation Operation
......................... 208
XII CONTENTS
5.3.1 Differentiation
Time
д
/dt
................... 208
5.3.2 Differentiation Space
V = i3/3jc+j3/3y + ka/3z
...... 208
5.4 Poynting
Vector in Vacuum
........................ 209
5.5
Electromagnetic Waves
in an Isotropie
Nonconducting
Medium..... 210
5.6
Fresneľs
Formulas
............................. 211
5.6.1
Electrical Field Vectors in the Plane of Incidence
(Parallel Case)
........................... 211
5.6.2
Electrical Field Vector Perpendicular to the Plane of Incidence
(Perpendicular Case)
....................... 214
5.6.3
Fresneľs
Formulas Depending on the
Angle of Incidence
........................ 215
5.6.4
Light Incident on a Denser Medium, n
<
ni,
and the
Brewster Angle
.......................... 216
5.6.5
Light Incident on a Less Dense Medium,
щ
>
пг,
Brewster and
CriticalAngle
........................... 219
5.6.6
Reflected and Transmitted Intensities
............... 222
5.6.7
Total Reflection and Evanescent Wave
.............. 228
5.7
Polarized Light
............................... 230
5.7.1
Introduction
............................ 230
5.7.2
Ordinary and Extraordinary Indices of Refraction
........ 231
5.7.3
Phase Difference Between Waves Moving in the Direction of or
Perpendicular to the Optical Axis
................. 232
5.7.4
Half-Wave Plate, Phase Shift of
π
................ 233
5.7.5
Quarter Wave Plate, Phase Shift
лг/2
............... 235
5.7.6
Crossed Polarizers
......................... 238
5.7.7
General Phase Shift
........................ 240
A5.1.1 Wave Equation Obtained from Maxwell s Equation
....... 242
A5.1.2 The Operations V and V2
..................... 243
A5.2.1 Rotation of the Coordinate System as a Principal Axis
Transformation and Equivalence to the Solution of the
Eigenvalue Problem
........................ 243
A5.3.1 Phase Difference Between Internally Reflected Components
. . 244
A5.4.1 Jones Vectors and Jones Matrices
................. 244
A5.4.2 Jones Matrices
........................... 245
A5.4.3 Applications
............................ 245
б
Maxwell II. Modes and Mode Propagation
249
6.1
Introduction
................................ 249
6.2
Stratified Media
.............................. 252
6.2.1
Two Interfaces at Distance
d
................... 253
6.2.2
Plate of Thickness
d
-
(λ/2η2)..................
255
6.2.3
Plate of Thickness
d
and Index n-i
................ 256
6.2.4
Antireflection Coating
....................... 256
CONTENTS XIII
6.2.5 Multiple
Layer
Filters
with Alternating High and Low
Refractive Index
.......................... 258
6.3
Guided Waves by Total Internal Reflection Through a
Planar Waveguide
............................. 259
6.3.1
Traveling Waves
.......................... 259
6.3.2
Restrictive Conditions for Mode Propagation
.......... 261
6.3.3
Phase Condition for Mode Formation
............... 262
6.3.4
(TE)
Modes or
í
-Polarization
................... 262
6.3.5
(TM) Modes or p-Polarization
.................. 265
6.4
Fiber Optics Waveguides
......................... 266
6.4.1
Modes in a Dielectric Waveguide
................. 266
A6.1.1 Boundary Value Method Applied to
TE
Modes of Plane
Plate Waveguide
.......................... 270
Blackbody
Radiation, Atomic Emission, and Lasers
273
7.1
Introduction
................................ 273
7.2
Blackbody
Radiaton
............................ 274
7.2.1
The Rayleigh-Jeans Law
..................... 274
7.2.2
Planck s Law
........................... 275
7.2.3
Stefan-Boltzmann Law
...................... 277
7.2.4
Wien sLaw
............................ 278
7.2.5
Files of Planck s, Stefan-Boltzmann s, and Wien s Laws.
