Commutative algebra with a view toward algebraic geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
New York [u.a.]
Springer
2004
|
Ausgabe: | [7. print] |
Schriftenreihe: | Graduate texts in mathematics
150 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 757 - 774 |
Beschreibung: | XVI, 797 S. graph. Darst. |
ISBN: | 3540942696 0387942696 0387942688 9780387942698 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021253439 | ||
003 | DE-604 | ||
005 | 20100719 | ||
007 | t | ||
008 | 051206s2004 gw d||| |||| 00||| ger d | ||
020 | |a 3540942696 |9 3-540-94269-6 | ||
020 | |a 0387942696 |9 0-387-94269-6 | ||
020 | |a 0387942688 |9 0-387-94268-8 | ||
020 | |a 9780387942698 |9 978-0-387-94269-8 | ||
035 | |a (OCoLC)57717588 | ||
035 | |a (DE-599)BVBBV021253439 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-19 |a DE-91G |a DE-188 |a DE-739 |a DE-83 |a DE-29T |a DE-20 | ||
050 | 0 | |a QA251.3 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a 14-01 |2 msc | ||
084 | |a MAT 140f |2 stub | ||
084 | |a 13-01 |2 msc | ||
084 | |a MAT 130f |2 stub | ||
100 | 1 | |a Eisenbud, David |d 1947- |e Verfasser |0 (DE-588)139999671 |4 aut | |
245 | 1 | 0 | |a Commutative algebra with a view toward algebraic geometry |c David Eisenbud |
250 | |a [7. print] | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2004 | |
300 | |a XVI, 797 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 150 | |
500 | |a Literaturverz. S. 757 - 774 | ||
650 | 7 | |a Anéis e álgebras comutativos |2 larpcal | |
650 | 7 | |a Geometria algébrica |2 larpcal | |
650 | 4 | |a Commutative algebra | |
650 | 4 | |a Geometry, Algebraic | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | 1 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 150 |w (DE-604)BV000000067 |9 150 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014574789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014574789 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135023927885824 |
---|---|
adam_text | Contents
Introduction
1
Advice
for the Beginner
....................... 2
Information for the Expert
..................... 2
Prerequisites
............................. 6
Sources
................................ 6
Courses
................................ 7
A First Course
......................... 7
A Second Course
....................... 8
Acknowledgements
.......................... 9
0
Elementary Definitions
11
0.1
Rings and Ideals
........................ 11
0.2
Unique Factorization
..................... 13
0.3
Modules
............................ 15
I Basic Constructions
19
1
Roots of Commutative Algebra
21
1.1
Number Theory
........................ 21
1.2
Algebraic Curves and Function Theory
........... 23
1.3
Invariant Theory
....................... 24
1.4
The Basis Theorem
...................... 27
1.4.1
Finite Generation of Invariants
........... 29
viii Contents
1.5
Graded Rings
.........................
i0
1.6
Algebra and Geometry: The
Nullstellensatz ........ 31
1.7
Geometric Invariant Theory
................. 37
1.8
Projective
Varieties
...................... 39
1.9
Hubert Functions and Polynomials
.............
42
1.10
Free Resolutions and the Syzygy Theorem
.........
44
1.11
Exercises
............................
46
Noetherian Rings and Modules
.............
4*>
An Analysis of Hubert s Finiteness Argument
.... 47
Some Rings of Invariants
................
48
Algebra and Geometry
.................
4^
Graded Rings and
Projective
Geometry
........ 52
Hubert Functions
.................... 53
Free Resolutions
..................... 54
Spec, max-Spec, and the Zariski Topology
...... 54
2
Localization
57
2.1
Fractions
............................ 59
2.2
Hom
and Tensor
........................ 62
2.3
The Construction of Primes
.................
