Fundamentals of convex analysis:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Ausgabe: | Corr. 2. print. |
Schriftenreihe: | Grundlehren Text editions
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 259 S. graph. Darst. |
ISBN: | 3540422056 9783540422051 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021259515 | ||
003 | DE-604 | ||
005 | 20110817 | ||
007 | t | ||
008 | 051209s2004 gw d||| |||| 00||| eng d | ||
020 | |a 3540422056 |9 3-540-42205-6 | ||
020 | |a 9783540422051 |9 978-3-540-42205-1 | ||
035 | |a (OCoLC)249796506 | ||
035 | |a (DE-599)BVBBV021259515 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-19 |a DE-91G |a DE-29T |a DE-11 |a DE-573 |a DE-83 | ||
050 | 0 | |a QA331.5 | |
082 | 0 | |a 515.8 | |
084 | |a SK 420 |0 (DE-625)143238: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a 52A41 |2 msc | ||
084 | |a 26B25 |2 msc | ||
084 | |a MAT 520f |2 stub | ||
100 | 1 | |a Hiriart-Urruty, Jean-Baptiste |d 1949- |e Verfasser |0 (DE-588)128857102 |4 aut | |
245 | 1 | 0 | |a Fundamentals of convex analysis |c Jean-Baptiste Hiriart-Urruty ; Claude Lemaréchal |
250 | |a Corr. 2. print. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a X, 259 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Grundlehren Text editions | |
650 | 4 | |a Konvexe Analysis | |
650 | 4 | |a Minimierung | |
650 | 0 | 7 | |a Minimierung |0 (DE-588)4251074-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Analysis |0 (DE-588)4138566-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexe Analysis |0 (DE-588)4138566-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Minimierung |0 (DE-588)4251074-0 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Lemaréchal, Claude |d 1944- |e Verfasser |0 (DE-588)128857137 |4 aut | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014580774&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014580774 |
Datensatz im Suchindex
_version_ | 1804135033326272512 |
---|---|
adam_text | CONTENTS PREFACE
******************************************************** V 0.
INTRODUCTION: NOTATION, ELEMENTARY RESULTS ********************* 1 1
SOME FACTS ABOUT LOWER AND UPPER BOUNDS . . . . . . . . . . . . . . . .
. . . 1 2 THE SET OF EXTENDED REAL NUMBERS . . . . . . . . . . . . . . .
. . . . . . . . . . . . 5 3 LINEAR AND BILINEAR ALGEBRA . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 DIFFERENTIATION
IN A EUCLIDEAN SPACE . . . . . . . . . . . . . . . . . . . . . . . . . .
. 9 5 SET-VALUED ANALYSIS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 12 6 RECALLS ON CONVEX FUNCTIONS OF
THE REAL VARIABLE . . . . . . . . . . . . . . . 14 EXERCISES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 16 A. CONVEX SETS
************************************************ 19 1 GENERALITIES . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 19 1.1 DEFINITION AND FIRST EXAMPLES . . . . . . . . . .
. . . . . . . . . . . . . . . . 19 1.2 CONVEXITY-PRESERVING OPERATIONS
ON SETS . . . . . . . . . . . . . . . . 22 1.3 CONVEX COMBINATIONS AND
CONVEX HULLS. . . . . . . . . . . . . . . . . 26 1.4 CLOSED CONVEX SETS
AND HULLS . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 CONVEX
SETS ATTACHED TO A CONVEX SET . . . . . . . . . . . . . . . . . . . . .
. . . . 33 2.1 THE RELATIVE INTERIOR . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 33 2.2 THE ASYMPTOTIC CONE . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 EXTREME POINTS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 41 2.4 EXPOSED FACES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 43 3 PROJECTION ONTO CLOSED CONVEX SETS . . .
. . . . . . . . . . . . . . . . . . . . . . . . 46 3.1 THE PROJECTION
OPERATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 PROJECTION ONTO A CLOSED CONVEX CONE . . . . . . . . . . . . . . . .
. . 49 4 SEPARATION AND APPLICATIONS. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 51 4.1 SEPARATION BETWEEN CONVEX SETS .