Radiance, Area, and Solid Angle
................. 279
7.3
Atomic Emission
.............................. 281
7.3.1
Introduction
............................ 281
7.3.2
Bohr s Model and the One Electron Atom
............ 282
7.3.3
Many Electron Atoms
....................... 282
7.4
Bandwidth
................................. 285
7.4.1
Introduction
............................ 285
7.4.2
Classical Model, Lorentzian Line Shape, and
Homogeneous Broadening
.................... 286
7.4.3
Natural Emission Line Width, Quantum Mechanical Model
. . . 289
7.4.4
Doppler
Broadening (Inhomogeneous)
.............. 289
7.5
Lasers
................................... 291
7.5.1
Introduction
............................ 291
7.5.2
Population Inversion
....................... 292
7.5.3
Stimulated Emission, Spontaneous Emission, and the
Amplification Factor
....................... 293
7.5.4
The Fabry-Perot Cavity, Losses, and Threshold Condition
. . . 294
7.5.5
Simplified Example of a Three-Level Laser
........... 296
7.6
Confocal Cavity, Gaussian Beam, and Modes
............... 297
7.6.1
Paraxial Wave Equation and Beam Parameters
.......... 297
7.6.2
Fundamental Mode in Confocal Cavity
.............. 299
XIV CONTENTS
7.6.3
Diffraction
Losses and Fresnel Number
............. 302
7.6.4
Higher Modes in the Confocal Cavity
.............. 303
8
Optical Constants
315
8.1
Introduction
................................ 315
8.2
Optical Constants of Dielectrics
...................... 316
8.2.1
The Wave Equation, Electrical Polarizability, and
Refractive Index
.......................... 316
8.2.2
Oscillator Model and the Wave Equation
............. 317
8.3
Determination of Optical Constants
.................... 320
8.3.1
Fresnel s Formulas and Reflection Coefficients
.......... 320
8.3.2
Ratios of the Amplitude Reflection Coefficients
......... 321
8.3.3
Oscillator Expressions
...................... 322
8.3.4
Sellmeier Formula
......................... 324
8.4
Optical Constants of Metals
........................ 326
8.4.1
Drude
Model
........................... 326
8.4.2
Low Frequency Region
...................... 327
8.4.3
High Frequency Region
...................... 328
8.4.4
Skin Depth
............................ 331
8.4.5
Reflectance at Normal Incidence and Reflection Coefficients
with Absorption
.......................... 333
8.4.6
Elliptically Polarized Light
.................... 334
AS.l.l Analytical Expressions and Approximations for the
Detemination of
η
and
К
..................... 335
9
Fourier Transformation and FT-Spectroscopy
339
9.1
Fourier Transformation
.......................... 339
9.1.1
Introduction
............................ 339
9.1.2
The Fourier Integrals
....................... 339
9.1.3
Examples of Fourier Transformations Using
Analytical Functions
....................... 340
9.1.4
Numerical Fourier Transformation
................ 341
9.1.5
Fourier Transformation of a Product of Two Functions and the
Convolution Integral
....................... 350
9.2
Fourier Transform Spectroscopy
..................... 352
9.2.1
Interferogram and Fourier Transformation. Superposition of
Cosine Waves
........................... 352
9.2.2
Michelson Interferometer and Interferograms