70
2.4
Rings and Modules of Finite Length
............. 71
2.5
Products of Domains
..................... 78
2.6
Exercises
............................ 78
Z-graded Rings and Their Localizations
........ 81
Partitions of Unity
.................... 83
Gluing
.......................... 83
Constructing Primes
................... 84
Idempotents, Products, and Connected Components
. 85
3
Associated Primes and Primary Decomposition
87
3.1
Associated Primes
....................... 89
3.2
Prime Avoidance
....................... 90
3.3
Primary Decomposition
.................... 94
3.4
Primary Decomposition and Factoriality
.......... 98
3.5
Primary Decomposition in the Graded Case
........ 99
3.6
Extracting Information from Primary Decomposition
. . . 100
3.7
Why Primary Decomposition Is Not Unique
........ 102
3.8
Geometric Interpretation of Primary Decomposition
.... 103
3.9
Symbolic Powers and Functions Vanishing to High Order
. 105
3.9.1
A Determinantal Example
.............. 107
3.10
Exercises
............................ 109
General Graded Primary Decomposition
....... 110
Primary Decomposition of Monomial Ideals
......
Ill
The Question of Uniqueness
.............. 112
Determinantal Ideals
.................. 113
Contents ix
Total
Quotients.....................
113
Prime Avoidance
..................... 114
4
Integral Dependence and the
Nullstellensatz 117
4.1
The Cayley-Hamilton Theorem and Nakayama s Lemma
. 119
4.2
Normal Domains and the Normalization Process
...... 125
4.3
Normalization in the Analytic Case
............. 128
4.4
Primes in an Integral Extension
............... 129
4.5
The
Nullstellensatz...................... 131
4.6
Exercises
............................ 135
Nakayama s Lemma
................... 136
Projective
Modules and Locally Free Modules
.... 136
Integral Closure of Ideals
................ 137
Normalization
...................... 138
Normalization and Convexity
.............. 139
Nullstellensatz...................... 142
Three More Proofs of the
Nullstellensatz....... 142
5
Filtrations and the Artin-Rees Lemma
147
5.1
Associated Graded Rings and Modules
........... 148
5.2
The Blowup Algebra
..................... 150
5.3
The Krull Intersection Theorem
............... 152
5.4
The Tangent Cone
...................... 153
5.5
Exercises
............................ 154
6
Flat Families
157
6.1
Elementary Examples
..................... 159
6.2
Introduction to Tor
...................... 161
6.3
Criteria for Flatness
...................... 162
6.4
The Local Criterion for Flatness
............... 167
6.5
The
Rees
Algebra
....................... 171
6.6
Exercises
............................ 172
Flat Families of Graded Modules
............ 175
Embedded First-Order Deformations
......... 176
7
Completions and Hensel s Lemma
181
7.1
Examples and Definitions
................... 181
7.2
The Utility of Completions
.................. 184
7.3
Lifting Idempotents
...................... 188
7.4
Cohen Structure Theory and Coefficient Fields
....... 191
7.5
Basic Properties of Completion
............... 194
7.6
Maps from Power Series Rings
................ 200
7.7
Exercises
............................ 205
Modules Whose Completions Are Isomorphic
..... 205
The Krull Topology and Cauchy Sequences
...... 206
Contents
Completions from Power Series
.............207
Coefficient Fields
....................
207
Other Versions of
Henseľs
Lemma
...........208
II Dimension Theory 213
8
Introduction to Dimension Theory 215
8.1
Axioms for Dimension
.................... 220
8.2
Other Characterizations of Dimension
............ 222
8.2.1 Affine
Rings and Noether Normalization
...... 223
8.2.2
Systems of Parameters and Krull s Principal Ideal
Theorem
....................... 224
8.2.3
The Degree of the Hubert Polynomial
....... 225
9
Fundamental Definitions of Dimension Theory
227
9.1
Dimension Zero
........................229
9.2
Exercises
............................230
10
The Principal Ideal Theorem and Systems of Parameters
233
10.1
Systems of Parameters and Ideals of Finite Colength
. . . 236
10.2
Dimension of Base and Fiber
................. 238
10.3
Regular Local Rings
...................... 242
10.4
Exercises
............................ 244
Determinantal Ideals
..................246
Hubert Series of a Graded Module
...........247
11
Dimension and Codimension One
251
11.1
Discrete Valuation Rings
................... 251
11.2
Normal Rings and Serre s Criterion
............. 253
11.3
Invertible Modules
...................... 257
11.4
Unique Factorization of Codimension-One Ideals
...... 260
11.5
Divisors and Multiplicities
.................. 262
11.6
Multiplicity of Principal Ideals
................ 265
11.7
Exercises
............................ 268
Valuation Rings
..................... 268
The Grothendieck Ring
................. 269
12
Dimension and Hilbert-Samuel Polynomials
275
12.1
Hilbert-Samuel Functions
...................276
12.2
Exercises
............................279
Analytic Spread and the Fiber of a Blowup
......280
Multiplicities
.......................280
Hubert Series
......................284
Contents xi
13 The Dimension
of
Affine Rings 285
13.1 Noether
Normalization
.................... 285
13.2 The Nullstellensatz...................... 296
13.3 Finiteness
of the
Integral
Closure..............
