Duality for nonconvex approximation and optimization:
The theory of convex optimization has been constantly developing over the past 30 years. Most recently, many researchers have been studying more complicated classes of problems that still can be studied by means of convex analysis, so-called "anticonvex" and "convex-anticonvex" o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2006
|
Schriftenreihe: | CMS books in mathematics
24 |
Schlagworte: | |
Zusammenfassung: | The theory of convex optimization has been constantly developing over the past 30 years. Most recently, many researchers have been studying more complicated classes of problems that still can be studied by means of convex analysis, so-called "anticonvex" and "convex-anticonvex" optimizaton problems. This manuscript contains an exhaustive presentation of the duality for these classes of problems and some of its generalization in the framework of abstract convexity. This manuscript will be of great interest for experts in this and related fields. |
Beschreibung: | XVIII, 355 S. graph. Darst. |
ISBN: | 0387283943 9780387283944 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021306394 | ||
003 | DE-604 | ||
005 | 20080530 | ||
007 | t | ||
008 | 060125s2006 d||| |||| 00||| eng d | ||
015 | |a 05,N33,0426 |2 dnb | ||
016 | 7 | |a 975752650 |2 DE-101 | |
020 | |a 0387283943 |c Gb. (Pr. in Vorb.) |9 0-387-28394-3 | ||
020 | |a 9780387283944 |9 978-0-387-28394-4 | ||
024 | 3 | |a 9780387283944 | |
028 | 5 | 2 | |a 11368809 |
035 | |a (OCoLC)61309418 | ||
035 | |a (DE-599)BVBBV021306394 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91G |a DE-29T |a DE-824 |a DE-706 |a DE-11 | ||
050 | 0 | |a QA640 | |
082 | 0 | |a 515/.8 |2 22 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 460f |2 stub | ||
084 | |a MAT 915f |2 stub | ||
084 | |a MAT 410f |2 stub | ||
100 | 1 | |a Singer, Ivan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Duality for nonconvex approximation and optimization |c Ivan Singer |
264 | 1 | |a New York, NY |b Springer |c 2006 | |
300 | |a XVIII, 355 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a CMS books in mathematics |v 24 | |
520 | 3 | |a The theory of convex optimization has been constantly developing over the past 30 years. Most recently, many researchers have been studying more complicated classes of problems that still can be studied by means of convex analysis, so-called "anticonvex" and "convex-anticonvex" optimizaton problems. This manuscript contains an exhaustive presentation of the duality for these classes of problems and some of its generalization in the framework of abstract convexity. This manuscript will be of great interest for experts in this and related fields. | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Convex domains | |
650 | 4 | |a Convex functions | |
650 | 4 | |a Convex sets | |
650 | 4 | |a Convexity spaces | |
650 | 4 | |a Duality theory (Mathematics) | |
650 | 0 | 7 | |a Konvexe Menge |0 (DE-588)4165212-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dualitätstheorie |0 (DE-588)4150801-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Funktion |0 (DE-588)4139679-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexe Funktion |0 (DE-588)4139679-0 |D s |
689 | 0 | 1 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Konvexe Menge |0 (DE-588)4165212-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Dualitätstheorie |0 (DE-588)4150801-4 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a CMS books in mathematics |v 24 |w (DE-604)BV013248581 |9 24 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-014627026 |
Datensatz im Suchindex
_version_ | 1804135107688136704 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Singer, Ivan |
author_facet | Singer, Ivan |
author_role | aut |
author_sort | Singer, Ivan |
author_variant | i s is |
building | Verbundindex |
bvnumber | BV021306394 |
callnumber-first | Q - Science |
callnumber-label | QA640 |
callnumber-raw | QA640 |
callnumber-search | QA640 |
callnumber-sort | QA 3640 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 470 SK 870 SK 890 |
classification_tum | MAT 460f MAT 915f MAT 410f |
ctrlnum | (OCoLC)61309418 (DE-599)BVBBV021306394 |
dewey-full | 515/.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.8 |
dewey-search | 515/.8 |
dewey-sort | 3515 18 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02703nam a2200661 cb4500</leader><controlfield tag="001">BV021306394</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080530 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060125s2006 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N33,0426</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">975752650</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387283943</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">0-387-28394-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387283944</subfield><subfield code="9">978-0-387-28394-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387283944</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11368809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61309418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021306394</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA640</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.8</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 