Non-linear dynamics and statistical theories for basic geophysical flows:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2006
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 551 S. graph. Darst. |
ISBN: | 0521834414 9780521834414 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021266879 | ||
003 | DE-604 | ||
005 | 20230329 | ||
007 | t | ||
008 | 051215s2006 d||| |||| 00||| eng d | ||
020 | |a 0521834414 |9 0-521-83441-4 | ||
020 | |a 9780521834414 |9 978-0-521-83441-4 | ||
035 | |a (OCoLC)62532870 | ||
035 | |a (DE-599)BVBBV021266879 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-703 |a DE-188 | ||
050 | 0 | |a QC809.F5 | |
082 | 0 | |a 551.01532051 |2 22 | |
084 | |a RB 10103 |0 (DE-625)142220:12616 |2 rvk | ||
084 | |a RB 10196 |0 (DE-625)142220:12653 |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Majda, Andrew |d 1949- |e Verfasser |0 (DE-588)135598788 |4 aut | |
245 | 1 | 0 | |a Non-linear dynamics and statistical theories for basic geophysical flows |c Andrew J. Majda ; Xiaoming Wang |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2006 | |
300 | |a XII, 551 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Geophysik |2 swd | |
650 | 7 | |a Nichtlineares mathematisches Modell |2 swd | |
650 | 7 | |a Strömungsmechanik |2 swd | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Fluid dynamics | |
650 | 4 | |a Fluid mechanics | |
650 | 4 | |a Geophysics |x Fluid models | |
650 | 4 | |a Geophysics |x Mathematical models | |
650 | 4 | |a Statistical mechanics | |
700 | 1 | |a Wang, Xiaoming |e Verfasser |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014588048&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014588048 |
Datensatz im Suchindex
_version_ | 1804135044791402497 |
---|---|
adam_text | NON-LINEAR DYNAMICS AND STATISTICAL THEORIES FOR BASIC GEOPHYSICAL FLOWS
ANDREW J. MAJDA NEW YORK UNIVERSITY XIAOMING WANG FLORIDA STATE
UNIVERSITY CAMBRIDGE UNIVERSITY PRESS I- *:* CONTENTS PREFACE PAGE XI
1 BAROTROPIC GEOPHYSICAL FLOWS AND TWO-DIMENSIONAL FLUID FLOWS:
ELEMENTARY INTRODUCTION 1 1.1 INTRODUCTION 1 1.2 SOME SPECIAL EXACT
SOLUTIONS T 8 1.3 CONSERVED QUANTITIES 33 1.4 BAROTROPIC GEOPHYSICAL
FLOWS IN A CHANNEL DOMAIN - AN IMPORTANT PHYSICAL MODEL 44 1.5
VARIATIONAL DERIVATIVES AND AN OPTIMIZATION PRINCIPLE FOR ELEMENTARY
GEOPHYSICAL SOLUTIONS 50 1.6 MORE EQUATIONS FOR GEOPHYSICAL FLOWS 52
REFERENCES 58 2 THE RESPONSE TO LARGE-SCALE FORCING 59 2.1
INTRODUCTION 59 2.2 NON-LINEAR STABILITY WITH KOLMOGOROV FORCING 62 2.3
STABILITY OF FLOWS WITH GENERALIZED KOLMOGOROV FORCING 76 REFERENCES 79
3 THE SELECTIVE DECAY PRINCIPLE FOR BASIC GEOPHYSICAL FLOWS 80 3.1
INTRODUCTION 80 3.2 SELECTIVE DECAY STATES AND THEIR INVARIANCE 82 3.3
MATHEMATICAL FORMULATION OF THE SELECTIVE DECAY PRINCIPLE 84 3.4
ENERGY-ENSTROPHY DECAY 86 3.5 BOUNDS ON THE DIRICHLET QUOTIENT, A(T) 88
3.6 RIGOROUS THEORY FOR SELECTIVE DECAY 90 3.7 NUMERICAL EXPERIMENTS
DEMONSTRATING FACETS OF SELECTIVE DECAY 95 REFERENCES 102 VI CONTENTS
