Mathematical foundation of turbulent viscous flows: lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2005
|
Schriftenreihe: | Lecture notes in mathematics
1871 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | IX, 252 S. Ill. |
ISBN: | 3540285865 9783540285861 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021303893 | ||
003 | DE-604 | ||
005 | 20151127 | ||
007 | t | ||
008 | 060123s2005 gw a||| |||| 10||| eng d | ||
015 | |a 05,N44,0473 |2 dnb | ||
016 | 7 | |a 976632799 |2 DE-101 | |
020 | |a 3540285865 |c Pb. : EUR 42.75 (freier Pr.), sfr 73.00 (freier Pr.) |9 3-540-28586-5 | ||
020 | |a 9783540285861 |9 978-3-540-28586-1 | ||
024 | 3 | |a 9783540285861 | |
028 | 5 | 2 | |a 11545989 |
035 | |a (OCoLC)181485751 | ||
035 | |a (DE-599)BVBBV021303893 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-824 |a DE-91G |a DE-83 |a DE-188 |a DE-11 | ||
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MTA 309f |2 stub | ||
084 | |a 76Fxx |2 msc | ||
084 | |a 510 |2 sdnb | ||
245 | 1 | 0 | |a Mathematical foundation of turbulent viscous flows |b lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 |c P. Constantin ... Ed.: M. Cannone ... |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2005 | |
300 | |a IX, 252 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1871 | |
650 | 0 | 7 | |a Turbulente Strömung |0 (DE-588)4117265-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Viskose Strömung |0 (DE-588)4226965-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2003 |z Martina Franca |2 gnd-content | |
689 | 0 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 0 | 1 | |a Viskose Strömung |0 (DE-588)4226965-9 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Constantin, Peter |d 1951- |e Sonstige |0 (DE-588)1034846574 |4 oth | |
700 | 1 | |a Cannone, Marco |e Sonstige |4 oth | |
830 | 0 | |a Lecture notes in mathematics |v 1871 |w (DE-604)BV000676446 |9 1871 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2687067&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014624566&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014624566 |
Datensatz im Suchindex
_version_ | 1804135103865028608 |
---|---|
adam_text | Contents
Euler
Equations, Navier-Stokes Equations and Turbulence
Peter
Constantin
................................................ 1
1
Introduction
.................................................. 1
2
Euler
Equations
............................................... 2
3
An Infinite Energy Blow Up Example
............................ 10
4
Navier-Stokes Equations
........................................ 16
5
Approximations
............................................... 24
6
The QG Equation
............................................. 26
7
Dissipation and Spectra
........................................ 30
References
...................................................... 39
CKN Theory of Singularities of Weak Solutions
of the Navier-Stokes Equations
Giovanni Gallavotti
.............................................. 45
1
Leray s Solutions and Energy
................................... 47
2
Kinematic Inequalities
......................................... 49
3
Pseudo
Navier
Stokes Velocity
-
Pressure Pairs. Scaling Operators
... 50
4
The Theorems of Scheffer and of Caffarelli-Kohn-Nirenberg
........ 54
5
Fractal Dimension of Singularities
of the Navier-Stokes Equation,
d
= 3 ............................ 58
5.1
Dimension and Measure of Hausdorff
........................ 58
5.2
Hausdorff Dimension of Singular Times in the Navier-Stokes
Solutions (d
= 3).......................................... 59
5.3
Hausdorff Dimension in Space-Time of the Solutions of NS,
(d
= 3)................................................... 61
6
Problems. The Dimensional Bounds of the CKN Theory
............ 63
References
...................................................... 73
Approximation of Weak Limits and Related Problems
Alexandre
V. Kazhikhov
.......................................... 75
1
Strong Approximation of Weak Limits by Averagings
.............. 76
VIII Contents
1.1
Notations and Basic Notions
from Orlicz Function Spaces Theory
76
1.2
Strong Approximation of Weak Limits
....................... 79
Step
1.
Simple example
................................. 79
Step
2.
One-dimensional case, Steklov averaging
........... 80
Step
3.