460f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 915f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 410f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singer, Ivan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Duality for nonconvex approximation and optimization</subfield><subfield code="c">Ivan Singer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 355 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">CMS books in mathematics</subfield><subfield code="v">24</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The theory of convex optimization has been constantly developing over the past 30 years. Most recently, many researchers have been studying more complicated classes of problems that still can be studied by means of convex analysis, so-called "anticonvex" and "convex-anticonvex" optimizaton problems. This manuscript contains an exhaustive presentation of the duality for these classes of problems and some of its generalization in the framework of abstract convexity. This manuscript will be of great interest for experts in this and related fields.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convexity spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dualitätstheorie</subfield><subfield code="0">(DE-588)4150801-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Dualitätstheorie</subfield><subfield code="0">(DE-588)4150801-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">CMS books in mathematics</subfield><subfield code="v">24</subfield><subfield code="w">(DE-604)BV013248581</subfield><subfield code="9">24</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014627026</subfield></datafield></record></collection> |
id | DE-604.BV021306394 |
illustrated | Illustrated |
index_date | 2024-07-02T13:54:30Z |
indexdate | 2024-07-09T20:35:15Z |
institution | BVB |
isbn | 0387283943 9780387283944 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014627026 |
oclc_num | 61309418 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-29T DE-824 DE-706 DE-11 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-29T DE-824 DE-706 DE-11 |
physical | XVIII, 355 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | CMS books in mathematics |
series2 | CMS books in mathematics |
spelling | Singer, Ivan Verfasser aut Duality for nonconvex approximation and optimization Ivan Singer New York, NY Springer 2006 XVIII, 355 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier CMS books in mathematics 24 The theory of convex optimization has been constantly developing over the past 30 years. Most recently, many researchers have been studying more complicated classes of problems that still can be studied by means of convex analysis, so-called "anticonvex" and "convex-anticonvex" optimizaton problems. This manuscript contains an exhaustive presentation of the duality for these classes of problems and some of its generalization in the framework of abstract convexity. This manuscript will be of great interest for experts in this and related fields. Approximation theory Convex domains Convex functions Convex sets Convexity spaces Duality theory (Mathematics) Konvexe Menge (DE-588)4165212-5 gnd rswk-swf Dualitätstheorie (DE-588)4150801-4 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Konvexe Funktion (DE-588)4139679-0 gnd rswk-swf Konvexe Funktion (DE-588)4139679-0 s Approximationstheorie (DE-588)4120913-8 s DE-604 Konvexe Menge (DE-588)4165212-5 s Dualitätstheorie (DE-588)4150801-4 s CMS books in mathematics 24 (DE-604)BV013248581 24 |
spellingShingle | Singer, Ivan Duality for nonconvex approximation and optimization CMS books in mathematics Approximation theory Convex domains Convex functions Convex sets Convexity spaces Duality theory (Mathematics) Konvexe Menge (DE-588)4165212-5 gnd Dualitätstheorie (DE-588)4150801-4 gnd Approximationstheorie (DE-588)4120913-8 gnd Konvexe Funktion (DE-588)4139679-0 gnd |
subject_GND | (DE-588)4165212-5 (DE-588)4150801-4 (DE-588)4120913-8 (DE-588)4139679-0 |
title | Duality for nonconvex approximation and optimization |
title_auth | Duality for nonconvex approximation and optimization |
title_exact_search | Duality for nonconvex approximation and optimization |
title_exact_search_txtP | Duality for nonconvex approximation and optimization |
title_full | Duality for nonconvex approximation and optimization Ivan Singer |
title_fullStr | Duality for nonconvex approximation and optimization Ivan Singer |
title_full_unstemmed | Duality for nonconvex approximation and optimization Ivan Singer |
title_short | Duality for nonconvex approximation and optimization |
title_sort | duality for nonconvex approximation and optimization |
topic | Approximation theory Convex domains Convex functions Convex sets Convexity spaces Duality theory (Mathematics) Konvexe Menge (DE-588)4165212-5 gnd Dualitätstheorie (DE-588)4150801-4 gnd Approximationstheorie (DE-588)4120913-8 gnd Konvexe Funktion (DE-588)4139679-0 gnd |
topic_facet | Approximation theory Convex domains Convex functions Convex sets Convexity spaces Duality theory (Mathematics) Konvexe Menge Dualitätstheorie Approximationstheorie Konvexe Funktion |
volume_link | (DE-604)BV013248581 |
work_keys_str_mv | AT singerivan dualityfornonconvexapproximationandoptimization |