A.L STRONGER CONTROLS ON A(?) 103 A.2 THE PROOF OF THE MATHEMATICAL FORM
OF THE SELECTIVE DECAY PRINCIPLE IN THE PRESENCE OF THE BETA-PLANE
EFFECT 107 4 NON-LINEAR STABILITY OF STEADY GEOPHYSICAL FLOWS 115 4.1
INTRODUCTION 115 4.2 STABILITY OF SIMPLE STEADY STATES 116 4.3 STABILITY
FOR MORE GENERAL STEADY STATES 124 4.4 NON-LINEAR STABILITY OF ZONAL
FLOWS ON THE BETA-PLANE 129 4.5 VARIATIONAL CHARACTERIZATION OF THE
STEADY STATES 133 REFERENCES 137 5 TOPOGRAPHIC MEAN FLOW INTERACTION,
NON-LINEAR INSTABILITY, AND CHAOTIC DYNAMICS 138 5.1 INTRODUCTION 138
5.2 SYSTEMS WITH LAYERED TOPOGRAPHY 141 5.3 INTEGRABLE BEHAVIOR 145 5.4
A LIMIT REGIME WITH CHAOTIC SOLUTIONS 154 5.5 NUMERICAL EXPERIMENTS *
167 REFERENCES 178 APPENDIX 1 180 APPENDIX 2 181 6 INTRODUCTION TO
INFORMATION THEORY AND EMPIRICAL STATISTICAL THEORY 183 6.1 INTRODUCTION
183 6.2 INFORMATION THEORY AND SHANNON S ENTROPY 184 6.3 MOST PROBABLE
STATES WITH PRIOR DISTRIBUTION 190 6.4 ENTROPY FOR CONTINUOUS MEASURES
ON THE LINE 194 6.5 MAXIMUM ENTROPY PRINCIPLE FOR CONTINUOUS FIELDS
201 6.6 AN APPLICATION OF THE MAXIMUM ENTROPY PRINCIPLE TO GEOPHYSICAL
FLOWS WITH TOPOGRAPHY 204 6.7 APPLICATION OF THE MAXIMUM ENTROPY
PRINCIPLE TO GEOPHYSICAL FLOWS WITH TOPOGRAPHY AND MEAN FLOW 211
REFERENCES 218 7 EQUILIBRIUM STATISTICAL MECHANICS FOR SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATIONS 219 7.1 INTRODUCTION 219 7.2
INTRODUCTION TO STATISTICAL MECHANICS FOR ODES 221 7.3 STATISTICAL
MECHANICS FOR THE TRUNCATED BURGERS-HOPF EQUATIONS 229 7.4 THE LORENZ 96
MODEL 239 REFERENCES 255 CONTENTS VII 8 STATISTICAL MECHANICS FOR THE
TRUNCATED QUASI-GEOSTROPHIC EQUATIONS 256 8.1 INTRODUCTION 256 8.2 THE
FINITE-DIMENSIONAL TRUNCATED QUASI-GEOSTROPHIC EQUATIONS 258 8.3 THE
STATISTICAL PREDICTIONS FOR THE TRUNCATED SYSTEMS 262 8.4 NUMERICAL
EVIDENCE SUPPORTING THE STATISTICAL PREDICTION 264 8.5 THE PSEUDO-ENERGY
AND EQUILIBRIUM STATISTICAL MECHANICS FOR FLUCTUATIONS ABOUT THE MEAN
267 8.6 THE CONTINUUM LIMIT 270 8.7 THE ROLE OF STATISTICALLY RELEVANT
AND IRRELEVANT CONSERVED QUANTITIES 285 REFERENCES 285 APPENDIX 1 286 9
EMPIRICAL STATISTICAL THEORIES FOR MOST PROBABLE STATES 289 9.1
INTRODUCTION 289 9.2 EMPIRICAL STATISTICAL THEORIES WITH A FEW
CONSTRAINTS 291 9.3 THE MEAN FIELD STATISTICAL THEORY FOR POINT VORTICES
299 9.4 EMPIRICAL STATISTICAL THEORIES WITH INFINITELY MANY CONSTRAINTS
309 9.5 NON-LINEAR STABILITY FOR THE MOST PROBABLE MEAN FIELDS 313
REFERENCES 316 10 ASSESSING THE POTENTIAL APPLICABILITY OF EQUILIBRIUM
STATISTICAL THEORIES FOR GEOPHYSICAL FLOWS: AN OVERVIEW 317 10.1
INTRODUCTION 317 10.2 BASIC ISSUES REGARDING EQUILIBRIUM STATISTICAL
THEORIES FOR GEOPHYSICAL FLOWS 318 10.3 THE CENTRAL ROLE OF EQUILIBRIUM
STATISTICAL THEORIES WITH A JUDICIOUS PRIOR DISTRIBUTION AND A FEW
EXTERNAL CONSTRAINTS 320 10.4 THE ROLE OF FORCING AND DISSIPATION 322
10.5 IS THERE A COMPLETE STATISTICAL MECHANICS THEORY FOR ESTMC AND
ESTP? 324 REFERENCES 326 11 PREDICTIONS AND COMPARISON OF EQUILIBRIUM
STATISTICAL THEORIES 328 11.1 INTRODUCTION 328 11.2 PREDICTIONS OF THE