The general case
................................ 81
Remark
1.1........................................... 82
1.3
Applications to Navier-Stokes Equations
..................... 82
2
Transport Equations in Orlicz Spaces
............................ 83
2.1
Statement of Problem
...................................... 83
2.2
Existence and Uniqueness Theorems
......................... 85
2.3
Gronwall-type Inequality and Osgood Uniqueness Theorem
..... 86
2.4
Conclusive Remarks
....................................... 88
3
Some Remarks on Compensated Compactness Theory
.............. 89
3.1
Introduction
.............................................. 89
3.2
Classical Compactness
(Aubin-Simon
Theorem)
............... 91
3.3
Compensated Compactness
-
div-curl Lemma
............... 92
3.4
Compensated Compactness-theorem of L. Tartar
.............. 94
3.5
Generalizations and Examples
.............................. 96
References
...................................................... 98
Oscillating Patterns in Some Nonlinear Evolution Equations
Yves Meyer
.....................................................101
1
Introduction
..................................................101
2
A Model Case: the Nonlinear Heat Equation
......................103
3
Navier-Stokes Equations
........................................113
4
The L2-theory is Unstable
......................................118
5
T. Kato s Theorem
............................................124
6
The
Kato
Theorem Revisited by Marco
Cannone
..................127
7
The
Kato
Theory with
Lorentz
Spaces
...........................132
8
Vortex Filaments and a Theorem by Y.
Giga
and T. Miyakawa
......136
9
Vortex Patches
................................................142
10
The H. Koch
k D.
Tataru
Theorem
..............................144
11
Localized Velocity Fields
.......................................146
12
Large Time Behavior of Solutions to the Navier-Stokes Equations
... 151
13
Improved Gagliardo-Nirenberg Inequalities
........................154
14
The Space BV of Functions with Bounded Variation in the Plane
... 157
15
Gagliardo-Nirenberg Inequalities and BV
.........................161
16
Improved
Poincaré
Inequalities
..................................166
17
A Direct Proof of Theorem
15.3.................................170
18
Littlewood-Paley Analysis
......................................172
19
Littlewood-Paley Analysis and Wavelet Analysis
...................178
References
...................... .........182
Contents
IX
Asymptotic Analysis of Fluid Equations
Seiji Ukai
.......................................................189
1
Introduction
..................................................189
2
Schemes for Establishing Asymptotic Relations
....................194
2.1
From Newton Equation to Boltzmann Equation:
Boltzmann-Grad Limit
....................................194
Newton Equation
-
Hard Sphere Gas
........................195
Liouville Equation
.........................................196
BBGKY Hierarchy
........................................196
Boltzmann Hierarchy
......................................198
Boltzmann Equation
.......................................198
Collision Operator
Q
......................................200
2.2
From Boltzmann Equation to Fluid Equations
-
Multi-Scale Analysis
.......................................202
The Case
(α, β)
= (0,0):
Compressible
Euler
Equation (C.E.)
... 204
The Case a
> 0,
β
= 0.....................................205
The Case a
> 0,
β
> 0.....................................205
3
Abstract Cauchy-Kovalevskaya Theorem
.........................212
3.1
Example
1:
Pseudo
Differential Equation
.....................216
3.2
Example
2:
Local Solutions of the Boltzmann Equation
........219
4
The Boltzmann-Grad Limit
.....................................223
4.1
Integral Equations
.........................................223
4.2
Local Solutions and Uniform Estimates
......................224
4.3
Lanford s Theorem
........................................229
5
Fluid Dynamical Limits
........................................232
5.1
Preliminary
...............................................233
5.2
Main Theorems
...........................................235
5.3
Proof of Theorem
5.1......................................238
5.4
Proof of Theorems
5.2
and
5.3..............................243
References
......................................................248
|
adam_txt |
Contents
Euler
Equations, Navier-Stokes Equations and Turbulence
Peter
Constantin
. 1
1
Introduction
. 1
2
Euler
Equations
. 2
3
An Infinite Energy Blow Up Example
. 10
4
Navier-Stokes Equations
. 16
5
Approximations
. 24
6
The QG Equation
. 26
7
Dissipation and Spectra
. 30
References
. 39
CKN Theory of Singularities of Weak Solutions
of the Navier-Stokes Equations
Giovanni Gallavotti
. 45
1
Leray's Solutions and Energy
. 47
2
Kinematic Inequalities
. 49
3
Pseudo
Navier
Stokes Velocity
-
Pressure Pairs. Scaling Operators
. 50
4
The Theorems of Scheffer and of Caffarelli-Kohn-Nirenberg
. 54
5
Fractal Dimension of Singularities
of the Navier-Stokes Equation,
d
= 3 . 58
5.1
Dimension and Measure of Hausdorff
. 58
5.2
Hausdorff Dimension of Singular Times in the Navier-Stokes
Solutions (d
= 3). 59
5.3
Hausdorff Dimension in Space-Time of the Solutions of NS,
(d
= 3). 61
6
Problems. The Dimensional Bounds of the CKN Theory
. 63
References
. 73
Approximation of Weak Limits and Related Problems
Alexandre
V. Kazhikhov
. 75
1
Strong Approximation of Weak Limits by Averagings
. 76
VIII Contents
1.1
Notations and Basic Notions
from Orlicz Function Spaces Theory
76
1.2
Strong Approximation of Weak Limits
. 79
Step
1.