. . . . . . . . . . . . . . . . . . . . . . 51 4.2 FIRST CONSEQUENCES OF
THE SEPARATION PROPERTIES . . . . . . . . . . 54 * EXISTENCE OF
SUPPORTING HYPERPLANES . . . . . . . . . . . . . . . . . . 54 * OUTER
DESCRIPTION OF CLOSED CONVEX SETS . . . . . . . . . . . . . . 55 * PROOF
OF MINKOWSKI*S THEOREM . . . . . . . . . . . . . . . . . . . . . . . 57
* BIPOLAR OF A CONVEX CONE . . . . . . . . . . . . . . . . . . . . . . .
. . . . 57 4.3 THE LEMMA OF MINKOWSKI-FARKAS . . . . . . . . . . . . . .
. . . . . . . . 58 5 CONICAL APPROXIMATIONS OF CONVEX SETS . . . . . . .
. . . . . . . . . . . . . . . . 62 VIII CONTENTS 5.1 CONVENIENT
DEFINITIONS OF TANGENT CONES . . . . . . . . . . . . . . . . 62 5.2 THE
TANGENT AND NORMAL CONES TO A CONVEX SET . . . . . . . . . . 65 5.3 SOME
PROPERTIES OF TANGENT AND NORMAL CONES . . . . . . . . . . . 67
EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 70 B. CONVEX FUNCTIONS
******************************************* 73 1 BASIC DEFINITIONS AND
EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.1 THE DEFINITIONS OF A CONVEX FUNCTION . . . . . . . . . . . . . . . .
. . . 73 1.2 SPECIAL CONVEX FUNCTIONS: AFFINITY AND CLOSEDNESS. . . . .
. . . 76 * LINEAR AND AFFINE FUNCTIONS . . . . . . . . . . . . . . . . .
. . . . . . . . . 77 * CLOSED CONVEX FUNCTIONS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 78 * OUTER CONSTRUCTION OF CLOSED CONVEX
FUNCTIONS . . . . . . . . . 80 1.3 FIRST EXAMPLES . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2 FUNCTIONAL
OPERATIONS PRESERVING CONVEXITY . . . . . . . . . . . . . . . . . . . .
87 2.1 OPERATIONS PRESERVING CLOSEDNESS . . . . . . . . . . . . . . . .
. . . . . . 87 2.2 DILATIONS AND PERSPECTIVES OF A FUNCTION . . . . . .
. . . . . . . . . . . 89 2.3 INFIMAL CONVOLUTION . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 92 2.4 IMAGE OF A FUNCTION
UNDER A LINEAR MAPPING . . . . . . . . . . . . 96 2.5 CONVEX HULL AND
CLOSED CONVEX HULL OF A FUNCTION . . . . . . . 98 3 LOCAL AND GLOBAL
BEHAVIOUR OF A CONVEX FUNCTION . . . . . . . . . . . . . . . 102 3.1
CONTINUITY PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 102 3.2 BEHAVIOUR AT INFINITY . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 106 4 FIRST- AND SECOND-ORDER
DIFFERENTIATION . . . . . . . . . . . . . . . . . . . . . . . . 110 4.1
DIFFERENTIABLE CONVEX FUNCTIONS . . . . . . . . . . . . . . . . . . . .
. . . 110 4.2 NONDIFFERENTIABLE CONVEX FUNCTIONS . . . . . . . . . . . .
. . . . . . . . 113 4.3 SECOND-ORDER DIFFERENTIATION . . . . . . . . . .
. . . . . . . . . . . . . . . . 114 EXERCISES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 117 C. SUBLINEARITY AND SUPPORT FUNCTIONS
**************************** 121 1 SUBLINEAR FUNCTIONS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 1.1
DEFINITIONS AND FIRST PROPERTIES. . . . . . . . . . . . . . . . . . . .
. . . . . 123 1.2 SOME EXAMPLES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 127 1.3 THE CONVEX CONE OF ALL CLOSED
SUBLINEAR FUNCTIONS . . . . . . 131 2 THE SUPPORT FUNCTION OF A NONEMPTY
SET . . . . . . . . . . . . . . . . . . . . . . 134 2.1 DEFINITIONS,
INTERPRETATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
134 2.2 BASIC PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 136 2.3 EXAMPLES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 3
CORRESPONDENCE BETWEEN CONVEX SETS AND SUBLINEAR FUNCTIONS . . . . 143
3.1 THE FUNDAMENTAL CORRESPONDENCE . . . . . . . . . . . . . . . . . . .
. . . 143 3.2 EXAMPLE: NORMS AND THEIR DUALS, POLARITY . . . . . . . . .
. . . . . . 146 3.3 CALCULUS WITH SUPPORT FUNCTIONS . . . . . . . . . .