.......... 353
9.2.3
The Fourier Transform Integral
.................. 355
9.2.4
Discrete Length and Frequency Coordinates
........... 356
9.2.5
Folding of the Fourier Transform Spectrum
........... 359
9.2.6
High Resolution Spectroscopy
.................. 363
9.2.7
Apodization
............................ 366
CONTENTS
XV
A9.1.1 Asymmetrie
Fourier
Transform Spectroscopy
.......... 370
10
Imaging Using Wave Theory
375
10.1
Introduction
................................ 375
10.2
Spatial Waves and Blackening Curves, Spatial Frequencies, and
Fourier Transformation
.......................... 376
10.3
Object, Image, and the Two Fourier Transformations
........... 382
10.3.1
Waves from Object and Aperture Plane and Lens
......... 382
10.3.2
Summation Processes
....................... 383
10.3.3
The Pair of Fourier Transformations
............... 385
10.4
Image Formation Using Incoherent Light
................. 386
10.4.1
Spread Function
.......................... 386
10.4.2
The Convolution Integral
..................... 387
10.4.3
Impulse Response and the Intensity Pattern
........... 387
10.4.4
Examples of Convolution with Spread Function
......... 388
10.4.5
Transfer Function
......................... 392
10.4.6
Resolution
............................. 395
10.5
Image Formation with Coherent Light
.................. 398
10.5.1
Spread Function
.......................... 398
10.5.2
Resolution
............................. 399
10.5.3
Transfer Function
......................... 401
10.6
Holography
................................ 403
10.6.1
Introduction
............................ 403
10.6.2
Recording of the Interferogram
.................. 403
10.6.3
Recovery of Image with Same Plane Wave Used
for Recording
........................... 404
10.6.4
Recovery Using a Different Plane Wave
............. 405
10.6.5
Production of Real and Virtual Image Under an Angle
...... 405
10.6.6
Size of Hologram
......................... 406
11
Aberration
415
11.1
Introduction
................................ 415
11.2
Spherical Aberration of a Single Refracting Surface
........... 415
11.3
Longitudinal and Lateral Spherical Aberration of a Thin Lens
...... 418
11.4
The
π-σ
Equation and Spherical Aberration
............... 421
11.5
Coma
.................................... 423
11.6
Aplanatic Lens
............................... 425
11.7
Astigmatism
................................ 427
11.7.1
Astigmatism of a Single Spherical Surface
............ 427
11.7.2
Astigmatism of a Thin Lens
.................... 428
11.8
Chromatic Aberration and the Achromatic Doublet
............ 430
11.9
Chromatic Aberration and the Achromatic Doublet with
Separated Lenses
............................. 432
XVI CONTENTS
Appendix A About Graphs and Matrices in Mathcad
435
Appendix
В
Formulas
439
References
443
Index
445
|
adam_txt |
Contents
Preface
vii
1
Geometrical Optics
1
1.1
Introduction
. 1
1.2
Fermat's Principle and the Law of Refraction
. 2
1.3
Prisms
. 7
1.3.1
Angle of Deviation
. 7
1.4
Convex Spherical Surfaces
. 9
1.4.1
Image Formation and Conjugate Points
. 9
1.4.2
Sign Convention
. 11
1.4.3
Object and Image Distance, Object and Image Focus, Real and