Simple example
. 79
Step
2.
One-dimensional case, Steklov averaging
. 80
Step
3.
The general case
. 81
Remark
1.1. 82
1.3
Applications to Navier-Stokes Equations
. 82
2
Transport Equations in Orlicz Spaces
. 83
2.1
Statement of Problem
. 83
2.2
Existence and Uniqueness Theorems
. 85
2.3
Gronwall-type Inequality and Osgood Uniqueness Theorem
. 86
2.4
Conclusive Remarks
. 88
3
Some Remarks on Compensated Compactness Theory
. 89
3.1
Introduction
. 89
3.2
Classical Compactness
(Aubin-Simon
Theorem)
. 91
3.3
Compensated Compactness
-
"div-curl" Lemma
. 92
3.4
Compensated Compactness-theorem of L. Tartar
. 94
3.5
Generalizations and Examples
. 96
References
. 98
Oscillating Patterns in Some Nonlinear Evolution Equations
Yves Meyer
.101
1
Introduction
.101
2
A Model Case: the Nonlinear Heat Equation
.103
3
Navier-Stokes Equations
.113
4
The L2-theory is Unstable
.118
5
T. Kato's Theorem
.124
6
The
Kato
Theorem Revisited by Marco
Cannone
.127
7
The
Kato
Theory with
Lorentz
Spaces
.132
8
Vortex Filaments and a Theorem by Y.
Giga
and T. Miyakawa
.136
9
Vortex Patches
.142
10
The H. Koch
k D.
Tataru
Theorem
.144
11
Localized Velocity Fields
.146
12
Large Time Behavior of Solutions to the Navier-Stokes Equations
. 151
13
Improved Gagliardo-Nirenberg Inequalities
.154
14
The Space BV of Functions with Bounded Variation in the Plane
. 157
15
Gagliardo-Nirenberg Inequalities and BV
.161
16
Improved
Poincaré
Inequalities
.166
17
A Direct Proof of Theorem
15.3.170
18
Littlewood-Paley Analysis
.172
19
Littlewood-Paley Analysis and Wavelet Analysis
.178
References
. .182
Contents
IX
Asymptotic Analysis of Fluid Equations
Seiji Ukai
.189
1
Introduction
.189
2
Schemes for Establishing Asymptotic Relations
.194
2.1
From Newton Equation to Boltzmann Equation:
Boltzmann-Grad Limit
.194
Newton Equation
-
Hard Sphere Gas
.195
Liouville Equation
.196
BBGKY Hierarchy
.196
Boltzmann Hierarchy
.198
Boltzmann Equation
.198
Collision Operator
Q
.200
2.2
From Boltzmann Equation to Fluid Equations
-
Multi-Scale Analysis
.202
The Case
(α, β)
= (0,0):
Compressible
Euler
Equation (C.E.)