. . . . . . . . . . . . . 151 3.4 EXAMPLE: SUPPORT FUNCTIONS OF CLOSED
CONVEX POLYHEDRA . . 158 EXERCISES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
161 CONTENTS IX D. SUBDIFFERENTIALS OF FINITE CONVEX FUNCTIONS
********************* 163 1 THE SUBDIFFERENTIAL: DEFINITIONS AND
INTERPRETATIONS . . . . . . . . . . . . . . 164 1.1 FIRST DEFINITION:
DIRECTIONAL DERIVATIVES . . . . . . . . . . . . . . . . . 164 1.2 SECOND
DEFINITION: MINORIZATION BY AFFINE FUNCTIONS . . . . . . 167 1.3
GEOMETRIC CONSTRUCTIONS AND INTERPRETATIONS . . . . . . . . . . . . .
169 2 LOCAL PROPERTIES OF THE SUBDIFFERENTIAL . . . . . . . . . . . . .
. . . . . . . . . . . . 173 2.1 FIRST-ORDER DEVELOPMENTS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 173 2.2 MINIMALITY CONDITIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 2.3
MEAN-VALUE THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 177 3 FIRST EXAMPLES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 179 4 CALCULUS RULES
WITH SUBDIFFERENTIALS . . . . . . . . . . . . . . . . . . . . . . . . .
. 182 4.1 POSITIVE COMBINATIONS OF FUNCTIONS . . . . . . . . . . . . . .
. . . . . . . 183 4.2 PRE-COMPOSITION WITH AN AFFINE MAPPING . . . . . .
. . . . . . . . . . 184 4.3 POST-COMPOSITION WITH AN INCREASING CONVEX
FUNCTION OF SEVERAL VARIABLES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 185 4.4 SUPREMUM OF CONVEX FUNCTIONS . . . . .
. . . . . . . . . . . . . . . . . . . 187 4.5 IMAGE OF A FUNCTION UNDER
A LINEAR MAPPING . . . . . . . . . . . . 191 5 FURTHER EXAMPLES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 193 5.1 LARGEST EIGENVALUE OF A SYMMETRIC MATRIX . . . . . . . . . .
. . . . . 193 5.2 NESTED OPTIMIZATION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 195 5.3 BEST APPROXIMATION OF A
CONTINUOUS FUNCTION ON A COM- PACT INTERVAL . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 197 6 THE
SUBDIFFERENTIAL AS A MULTIFUNCTION . . . . . . . . . . . . . . . . . . .
. . . . . . 198 6.1 MONOTONICITY PROPERTIES OF THE SUBDIFFERENTIAL . . .
. . . . . . . . . 198 6.2 CONTINUITY PROPERTIES OF THE SUBDIFFERENTIAL .
. . . . . . . . . . . . . 200 6.3 SUBDIFFERENTIALS AND LIMITS OF
SUBGRADIENTS . . . . . . . . . . . . . . 203 EXERCISES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 204 E. CONJUGACY IN CONVEX ANALYSIS
********************************* 209 1 THE CONVEX CONJUGATE OF A
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 211 1.1
DEFINITION AND FIRST EXAMPLES . . . . . . . . . . . . . . . . . . . . .
. . . . . 211 1.2 INTERPRETATIONS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 214 1.3 FIRST PROPERTIES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
* ELEMENTARY CALCULUS RULES . . . . . . . . . . . . . . . . . . . . . .
. . . . 216 * THE BICONJUGATE OF A FUNCTION . . . . . . . . . . . . . .
. . . . . . . . . . 218 * CONJUGACY AND COERCIVITY . . . . . . . . . . .
. . . . . . . . . . . . . . . . 219 1.4 SUBDIFFERENTIALS OF
EXTENDED-VALUED FUNCTIONS . . . . . . . . . . . 220 2 CALCULUS RULES ON
THE CONJUGACY OPERATION . . . . . . . . . . . . . . . . . . . . 222 2.1
IMAGE OF A FUNCTION UNDER A LINEAR MAPPING . . . . . . . . . . . . 222
2.2 PRE-COMPOSITION WITH AN AFFINE MAPPING . . . . . . . . . . . . . . .
. 224 2.3 SUM OF TWO FUNCTIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 227 2.4 INFIMA AND SUPREMA . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 229 2.5 POST-COMPOSITION
WITH AN INCREASING CONVEX FUNCTION . . . . . 231 3 VARIOUS EXAMPLES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 233 3.1 THE CRAMER TRANSFORMATION . . . . . . . . . . . . . . .