Virtual Objects, and Singularities
. 11
1.4.4
Real Objects, Geometrical Constructions,
and Magnification
. 15
1.4.5
Virtual Objects, Geometrical Constructions,
and Magnification
. 17
1.5
Concave Spherical Surfaces
. 19
1.6
Thin Lens Equation
. 23
1.6.1
Thin Lens Equation
. 23
1.6.2
Object Focus and Image Focus
. 24
1.6.3
Magnification
. 25
1.6.4
Positive Lens, Graph, Calculations of Image Positions, and
Graphical Constructions of Images
. 25
1.6.5
Negative Lens, Graph, Calculations of Image Positions, and
Graphical Constructions of Images
. 30
1.6.6
Thin Lens and Two Different Media on the Outside
. 33
1.7
Optical Instruments
. 35
ix
X
CONTENTS
1.7.1
Two Lens
System. 36
1.7.2
Magnifier
and Object
Positions
. 37
1.7.3
Microscope
. 42
1.7.4
Telescope
. 44
1.8
Matrix Formulation for Thick Lenses
. 48
1.8.1
Refraction and Translation Matrices
. 48
1.8.2
Two Spherical Surfaces at Distance
d
and Prinicipal Planes
. 51
1.8.3
System of Lenses
. 59
1.9
Plane and Spherical Mirrors
. 67
1.9.1
Plane Mirrors and Virtual Images
. 67
1.9.2
Spherical Mirrors and Mirror Equation
. 67
1.9.3
Sign Convention
. 69
1.9.4
Magnification
. 69
1.9.5
Graphical Method and Graphs of x,
;
Depending on x0
. 70
1.10
Matrices for a Reflecting Cavity and the Eigenvalue Problem
. 73
2
Interference
79
2.1
Introduction
. 79
2.2
Harmonic Waves
. 80
2.3
Superposition of Harmonic Waves
. 82
2.3.1
Superposition of Two Waves Depending on Space and
Time Coordinates
. 82
2.3.2
Intensities
. 86
2.3.3
Normalization
. 88
2.4
Two-Beam
Wavefront
Dividing
Interferometry
. 89
2.4.1
Model Description for
Wavefront
Division
. 89
2.4.2
Young's Experiment
. 90
2.5
Two-Beam Amplitude Dividing
Interferometry
. 96
2.5.1
Model Description for Amplitude Division
. 96
2.5.2
Plane Parallel Plate
. 97
2.5.3
Michelson Interferometer and Heidinger and Fizeau Fringes
. . 103
2.6
Multiple Beam
Interferometry
. 110
2.6.1
Plane Parallel Plate
. 110
2.6.2
Fabry-Perot
Etalon
. 115
2.6.3
Fabry-Perot Spectrometer and Resolution
. 118
2.6.4
Array of Source Points
. 121
2.7
Random Arrangement of Source Points
. 125
3
Diffraction
129
3.1
Introduction
. 129
3.2
Kirchhoff-Fresnel Integral
. 131
3.2.1
The Integral
. 131
3.2.2
On Axis Observation for the Circular Opening
. 133
CONTENTS
XI
3.2.3
On Axis Observation
for Circular
Stop
. 135
3.3
Fresnel
Diffraction,
Far Field Approximation, and
Fraunhofer
Observation
. 136
3.3.1
Small Angle Approximation in Cartesian Coordinates
. 137
3.3.2
Fresnel, Far Field, and
Fraunhofer
Diffraction
. 138
3.4
Far Field and
Fraunhofer
Diffraction
. 139
3.4.1
Diffraction on a Slit
. 140
3.4.2
Diffraction on a Slit and Fourier Transformation
. 144
3.4.3
Rectangular Aperture
. 145
3.4.4
Circular Aperture
. 148
3.4.5
Gratings
. 152
3.4.6
Resolution
. 162
3.5
Babinet's Theorem
. 166
3.6
Apertures in Random Arrangement
. 169
3.7
Fresnel Diffraction
. 172
3.7.1
Coordinates for Diffraction on a Slit and
Fresnels Integrals
. 172
3.7.2
Fresnel Diffraction on a Slit
. 173
3.7.3
Fresnel Diffraction on an Edge
. 175
A3.1.1 Step Grating
. 178
A3.2.1 Cornu's Spiral
. 181
A3.2.2
Babinet's Principle and Cornu's Spiral
. 182
Coherence
185
4.1
Spatial Coherence
. 185
4.1.1
Introduction
. 185
4.1.2
Two Source Points