STATISTICAL THEORY WITH A JUDICIOUS PRIOR AND A FEW EXTERNAL CONSTRAINTS
FOR BETA-PLANE CHANNEL FLOW 330 11.3 STATISTICAL SHARPNESS OF
STATISTICAL THEORIES WITH FEW CONSTRAINTS 346 11.4 THE LIMIT OF
MANY-CONSTRAINT THEORY (ESTMC) WITH SMALL AMPLITUDE POTENTIAL VORTICITY
355 REFERENCES 360 VIII CONTENTS 12 EQUILIBRIUM STATISTICAL THEORIES AND
DYNAMICAL MODELING OF FLOWS WITH FORCING AND DISSIPATION 361 12.1
INTRODUCTION 361 12.2 META-STABILITY OF EQUILIBRIUM STATISTICAL
STRUCTURES WITH DISSIPATION AND SMALL-SCALE FORCING 362 12.3 CRUDE
CLOSURE FOR TWO-DIMENSIONAL FLOWS 385 12.4 REMARKS ON THE MATHEMATICAL
JUSTIFICATIONS OF CRUDE CLOSURE 405 REFERENCES 410 13 PREDICTING THE
JETS AND SPOTS ON JUPITER BY EQUILIBRIUM STATISTICAL MECHANICS 411 13.1
INTRODUCTION 411 13.2 THE QUASI-GEOSTROPHIC MODEL FOR INTERPRETING
OBSERVATIONS AND PREDICTIONS FOR THE WEATHER LAYER OF JUPITER 417 13.3
THE ESTP WITH PHYSICALLY MOTIVATED PRIOR DISTRIBUTION 419 13.4
EQUILIBRIUM STATISTICAL PREDICTIONS FOR THE JETS AND SPOTS ON JUPITER
423 REFERENCES * 426 14 THE STATISTICAL RELEVANCE OF ADDITIONAL
CONSERVED QUANTITIES FOR TRUNCATED GEOPHYSICAL FLOWS 427 14.1
INTRODUCTION 427 14.2 A NUMERICAL LABORATORY FOR THE ROLE OF
HIGHER-ORDER INVARIANTS 430 14.3 COMPARISON WITH EQUILIBRIUM STATISTICAL
PREDICTIONS WITH A JUDICIOUS PRIOR 438 14.4 STATISTICALLY RELEVANT
CONSERVED QUANTITIES FOR THE TRUNCATED BURGERS-HOPF EQUATION 440
REFERENCES 442 A.I SPECTRAL TRUNCATIONS OF QUASI-GEOSTROPHIC FLOW WITH
ADDITIONAL CONSERVED QUANTITIES 442 15 A MATHEMATICAL FRAMEWORK FOR
QUANTIFYING PREDICTABILITY UTILIZING RELATIVE ENTROPY 452 15.1 ENSEMBLE
PREDICTION AND RELATIVE ENTROPY AS A MEASURE OF PREDICTABILITY 452 15.2
QUANTIFYING PREDICTABILITY FOR A GAUSSIAN PRIOR DISTRIBUTION 459 15.3
NON-GAUSSIAN ENSEMBLE PREDICTIONS IN THE LORENZ 96 MODEL 466 15.4
INFORMATION CONTENT BEYOND THE CLIMATOLOGY IN ENSEMBLE PREDICTIONS FOR
THE TRUNCATED BURGERS-HOPF MODEL 472 CONTENTS IX 15.5 FURTHER
DEVELOPMENTS IN ENSEMBLE PREDICTIONS AND INFORMATION THEORY 478
REFERENCES 480 16 BAROTROPIC QUASI-GEOSTROPHIC EQUATIONS ON THE SPHERE
482 16.1 INTRODUCTION 482 16.2 EXACT SOLUTIONS, CONSERVED QUANTITIES,
AND NON-LINEAR STABILITY 490 16.3 THE RESPONSE TO LARGE-SCALE FORCING
510 16.4 SELECTIVE DECAY ON THE SPHERE 516 16.5 ENERGY ENSTROPHY
STATISTICAL THEORY ON THE UNIT SPHERE 524 16.6 STATISTICAL THEORIES WITH
A FEW CONSTRAINTS AND STATISTICAL THEORIES WITH MANY CONSTRAINTS ON THE
UNIT SPHERE 536 REFERENCES 542 APPENDIX 1 542 APPENDIX 2 546 INDEX 550
|
adam_txt |
NON-LINEAR DYNAMICS AND STATISTICAL THEORIES FOR BASIC GEOPHYSICAL FLOWS
ANDREW J. MAJDA NEW YORK UNIVERSITY XIAOMING WANG FLORIDA STATE
UNIVERSITY CAMBRIDGE UNIVERSITY PRESS I-' '*:* CONTENTS PREFACE PAGE XI
1 BAROTROPIC GEOPHYSICAL FLOWS AND TWO-DIMENSIONAL FLUID FLOWS:
ELEMENTARY INTRODUCTION 1 1.1 INTRODUCTION 1 1.2 SOME SPECIAL EXACT
SOLUTIONS T 8 1.3 CONSERVED QUANTITIES 33 1.4 BAROTROPIC GEOPHYSICAL
FLOWS IN A CHANNEL DOMAIN - AN IMPORTANT PHYSICAL MODEL 44 1.5