. . . . . . . . . . . . 234 X CONTENTS 3.2 THE CONJUGATE OF CONVEX
PARTIALLY QUADRATIC FUNCTIONS . . . . 234 3.3 POLYHEDRAL FUNCTIONS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4
DIFFERENTIABILITY OF A CONJUGATE FUNCTION . . . . . . . . . . . . . . .
. . . . . . . . 237 4.1 FIRST-ORDER DIFFERENTIABILITY . . . . . . . . .
. . . . . . . . . . . . . . . . . . 238 4.2 LIPSCHITZ CONTINUITY OF THE
GRADIENT MAPPING . . . . . . . . . . . . 240 EXERCISES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 241 BIBLIOGRAPHICAL COMMENTS
**************************************** 245 THE FOUNDING FATHERS OF THE
DISCIPLINE ***************************** 249 REFERENCES
***************************************************** 249 INDEX
********************************************************** 256
|
adam_txt |
CONTENTS PREFACE
******************************************************** V 0.
INTRODUCTION: NOTATION, ELEMENTARY RESULTS ********************* 1 1
SOME FACTS ABOUT LOWER AND UPPER BOUNDS . . . . . . . . . . . . . . . .
. . . 1 2 THE SET OF EXTENDED REAL NUMBERS . . . . . . . . . . . . . . .
. . . . . . . . . . . . 5 3 LINEAR AND BILINEAR ALGEBRA . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 DIFFERENTIATION
IN A EUCLIDEAN SPACE . . . . . . . . . . . . . . . . . . . . . . . . . .
. 9 5 SET-VALUED ANALYSIS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 12 6 RECALLS ON CONVEX FUNCTIONS OF
THE REAL VARIABLE . . . . . . . . . . . . . . . 14 EXERCISES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 16 A. CONVEX SETS
************************************************ 19 1 GENERALITIES . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 19 1.1 DEFINITION AND FIRST EXAMPLES . . . . . . . . . .
. . . . . . . . . . . . . . . . 19 1.2 CONVEXITY-PRESERVING OPERATIONS
ON SETS . . . . . . . . . . . . . . . . 22 1.3 CONVEX COMBINATIONS AND
CONVEX HULLS. . . . . . . . . . . . . . . . . 26 1.4 CLOSED CONVEX SETS
AND HULLS . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 CONVEX
SETS ATTACHED TO A CONVEX SET . . . . . . . . . . . . . . . . . . . . .
. . . . 33 2.1 THE RELATIVE INTERIOR . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 33 2.2 THE ASYMPTOTIC CONE . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 EXTREME POINTS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 41 2.4 EXPOSED FACES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 43 3 PROJECTION ONTO CLOSED CONVEX SETS . . .
. . . . . . . . . . . . . . . . . . . . . . . . 46 3.1 THE PROJECTION
OPERATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 PROJECTION ONTO A CLOSED CONVEX CONE . . . . . . . . . . . . . . . .
. . 49 4 SEPARATION AND APPLICATIONS. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 51 4.1 SEPARATION BETWEEN CONVEX SETS .
. . . . . . . . . . . . . . . . . . . . . . 51 4.2 FIRST CONSEQUENCES OF
THE SEPARATION PROPERTIES . . . . . . . . . . 54 * EXISTENCE OF
SUPPORTING HYPERPLANES . . . . . . . . . . . . . . . . . . 54 * OUTER
DESCRIPTION OF CLOSED CONVEX SETS . . . . . . . . . . . . . . 55 * PROOF
OF MINKOWSKI*S THEOREM . . . . . . . . . . . . . . . . . . . . . . . 57
* BIPOLAR OF A CONVEX CONE . . . . . . . . . . . . . . . . . . . . . . .
. . . . 57 4.3 THE LEMMA OF MINKOWSKI-FARKAS . . . . . . . . . . . . . .
. . . . . . . . 58 5 CONICAL APPROXIMATIONS OF CONVEX SETS . . . . . . .