. 185
4.1.3
Coherence Condition
. 189
4.1.4
Extended Source
. 190
4.1.5
Visibility
. 194
4.1.6
Michelson Stellar Interferometer
. 197
4.2
Temporal Coherence
. 200
4.2.1
Wavetrains and Quasimonochromatic Light
. 200
4.2.2
Superposition of Wavetrains
. 201
4.2.3
Length of Wavetrains
. 202
A4.1.1
Fourier
Tranform Spectometer
and
Blackbody
Radiation
. 203
Maxwell's Theory
205
5.1
Introduction
. 205
5.2
Harmonic Plane Waves and the Superposition Principle
. 206
5.2.1
Plane Waves
. 206
5.2.2
The Superposition Principle
. 208
5.3
Differentiation Operation
. 208
XII CONTENTS
5.3.1 Differentiation
"Time"
д
/dt
. 208
5.3.2 Differentiation "Space"
V = i3/3jc+j3/3y + ka/3z
. 208
5.4 Poynting
Vector in Vacuum
. 209
5.5
Electromagnetic Waves
in an Isotropie
Nonconducting
Medium. 210
5.6
Fresneľs
Formulas
. 211
5.6.1
Electrical Field Vectors in the Plane of Incidence
(Parallel Case)
. 211
5.6.2
Electrical Field Vector Perpendicular to the Plane of Incidence
(Perpendicular Case)
. 214
5.6.3
Fresneľs
Formulas Depending on the
Angle of Incidence
. 215
5.6.4
Light Incident on a Denser Medium, n\
<
ni,
and the
Brewster Angle
. 216
5.6.5
Light Incident on a Less Dense Medium,
щ
>
пг,
Brewster and
CriticalAngle
. 219
5.6.6
Reflected and Transmitted Intensities
. 222
5.6.7
Total Reflection and Evanescent Wave
. 228
5.7
Polarized Light
. 230
5.7.1
Introduction
. 230
5.7.2
Ordinary and Extraordinary Indices of Refraction
. 231
5.7.3
Phase Difference Between Waves Moving in the Direction of or
Perpendicular to the Optical Axis
. 232
5.7.4
Half-Wave Plate, Phase Shift of
π
. 233
5.7.5
Quarter Wave Plate, Phase Shift
лг/2
. 235
5.7.6
Crossed Polarizers
. 238
5.7.7
General Phase Shift
. 240
A5.1.1 Wave Equation Obtained from Maxwell's Equation
. 242
A5.1.2 The Operations V and V2
. 243
A5.2.1 Rotation of the Coordinate System as a Principal Axis
Transformation and Equivalence to the Solution of the
Eigenvalue Problem
. 243
A5.3.1 Phase Difference Between Internally Reflected Components
. . 244
A5.4.1 Jones Vectors and Jones Matrices
. 244
A5.4.2 Jones Matrices
. 245
A5.4.3 Applications
. 245
б
Maxwell II. Modes and Mode Propagation
249
6.1
Introduction
. 249
6.2
Stratified Media
. 252
6.2.1
Two Interfaces at Distance
d
. 253
6.2.2
Plate of Thickness
d
-
(λ/2η2).
255
6.2.3
Plate of Thickness
d
and Index n-i
. 256
6.2.4
Antireflection Coating
. 256
CONTENTS XIII
6.2.5 Multiple
Layer
Filters
with Alternating High and Low
Refractive Index
. 258
6.3
Guided Waves by Total Internal Reflection Through a
Planar Waveguide
. 259
6.3.1
Traveling Waves
. 259
6.3.2
Restrictive Conditions for Mode Propagation
. 261
6.3.3
Phase Condition for Mode Formation
. 262
6.3.4
(TE)
Modes or
í
-Polarization
. 262
6.3.5
(TM) Modes or p-Polarization
. 265
6.4
Fiber Optics Waveguides
. 266
6.4.1
Modes in a Dielectric Waveguide
. 266
A6.1.1 Boundary Value Method Applied to
TE
Modes of Plane
Plate Waveguide
. 270
Blackbody
Radiation, Atomic Emission, and Lasers
273
7.1
Introduction
. 273
7.2
Blackbody
Radiaton
. 274
7.2.1
The Rayleigh-Jeans Law
. 274
7.2.2
Planck's Law
. 275
7.2.3
Stefan-Boltzmann Law
. 277
7.2.4
Wien'sLaw
. 278
7.2.5
Files of Planck's, Stefan-Boltzmann's, and Wien's Laws.