VARIATIONAL DERIVATIVES AND AN OPTIMIZATION PRINCIPLE FOR ELEMENTARY
GEOPHYSICAL SOLUTIONS 50 1.6 MORE EQUATIONS FOR GEOPHYSICAL FLOWS 52
REFERENCES 58 2 THE RESPONSE TO LARGE-SCALE FORCING \ 59 2.1
INTRODUCTION 59 2.2 NON-LINEAR STABILITY WITH KOLMOGOROV FORCING 62 2.3
STABILITY OF FLOWS WITH GENERALIZED KOLMOGOROV FORCING 76 REFERENCES 79
3 THE SELECTIVE DECAY PRINCIPLE FOR BASIC GEOPHYSICAL FLOWS 80 3.1
INTRODUCTION 80 3.2 SELECTIVE DECAY STATES AND THEIR INVARIANCE 82 3.3
MATHEMATICAL FORMULATION OF THE SELECTIVE DECAY PRINCIPLE 84 3.4
ENERGY-ENSTROPHY DECAY 86 3.5 BOUNDS ON THE DIRICHLET QUOTIENT, A(T) 88
3.6 RIGOROUS THEORY FOR SELECTIVE DECAY 90 3.7 NUMERICAL EXPERIMENTS
DEMONSTRATING FACETS OF SELECTIVE DECAY 95 REFERENCES 102 VI CONTENTS
A.L STRONGER CONTROLS ON A(?) 103 A.2 THE PROOF OF THE MATHEMATICAL FORM
OF THE SELECTIVE DECAY PRINCIPLE IN THE PRESENCE OF THE BETA-PLANE
EFFECT 107 4 NON-LINEAR STABILITY OF STEADY GEOPHYSICAL FLOWS 115 4.1
INTRODUCTION 115 4.2 STABILITY OF SIMPLE STEADY STATES 116 4.3 STABILITY
FOR MORE GENERAL STEADY STATES 124 4.4 NON-LINEAR STABILITY OF ZONAL
FLOWS ON THE BETA-PLANE 129 4.5 VARIATIONAL CHARACTERIZATION OF THE
STEADY STATES 133 REFERENCES 137 5 TOPOGRAPHIC MEAN FLOW INTERACTION,
NON-LINEAR INSTABILITY, AND CHAOTIC DYNAMICS 138 5.1 INTRODUCTION 138
5.2 SYSTEMS WITH LAYERED TOPOGRAPHY 141 5.3 INTEGRABLE BEHAVIOR 145 5.4
A LIMIT REGIME WITH CHAOTIC SOLUTIONS 154 5.5 NUMERICAL EXPERIMENTS *
167 REFERENCES 178 APPENDIX 1 180 APPENDIX 2 181 6 INTRODUCTION TO
INFORMATION THEORY AND EMPIRICAL STATISTICAL THEORY 183 6.1 INTRODUCTION
183 6.2 INFORMATION THEORY AND SHANNON'S ENTROPY 184 6.3 MOST PROBABLE
STATES WITH PRIOR DISTRIBUTION 190 6.4 ENTROPY FOR CONTINUOUS MEASURES
ON THE LINE \ 194 6.5 MAXIMUM ENTROPY PRINCIPLE FOR CONTINUOUS FIELDS
201 6.6 AN APPLICATION OF THE MAXIMUM ENTROPY PRINCIPLE TO GEOPHYSICAL
FLOWS WITH TOPOGRAPHY 204 6.7 APPLICATION OF THE MAXIMUM ENTROPY
PRINCIPLE TO GEOPHYSICAL FLOWS WITH TOPOGRAPHY AND MEAN FLOW 211
REFERENCES 218 7 EQUILIBRIUM STATISTICAL MECHANICS FOR SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATIONS 219 7.1 INTRODUCTION 219 7.2
INTRODUCTION TO STATISTICAL MECHANICS FOR ODES 221 7.3 STATISTICAL
MECHANICS FOR THE TRUNCATED BURGERS-HOPF EQUATIONS 229 7.4 THE LORENZ 96
MODEL 239 REFERENCES 255 CONTENTS VII 8 STATISTICAL MECHANICS FOR THE
TRUNCATED QUASI-GEOSTROPHIC EQUATIONS 256 8.1 INTRODUCTION 256 8.2 THE
FINITE-DIMENSIONAL TRUNCATED QUASI-GEOSTROPHIC EQUATIONS 258 8.3 THE
STATISTICAL PREDICTIONS FOR THE TRUNCATED SYSTEMS 262 8.4 NUMERICAL
EVIDENCE SUPPORTING THE STATISTICAL PREDICTION 264 8.5 THE PSEUDO-ENERGY
AND EQUILIBRIUM STATISTICAL MECHANICS FOR FLUCTUATIONS ABOUT THE MEAN
267 8.6 THE CONTINUUM LIMIT 270 8.7 THE ROLE OF STATISTICALLY RELEVANT
AND IRRELEVANT CONSERVED QUANTITIES 285 REFERENCES 285 APPENDIX 1 286 9
EMPIRICAL STATISTICAL THEORIES FOR MOST PROBABLE STATES 289 9.1
INTRODUCTION 289 9.2 EMPIRICAL STATISTICAL THEORIES WITH A FEW