. . . . . . . . . . . . . . . . 62 VIII CONTENTS 5.1 CONVENIENT
DEFINITIONS OF TANGENT CONES . . . . . . . . . . . . . . . . 62 5.2 THE
TANGENT AND NORMAL CONES TO A CONVEX SET . . . . . . . . . . 65 5.3 SOME
PROPERTIES OF TANGENT AND NORMAL CONES . . . . . . . . . . . 67
EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 70 B. CONVEX FUNCTIONS
******************************************* 73 1 BASIC DEFINITIONS AND
EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.1 THE DEFINITIONS OF A CONVEX FUNCTION . . . . . . . . . . . . . . . .
. . . 73 1.2 SPECIAL CONVEX FUNCTIONS: AFFINITY AND CLOSEDNESS. . . . .
. . . 76 * LINEAR AND AFFINE FUNCTIONS . . . . . . . . . . . . . . . . .
. . . . . . . . . 77 * CLOSED CONVEX FUNCTIONS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 78 * OUTER CONSTRUCTION OF CLOSED CONVEX
FUNCTIONS . . . . . . . . . 80 1.3 FIRST EXAMPLES . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2 FUNCTIONAL
OPERATIONS PRESERVING CONVEXITY . . . . . . . . . . . . . . . . . . . .
87 2.1 OPERATIONS PRESERVING CLOSEDNESS . . . . . . . . . . . . . . . .
. . . . . . 87 2.2 DILATIONS AND PERSPECTIVES OF A FUNCTION . . . . . .
. . . . . . . . . . . 89 2.3 INFIMAL CONVOLUTION . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 92 2.4 IMAGE OF A FUNCTION
UNDER A LINEAR MAPPING . . . . . . . . . . . . 96 2.5 CONVEX HULL AND
CLOSED CONVEX HULL OF A FUNCTION . . . . . . . 98 3 LOCAL AND GLOBAL
BEHAVIOUR OF A CONVEX FUNCTION . . . . . . . . . . . . . . . 102 3.1
CONTINUITY PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 102 3.2 BEHAVIOUR AT INFINITY . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 106 4 FIRST- AND SECOND-ORDER
DIFFERENTIATION . . . . . . . . . . . . . . . . . . . . . . . . 110 4.1
DIFFERENTIABLE CONVEX FUNCTIONS . . . . . . . . . . . . . . . . . . . .
. . . 110 4.2 NONDIFFERENTIABLE CONVEX FUNCTIONS . . . . . . . . . . . .
. . . . . . . . 113 4.3 SECOND-ORDER DIFFERENTIATION . . . . . . . . . .
. . . . . . . . . . . . . . . . 114 EXERCISES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 117 C. SUBLINEARITY AND SUPPORT FUNCTIONS
**************************** 121 1 SUBLINEAR FUNCTIONS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 1.1
DEFINITIONS AND FIRST PROPERTIES. . . . . . . . . . . . . . . . . . . .
. . . . . 123 1.2 SOME EXAMPLES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 127 1.3 THE CONVEX CONE OF ALL CLOSED
SUBLINEAR FUNCTIONS . . . . . . 131 2 THE SUPPORT FUNCTION OF A NONEMPTY
SET . . . . . . . . . . . . . . . . . . . . . . 134 2.1 DEFINITIONS,
INTERPRETATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
134 2.2 BASIC PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 136 2.3 EXAMPLES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 3
CORRESPONDENCE BETWEEN CONVEX SETS AND SUBLINEAR FUNCTIONS . . . . 143
3.1 THE FUNDAMENTAL CORRESPONDENCE . . . . . . . . . . . . . . . . . . .
. . . 143 3.2 EXAMPLE: NORMS AND THEIR DUALS, POLARITY . . . . . . . . .
. . . . . . 146 3.3 CALCULUS WITH SUPPORT FUNCTIONS . . . . . . . . . .
. . . . . . . . . . . . . 151 3.4 EXAMPLE: SUPPORT FUNCTIONS OF CLOSED
CONVEX POLYHEDRA . . 158 EXERCISES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
161 CONTENTS IX D. SUBDIFFERENTIALS OF FINITE CONVEX FUNCTIONS
********************* 163 1 THE SUBDIFFERENTIAL: DEFINITIONS AND
INTERPRETATIONS . . . . . . . . . . . . . . 164 1.1 FIRST DEFINITION:
DIRECTIONAL DERIVATIVES . . . . . . . . . . . . . . . . . 164 1.2 SECOND
DEFINITION: MINORIZATION BY AFFINE FUNCTIONS . . . . . . 167 1.3
GEOMETRIC CONSTRUCTIONS AND INTERPRETATIONS . . . . . . . . . . . . .