Radiance, Area, and Solid Angle
. 279
7.3
Atomic Emission
. 281
7.3.1
Introduction
. 281
7.3.2
Bohr's Model and the One Electron Atom
. 282
7.3.3
Many Electron Atoms
. 282
7.4
Bandwidth
. 285
7.4.1
Introduction
. 285
7.4.2
Classical Model, Lorentzian Line Shape, and
Homogeneous Broadening
. 286
7.4.3
Natural Emission Line Width, Quantum Mechanical Model
. . . 289
7.4.4
Doppler
Broadening (Inhomogeneous)
. 289
7.5
Lasers
. 291
7.5.1
Introduction
. 291
7.5.2
Population Inversion
. 292
7.5.3
Stimulated Emission, Spontaneous Emission, and the
Amplification Factor
. 293
7.5.4
The Fabry-Perot Cavity, Losses, and Threshold Condition
. . . 294
7.5.5
Simplified Example of a Three-Level Laser
. 296
7.6
Confocal Cavity, Gaussian Beam, and Modes
. 297
7.6.1
Paraxial Wave Equation and Beam Parameters
. 297
7.6.2
Fundamental Mode in Confocal Cavity
. 299
XIV CONTENTS
7.6.3
Diffraction
Losses and Fresnel Number
. 302
7.6.4
Higher Modes in the Confocal Cavity
. 303
8
Optical Constants
315
8.1
Introduction
. 315
8.2
Optical Constants of Dielectrics
. 316
8.2.1
The Wave Equation, Electrical Polarizability, and
Refractive Index
. 316
8.2.2
Oscillator Model and the Wave Equation
. 317
8.3
Determination of Optical Constants
. 320
8.3.1
Fresnel's Formulas and Reflection Coefficients
. 320
8.3.2
Ratios of the Amplitude Reflection Coefficients
. 321
8.3.3
Oscillator Expressions
. 322
8.3.4
Sellmeier Formula
. 324
8.4
Optical Constants of Metals
. 326
8.4.1
Drude
Model
. 326
8.4.2
Low Frequency Region
. 327
8.4.3
High Frequency Region
. 328
8.4.4
Skin Depth
. 331
8.4.5
Reflectance at Normal Incidence and Reflection Coefficients
with Absorption
. 333
8.4.6
Elliptically Polarized Light
. 334
AS.l.l Analytical Expressions and Approximations for the
Detemination of
η
and
К
. 335
9
Fourier Transformation and FT-Spectroscopy
339
9.1
Fourier Transformation
. 339
9.1.1
Introduction
. 339
9.1.2
The Fourier Integrals
. 339
9.1.3
Examples of Fourier Transformations Using
Analytical Functions
. 340
9.1.4
Numerical Fourier Transformation
. 341
9.1.5
Fourier Transformation of a Product of Two Functions and the
Convolution Integral
. 350
9.2
Fourier Transform Spectroscopy
. 352
9.2.1
Interferogram and Fourier Transformation. Superposition of
Cosine Waves
. 352
9.2.2
Michelson Interferometer and Interferograms
. 353
9.2.3
The Fourier Transform Integral
. 355
9.2.4
Discrete Length and Frequency Coordinates
. 356
9.2.5
Folding of the Fourier Transform Spectrum
. 359
9.2.6
High Resolution Spectroscopy
. 363
9.2.7
Apodization
. 366
CONTENTS
XV
A9.1.1 Asymmetrie
Fourier
Transform Spectroscopy
. 370
10
Imaging Using Wave Theory
375
10.1
Introduction
. 375
10.2
Spatial Waves and Blackening Curves, Spatial Frequencies, and
Fourier Transformation
. 376
10.3
Object, Image, and the Two Fourier Transformations
. 382
10.3.1
Waves from Object and Aperture Plane and Lens
. 382
10.3.2
Summation Processes
. 383
10.3.3
The Pair of Fourier Transformations
. 385
10.4
Image Formation Using Incoherent Light
. 386
10.4.1
Spread Function
. 386
10.4.2
The Convolution Integral
. 387
10.4.3
Impulse Response and the Intensity Pattern
. 387
10.4.4
Examples of Convolution with Spread Function
. 388
10.4.5
Transfer Function
. 392
10.4.6
Resolution
. 395
10.5
Image Formation with Coherent Light
. 398
10.5.1
Spread Function
. 398
10.5.2
Resolution
. 399
10.5.3
Transfer Function
. 401
10.6
Holography
. 403
10.6.1
Introduction
. 403
10.6.2
Recording of the Interferogram
. 403
10.6.3
Recovery of Image with Same Plane Wave Used
for Recording
. 404
10.6.4
Recovery Using a Different Plane Wave
. 405
10.6.5
Production of Real and Virtual Image Under an Angle
. 405
10.6.6
Size of Hologram
. 406
11
Aberration
415
11.1
Introduction
. 415
11.2
Spherical Aberration of a Single Refracting Surface
. 415
11.3
Longitudinal and Lateral Spherical Aberration of a Thin Lens
. 418
11.4
The
π-σ
Equation and Spherical Aberration
. 421
11.5
Coma
. 423
11.6
Aplanatic Lens
. 425
11.7
Astigmatism
. 427
11.7.1
Astigmatism of a Single Spherical Surface
. 427
11.7.2
Astigmatism of a Thin Lens
. 428
11.8
Chromatic Aberration and the Achromatic Doublet
. 430
11.9
Chromatic Aberration and the Achromatic Doublet with
Separated Lenses
. 432
XVI CONTENTS
Appendix A About Graphs and Matrices in Mathcad
435
Appendix
В
Formulas
439
References
443
Index
445 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Möller, Karl Dieter |
author_facet | Möller, Karl Dieter |
author_role | aut |
author_sort | Möller, Karl Dieter |
author_variant | k d m kd kdm |
building | Verbundindex |
bvnumber | BV021321525 |
classification_rvk | ST 620 UH 5000 |