CONSTRAINTS 291 9.3 THE MEAN FIELD STATISTICAL THEORY FOR POINT VORTICES
299 9.4 EMPIRICAL STATISTICAL THEORIES WITH INFINITELY MANY CONSTRAINTS
309 9.5 NON-LINEAR STABILITY FOR THE MOST PROBABLE MEAN FIELDS 313
REFERENCES 316 10 ASSESSING THE POTENTIAL APPLICABILITY OF EQUILIBRIUM
STATISTICAL THEORIES FOR GEOPHYSICAL FLOWS: AN OVERVIEW 317 10.1
INTRODUCTION 317 10.2 BASIC ISSUES REGARDING EQUILIBRIUM STATISTICAL
THEORIES FOR GEOPHYSICAL FLOWS 318 10.3 THE CENTRAL ROLE OF EQUILIBRIUM
STATISTICAL THEORIES WITH A JUDICIOUS PRIOR DISTRIBUTION AND A FEW
EXTERNAL CONSTRAINTS 320 10.4 THE ROLE OF FORCING AND DISSIPATION 322
10.5 IS THERE A COMPLETE STATISTICAL MECHANICS THEORY FOR ESTMC AND
ESTP? 324 REFERENCES 326 11 PREDICTIONS AND COMPARISON OF EQUILIBRIUM
STATISTICAL THEORIES 328 11.1 INTRODUCTION 328 11.2 PREDICTIONS OF THE
STATISTICAL THEORY WITH A JUDICIOUS PRIOR AND A FEW EXTERNAL CONSTRAINTS
FOR BETA-PLANE CHANNEL FLOW 330 11.3 STATISTICAL SHARPNESS OF
STATISTICAL THEORIES WITH FEW CONSTRAINTS 346 11.4 THE LIMIT OF
MANY-CONSTRAINT THEORY (ESTMC) WITH SMALL AMPLITUDE POTENTIAL VORTICITY
355 REFERENCES 360 VIII CONTENTS 12 EQUILIBRIUM STATISTICAL THEORIES AND
DYNAMICAL MODELING OF FLOWS WITH FORCING AND DISSIPATION 361 12.1
INTRODUCTION 361 12.2 META-STABILITY OF EQUILIBRIUM STATISTICAL
STRUCTURES WITH DISSIPATION AND SMALL-SCALE FORCING 362 12.3 CRUDE
CLOSURE FOR TWO-DIMENSIONAL FLOWS 385 12.4 REMARKS ON THE MATHEMATICAL
JUSTIFICATIONS OF CRUDE CLOSURE 405 REFERENCES 410 13 PREDICTING THE
JETS AND SPOTS ON JUPITER BY EQUILIBRIUM STATISTICAL MECHANICS 411 13.1
INTRODUCTION 411 13.2 THE QUASI-GEOSTROPHIC MODEL FOR INTERPRETING
OBSERVATIONS AND PREDICTIONS FOR THE WEATHER LAYER OF JUPITER 417 13.3
THE ESTP WITH PHYSICALLY MOTIVATED PRIOR DISTRIBUTION 419 13.4
EQUILIBRIUM STATISTICAL PREDICTIONS FOR THE JETS AND SPOTS ON JUPITER
423 REFERENCES * 426 14 THE STATISTICAL RELEVANCE OF ADDITIONAL
CONSERVED QUANTITIES FOR TRUNCATED GEOPHYSICAL FLOWS 427 14.1
INTRODUCTION 427 14.2 A NUMERICAL LABORATORY FOR THE ROLE OF
HIGHER-ORDER INVARIANTS 430 14.3 COMPARISON WITH EQUILIBRIUM STATISTICAL
PREDICTIONS WITH A JUDICIOUS PRIOR 438 14.4 STATISTICALLY RELEVANT
CONSERVED QUANTITIES FOR THE TRUNCATED BURGERS-HOPF EQUATION 440
REFERENCES 442 A.I SPECTRAL TRUNCATIONS OF QUASI-GEOSTROPHIC FLOW WITH
ADDITIONAL CONSERVED QUANTITIES 442 15 A MATHEMATICAL FRAMEWORK FOR
QUANTIFYING PREDICTABILITY UTILIZING RELATIVE ENTROPY 452 15.1 ENSEMBLE
PREDICTION AND RELATIVE ENTROPY AS A MEASURE OF PREDICTABILITY 452 15.2
QUANTIFYING PREDICTABILITY FOR A GAUSSIAN PRIOR DISTRIBUTION 459 15.3
NON-GAUSSIAN ENSEMBLE PREDICTIONS IN THE LORENZ 96 MODEL 466 15.4
INFORMATION CONTENT BEYOND THE CLIMATOLOGY IN ENSEMBLE PREDICTIONS FOR
THE TRUNCATED BURGERS-HOPF MODEL 472 CONTENTS IX 15.5 FURTHER
DEVELOPMENTS IN ENSEMBLE PREDICTIONS AND INFORMATION THEORY 478
REFERENCES 480 16 BAROTROPIC QUASI-GEOSTROPHIC EQUATIONS ON THE SPHERE
482 16.1 INTRODUCTION 482 16.2 EXACT SOLUTIONS, CONSERVED QUANTITIES,