169 2 LOCAL PROPERTIES OF THE SUBDIFFERENTIAL . . . . . . . . . . . . .
. . . . . . . . . . . . 173 2.1 FIRST-ORDER DEVELOPMENTS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 173 2.2 MINIMALITY CONDITIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 2.3
MEAN-VALUE THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 177 3 FIRST EXAMPLES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 179 4 CALCULUS RULES
WITH SUBDIFFERENTIALS . . . . . . . . . . . . . . . . . . . . . . . . .
. 182 4.1 POSITIVE COMBINATIONS OF FUNCTIONS . . . . . . . . . . . . . .
. . . . . . . 183 4.2 PRE-COMPOSITION WITH AN AFFINE MAPPING . . . . . .
. . . . . . . . . . 184 4.3 POST-COMPOSITION WITH AN INCREASING CONVEX
FUNCTION OF SEVERAL VARIABLES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 185 4.4 SUPREMUM OF CONVEX FUNCTIONS . . . . .
. . . . . . . . . . . . . . . . . . . 187 4.5 IMAGE OF A FUNCTION UNDER
A LINEAR MAPPING . . . . . . . . . . . . 191 5 FURTHER EXAMPLES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 193 5.1 LARGEST EIGENVALUE OF A SYMMETRIC MATRIX . . . . . . . . . .
. . . . . 193 5.2 NESTED OPTIMIZATION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 195 5.3 BEST APPROXIMATION OF A
CONTINUOUS FUNCTION ON A COM- PACT INTERVAL . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 197 6 THE
SUBDIFFERENTIAL AS A MULTIFUNCTION . . . . . . . . . . . . . . . . . . .
. . . . . . 198 6.1 MONOTONICITY PROPERTIES OF THE SUBDIFFERENTIAL . . .
. . . . . . . . . 198 6.2 CONTINUITY PROPERTIES OF THE SUBDIFFERENTIAL .
. . . . . . . . . . . . . 200 6.3 SUBDIFFERENTIALS AND LIMITS OF
SUBGRADIENTS . . . . . . . . . . . . . . 203 EXERCISES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 204 E. CONJUGACY IN CONVEX ANALYSIS
********************************* 209 1 THE CONVEX CONJUGATE OF A
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 211 1.1
DEFINITION AND FIRST EXAMPLES . . . . . . . . . . . . . . . . . . . . .
. . . . . 211 1.2 INTERPRETATIONS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 214 1.3 FIRST PROPERTIES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
* ELEMENTARY CALCULUS RULES . . . . . . . . . . . . . . . . . . . . . .
. . . . 216 * THE BICONJUGATE OF A FUNCTION . . . . . . . . . . . . . .
. . . . . . . . . . 218 * CONJUGACY AND COERCIVITY . . . . . . . . . . .
. . . . . . . . . . . . . . . . 219 1.4 SUBDIFFERENTIALS OF
EXTENDED-VALUED FUNCTIONS . . . . . . . . . . . 220 2 CALCULUS RULES ON
THE CONJUGACY OPERATION . . . . . . . . . . . . . . . . . . . . 222 2.1
IMAGE OF A FUNCTION UNDER A LINEAR MAPPING . . . . . . . . . . . . 222
2.2 PRE-COMPOSITION WITH AN AFFINE MAPPING . . . . . . . . . . . . . . .
. 224 2.3 SUM OF TWO FUNCTIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 227 2.4 INFIMA AND SUPREMA . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 229 2.5 POST-COMPOSITION
WITH AN INCREASING CONVEX FUNCTION . . . . . 231 3 VARIOUS EXAMPLES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 233 3.1 THE CRAMER TRANSFORMATION . . . . . . . . . . . . . . .
. . . . . . . . . . . . 234 X CONTENTS 3.2 THE CONJUGATE OF CONVEX
PARTIALLY QUADRATIC FUNCTIONS . . . . 234 3.3 POLYHEDRAL FUNCTIONS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4
DIFFERENTIABILITY OF A CONJUGATE FUNCTION . . . . . . . . . . . . . . .
. . . . . . . . 237 4.1 FIRST-ORDER DIFFERENTIABILITY . . . . . . . . .