. 204
The Case a
> 0,
β
= 0.205
The Case a
> 0,
β
> 0.205
3
Abstract Cauchy-Kovalevskaya Theorem
.212
3.1
Example
1:
Pseudo
Differential Equation
.216
3.2
Example
2:
Local Solutions of the Boltzmann Equation
.219
4
The Boltzmann-Grad Limit
.223
4.1
Integral Equations
.223
4.2
Local Solutions and Uniform Estimates
.224
4.3
Lanford's Theorem
.229
5
Fluid Dynamical Limits
.232
5.1
Preliminary
.233
5.2
Main Theorems
.235
5.3
Proof of Theorem
5.1.238
5.4
Proof of Theorems
5.2
and
5.3.243
References
.248 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)1034846574 |
building | Verbundindex |
bvnumber | BV021303893 |
classification_rvk | SI 850 |
classification_tum | MTA 309f |
ctrlnum | (OCoLC)181485751 (DE-599)BVBBV021303893 |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02319nam a2200529 cb4500</leader><controlfield tag="001">BV021303893</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151127 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060123s2005 gw a||| |||| 10||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N44,0473</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">976632799</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540285865</subfield><subfield code="c">Pb. : EUR 42.75 (freier Pr.), sfr 73.00 (freier Pr.)</subfield><subfield code="9">3-540-28586-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540285861</subfield><subfield code="9">978-3-540-28586-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540285861</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11545989</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181485751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021303893</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 309f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76Fxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical foundation of turbulent viscous flows</subfield><subfield code="b">lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003</subfield><subfield code="c">P. Constantin ... Ed.: M. Cannone ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 252 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1871</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2003</subfield><subfield code="z">Martina Franca</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Constantin, Peter</subfield><subfield code="d">1951-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1034846574</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cannone, Marco</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1871</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1871</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2687067&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014624566&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014624566</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2003 Martina Franca gnd-content |
genre_facet | Konferenzschrift 2003 Martina Franca |
id | DE-604.BV021303893 |
illustrated | Illustrated |
index_date | 2024-07-02T13:53:36Z |
indexdate | 2024-07-09T20:35:11Z |
institution | BVB |
isbn | 3540285865 9783540285861 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014624566 |
oclc_num | 181485751 |
open_access_boolean | |
owner | DE-824 DE-91G DE-BY-TUM DE-83 DE-188 DE-11 |
owner_facet | DE-824 DE-91G DE-BY-TUM DE-83 DE-188 DE-11 |
physical | IX, 252 S. Ill. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 P. Constantin ... Ed.: M. Cannone ... Berlin [u.a.] Springer 2005 IX, 252 S. Ill. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1871 Turbulente Strömung (DE-588)4117265-6 gnd rswk-swf Viskose Strömung (DE-588)4226965-9 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2003 Martina Franca gnd-content Turbulente Strömung (DE-588)4117265-6 s Viskose Strömung (DE-588)4226965-9 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Constantin, Peter 1951- Sonstige (DE-588)1034846574 oth Cannone, Marco Sonstige oth Lecture notes in mathematics 1871 (DE-604)BV000676446 1871 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2687067&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014624566&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 Lecture notes in mathematics Turbulente Strömung (DE-588)4117265-6 gnd Viskose Strömung (DE-588)4226965-9 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4117265-6 (DE-588)4226965-9 (DE-588)4114528-8 (DE-588)1071861417 |
title | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 |
title_auth | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 |
title_exact_search | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 |
title_exact_search_txtP | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 |
title_full | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 P. Constantin ... Ed.: M. Cannone ... |
title_fullStr | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 P. Constantin ... Ed.: M. Cannone ... |
title_full_unstemmed | Mathematical foundation of turbulent viscous flows lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 P. Constantin ... Ed.: M. Cannone ... |
title_short | Mathematical foundation of turbulent viscous flows |
title_sort | mathematical foundation of turbulent viscous flows lectures given at the c i m e summer school held in martina franca italy september 1 5 2003 |
title_sub | lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1 - 5, 2003 |
topic | Turbulente Strömung (DE-588)4117265-6 gnd Viskose Strömung (DE-588)4226965-9 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Turbulente Strömung Viskose Strömung Mathematisches Modell Konferenzschrift 2003 Martina Franca |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2687067&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014624566&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT constantinpeter mathematicalfoundationofturbulentviscousflowslecturesgivenatthecimesummerschoolheldinmartinafrancaitalyseptember152003 AT cannonemarco mathematicalfoundationofturbulentviscousflowslecturesgivenatthecimesummerschoolheldinmartinafrancaitalyseptember152003 |