AND NON-LINEAR STABILITY 490 16.3 THE RESPONSE TO LARGE-SCALE FORCING
510 16.4 SELECTIVE DECAY ON THE SPHERE 516 16.5 ENERGY ENSTROPHY
STATISTICAL THEORY ON THE UNIT SPHERE 524 16.6 STATISTICAL THEORIES WITH
A FEW CONSTRAINTS AND STATISTICAL THEORIES WITH MANY CONSTRAINTS ON THE
UNIT SPHERE 536 REFERENCES 542 APPENDIX 1 542 APPENDIX 2 546 INDEX 550 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Majda, Andrew 1949- Wang, Xiaoming |
author_GND | (DE-588)135598788 |
author_facet | Majda, Andrew 1949- Wang, Xiaoming |
author_role | aut aut |
author_sort | Majda, Andrew 1949- |
author_variant | a m am x w xw |
building | Verbundindex |
bvnumber | BV021266879 |
callnumber-first | Q - Science |
callnumber-label | QC809 |
callnumber-raw | QC809.F5 |
callnumber-search | QC809.F5 |
callnumber-sort | QC 3809 F5 |
callnumber-subject | QC - Physics |
classification_rvk | RB 10103 RB 10196 SK 950 |
ctrlnum | (OCoLC)62532870 (DE-599)BVBBV021266879 |
dewey-full | 551.01532051 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.01532051 |
dewey-search | 551.01532051 |
dewey-sort | 3551.01532051 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Mathematik Geographie |
discipline_str_mv | Geologie / Paläontologie Mathematik Geographie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01744nam a2200469 c 4500</leader><controlfield tag="001">BV021266879</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230329 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051215s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521834414</subfield><subfield code="9">0-521-83441-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521834414</subfield><subfield code="9">978-0-521-83441-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62532870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021266879</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC809.F5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.01532051</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10103</subfield><subfield code="0">(DE-625)142220:12616</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10196</subfield><subfield code="0">(DE-625)142220:12653</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majda, Andrew</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)135598788</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-linear dynamics and statistical theories for basic geophysical flows</subfield><subfield code="c">Andrew J. Majda ; Xiaoming Wang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 551 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geophysik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nichtlineares mathematisches Modell</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield><subfield code="x">Fluid models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical mechanics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoming</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014588048&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014588048</subfield></datafield></record></collection> |