. . . . . . . . . . . . . . . . . . 238 4.2 LIPSCHITZ CONTINUITY OF THE
GRADIENT MAPPING . . . . . . . . . . . . 240 EXERCISES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 241 BIBLIOGRAPHICAL COMMENTS
**************************************** 245 THE FOUNDING FATHERS OF THE
DISCIPLINE ***************************** 249 REFERENCES
***************************************************** 249 INDEX
********************************************************** 256 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hiriart-Urruty, Jean-Baptiste 1949- Lemaréchal, Claude 1944- |
author_GND | (DE-588)128857102 (DE-588)128857137 |
author_facet | Hiriart-Urruty, Jean-Baptiste 1949- Lemaréchal, Claude 1944- |
author_role | aut aut |
author_sort | Hiriart-Urruty, Jean-Baptiste 1949- |
author_variant | j b h u jbhu c l cl |
building | Verbundindex |
bvnumber | BV021259515 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.5 |
callnumber-search | QA331.5 |
callnumber-sort | QA 3331.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 420 SK 870 |
classification_tum | MAT 520f |
ctrlnum | (OCoLC)249796506 (DE-599)BVBBV021259515 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Corr. 2. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01844nam a2200505 c 4500</leader><controlfield tag="001">BV021259515</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110817 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051209s2004 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540422056</subfield><subfield code="9">3-540-42205-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540422051</subfield><subfield code="9">978-3-540-42205-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249796506</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021259515</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 420</subfield><subfield code="0">(DE-625)143238:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52A41</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">26B25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 520f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hiriart-Urruty, Jean-Baptiste</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128857102</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of convex analysis</subfield><subfield code="c">Jean-Baptiste Hiriart-Urruty ; Claude Lemaréchal</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corr. 2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 259 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren Text editions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Konvexe Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimierung</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimierung</subfield><subfield code="0">(DE-588)4251074-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Minimierung</subfield><subfield code="0">(DE-588)4251074-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemaréchal, Claude</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128857137</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014580774&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014580774</subfield></datafield></record></collection> |
id | DE-604.BV021259515 |
illustrated | Illustrated |
index_date | 2024-07-02T13:41:31Z |
indexdate | 2024-07-09T20:34:04Z |
institution | BVB |
isbn | 3540422056 9783540422051 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014580774 |
oclc_num | 249796506 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-29T DE-11 DE-573 DE-83 |
owner_facet | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-29T DE-11 DE-573 DE-83 |
physical | X, 259 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series2 | Grundlehren Text editions |
spelling | Hiriart-Urruty, Jean-Baptiste 1949- Verfasser (DE-588)128857102 aut Fundamentals of convex analysis Jean-Baptiste Hiriart-Urruty ; Claude Lemaréchal Corr. 2. print. Berlin [u.a.] Springer 2004 X, 259 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Grundlehren Text editions Konvexe Analysis Minimierung Minimierung (DE-588)4251074-0 gnd rswk-swf Konvexe Analysis (DE-588)4138566-4 gnd rswk-swf Konvexe Analysis (DE-588)4138566-4 s DE-604 Minimierung (DE-588)4251074-0 s Lemaréchal, Claude 1944- Verfasser (DE-588)128857137 aut SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014580774&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hiriart-Urruty, Jean-Baptiste 1949- Lemaréchal, Claude 1944- Fundamentals of convex analysis Konvexe Analysis Minimierung Minimierung (DE-588)4251074-0 gnd Konvexe Analysis (DE-588)4138566-4 gnd |
subject_GND | (DE-588)4251074-0 (DE-588)4138566-4 |
title | Fundamentals of convex analysis |
title_auth | Fundamentals of convex analysis |
title_exact_search | Fundamentals of convex analysis |
title_exact_search_txtP | Fundamentals of convex analysis |
title_full | Fundamentals of convex analysis Jean-Baptiste Hiriart-Urruty ; Claude Lemaréchal |
title_fullStr | Fundamentals of convex analysis Jean-Baptiste Hiriart-Urruty ; Claude Lemaréchal |
title_full_unstemmed | Fundamentals of convex analysis Jean-Baptiste Hiriart-Urruty ; Claude Lemaréchal |
title_short | Fundamentals of convex analysis |
title_sort | fundamentals of convex analysis |
topic | Konvexe Analysis Minimierung Minimierung (DE-588)4251074-0 gnd Konvexe Analysis (DE-588)4138566-4 gnd |
topic_facet | Konvexe Analysis Minimierung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014580774&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hiriarturrutyjeanbaptiste fundamentalsofconvexanalysis AT lemarechalclaude fundamentalsofconvexanalysis |