ctrlnum | (OCoLC)634854065 (DE-599)BVBBV021321525 |
discipline | Physik Informatik |
discipline_str_mv | Physik Informatik |
edition | 2. ed. |
format | Kit Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01753nom a2200421 c 4500</leader><controlfield tag="001">BV021321525</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101203 </controlfield><controlfield tag="008">060206s2007 ||| 0| bneng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N20,0054</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">974531200</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387694924</subfield><subfield code="9">978-0-387-69492-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387261680</subfield><subfield code="9">0-387-26168-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387261683</subfield><subfield code="9">978-0-387-26168-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387261683</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11370833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634854065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021321525</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 620</subfield><subfield code="0">(DE-625)143684:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5000</subfield><subfield code="0">(DE-625)145647:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Möller, Karl Dieter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optics</subfield><subfield code="b">learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple</subfield><subfield code="c">K. D. Moeller</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 453 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in contemporary physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathcad</subfield><subfield code="0">(DE-588)4417846-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathcad</subfield><subfield code="0">(DE-588)4417846-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2623953&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014641911&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014641911</subfield></datafield></record></collection> |
id | DE-604.BV021321525 |
illustrated | Illustrated |
index_date | 2024-07-02T13:59:04Z |
indexdate | 2024-07-09T20:35:37Z |
institution | BVB |
isbn | 9780387694924 0387261680 9780387261683 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014641911 |
oclc_num | 634854065 |
open_access_boolean | |
owner | DE-703 DE-1050 DE-1102 DE-355 DE-BY-UBR DE-29T DE-92 DE-11 |
owner_facet | DE-703 DE-1050 DE-1102 DE-355 DE-BY-UBR DE-29T DE-92 DE-11 |
physical | XVI, 453 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in contemporary physics |
spelling | Möller, Karl Dieter Verfasser aut Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple K. D. Moeller 2. ed. New York, NY Springer 2007 XVI, 453 S. Ill., graph. Darst. 1 CD-ROM (12 cm) Undergraduate texts in contemporary physics Optik (DE-588)4043650-0 gnd rswk-swf Mathcad (DE-588)4417846-3 gnd rswk-swf Optik (DE-588)4043650-0 s Mathcad (DE-588)4417846-3 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2623953&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014641911&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Möller, Karl Dieter Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple Optik (DE-588)4043650-0 gnd Mathcad (DE-588)4417846-3 gnd |
subject_GND | (DE-588)4043650-0 (DE-588)4417846-3 |
title | Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple |
title_auth | Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple |
title_exact_search | Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple |
title_exact_search_txtP | Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple |
title_full | Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple K. D. Moeller |
title_fullStr | Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple K. D. Moeller |
title_full_unstemmed | Optics learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple K. D. Moeller |
title_short | Optics |
title_sort | optics learning by computing with examples using mathcad matlab mathematica and maple |
title_sub | learning by computing, with examples using MathCad, Matlab, Mathematica, and Maple |
topic | Optik (DE-588)4043650-0 gnd Mathcad (DE-588)4417846-3 gnd |
topic_facet | Optik Mathcad |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2623953&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014641911&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mollerkarldieter opticslearningbycomputingwithexamplesusingmathcadmatlabmathematicaandmaple |