id | DE-604.BV021266879 |
illustrated | Illustrated |
index_date | 2024-07-02T13:43:26Z |
indexdate | 2024-07-09T20:34:15Z |
institution | BVB |
isbn | 0521834414 9780521834414 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014588048 |
oclc_num | 62532870 |
open_access_boolean | |
owner | DE-824 DE-703 DE-188 |
owner_facet | DE-824 DE-703 DE-188 |
physical | XII, 551 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Majda, Andrew 1949- Verfasser (DE-588)135598788 aut Non-linear dynamics and statistical theories for basic geophysical flows Andrew J. Majda ; Xiaoming Wang 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2006 XII, 551 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Geophysik swd Nichtlineares mathematisches Modell swd Strömungsmechanik swd Mathematisches Modell Fluid dynamics Fluid mechanics Geophysics Fluid models Geophysics Mathematical models Statistical mechanics Wang, Xiaoming Verfasser aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014588048&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Majda, Andrew 1949- Wang, Xiaoming Non-linear dynamics and statistical theories for basic geophysical flows Geophysik swd Nichtlineares mathematisches Modell swd Strömungsmechanik swd Mathematisches Modell Fluid dynamics Fluid mechanics Geophysics Fluid models Geophysics Mathematical models Statistical mechanics |
title | Non-linear dynamics and statistical theories for basic geophysical flows |
title_auth | Non-linear dynamics and statistical theories for basic geophysical flows |
title_exact_search | Non-linear dynamics and statistical theories for basic geophysical flows |
title_exact_search_txtP | Non-linear dynamics and statistical theories for basic geophysical flows |
title_full | Non-linear dynamics and statistical theories for basic geophysical flows Andrew J. Majda ; Xiaoming Wang |
title_fullStr | Non-linear dynamics and statistical theories for basic geophysical flows Andrew J. Majda ; Xiaoming Wang |
title_full_unstemmed | Non-linear dynamics and statistical theories for basic geophysical flows Andrew J. Majda ; Xiaoming Wang |
title_short | Non-linear dynamics and statistical theories for basic geophysical flows |
title_sort | non linear dynamics and statistical theories for basic geophysical flows |
topic | Geophysik swd Nichtlineares mathematisches Modell swd Strömungsmechanik swd Mathematisches Modell Fluid dynamics Fluid mechanics Geophysics Fluid models Geophysics Mathematical models Statistical mechanics |
topic_facet | Geophysik Nichtlineares mathematisches Modell Strömungsmechanik Mathematisches Modell Fluid dynamics Fluid mechanics Geophysics Fluid models Geophysics Mathematical models Statistical mechanics |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014588048&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT majdaandrew nonlineardynamicsandstatisticaltheoriesforbasicgeophysicalflows AT wangxiaoming nonlineardynamicsandstatisticaltheoriesforbasicgeophysicalflows |