297
13.4
Exercises
............................ 300
Quotients by Finite Groups
............... 300
Primes in Polynomial Rings
.............. 301
Dimension in the Graded Case
............. 302
Noether Normalization in the Complete Case
..... 303
Products and Reduction to the Diagonal
....... 304
Equational Characterization of Systems of Parameters
306
14
Elimination Theory, Generic Freeness, and the Dimension
of Fibers
307
14.1
Elimination Theory
...................... 307
14.2
Generic Freeness
........................ 312
14.3
The Dimension of Fibers
................... 313
14.4
Exercises
............................ 318
Elimination Theory
................... 318
15 Gröbner
Bases
321
Constructive Module Theory
.............. 322
Elimination Theory
................... 322
15.1
Monomials and Terms
.................... 323
151.1
Hubert Function and Polynomial
.......... 324
15.1.2
Syzygies of Monomial
Submodules
......... 326
15.2
Monomial Orders
....................... 327
15.3
The Division Algorithm
.................... 333
15.4 Gröbner
Bases
......................... 335
15.5
Syzygies
............................ 337
15.6
History of
Gröbner
Bases
................... 340
15.7
A Property of Reverse Lexicographic Order
........ 342
15.8 Gröbner
Bases and Flat Families
.............. 345
15.9
Generic Initial Ideals
..................... 351
15.9.1
Existence of the Generic Initial Ideal
........ 353
15.9.2
The Generic Initial Ideal is Borel-Fixed
...... 354
15.9.3
The Nature of Borel-Fixed Ideals
.......... 355
15.10
Applications
.......................... 358
15.10.1
Ideal Membership
.................. 359
15.10.2
Hubert Function and Polynomial
.......... 359
15.10.3
Associated Graded Ring
............... 360
15.10.4
Elimination
...................... 361
15.10.5
Projective Closure and Ideal at Infinity
...... 362
15.10.6
Saturation
...................... 363
15.10.7
Lifting Homomorphisms
............... 364
xii Contents
15.10.8
Syzygies and Constructive Module Theory
.... 365
15.10.9
What s Left?
..................... 367
15.11
Exercises
............................ 368
15.12
Appendix: Some Computer Algebra Projects
........ 378
Project
1.
Zero-dimensional Gorenstein Ideals
.... 376
Project
2.
Factoring Out a General Element from an
sth Syzygy
.................. 377
Project
3.
Resolutions over Hypersurfaces
....... 377
Project
4.
Rational Curves of Degree
Г+
1
in Pr.
.. 378
Project
5.
Regularity of Rational Curves
....... 378
Project
6.
Some Monomial Curve Singularities
.... 379
Project
7.
Some Interesting Prime Ideals
....... 379
16
Modules of Differentials
385
16.1
Computation of Differentials
................. 390
16.2
Differentials and the Cotangent Bundle
........... 390
16.3
Colimits and Localization
.................. 393
16.4
Tangent Vector Fields and Infinitesimal Morphisms
.... 398
16.5
Differentials and Field Extensions
.............. 400
16.6
Jacobian Criterion for Regularity
.............. 404
16.7
Smoothness and Generic Smoothness
............ 407
16.8
Appendix: Another Construction of
Kahler
Differentials
. 410
16.9
Exercises
............................412
III Homological Methods
421
17
Regular Sequences and the
Koszul
Complex
423
17.1
Koszul
Complexes of Lengths
1
and
2............ 424
17.2
Koszul
Complexes in General
................ 427
17.3
Building the
Koszul
Complex from Parts
.......... 431
17.4
Duality and Homotopies
................... 436
17.5
The
Koszul
Complex and the Cotangent Bundle of
Projective
Space
........................ 440
17.6
Exercises
............................ 441
Free Resolutions of Monomial Ideals
.......... 443
Conormal Sequence of a Complete Intersection
.... 444
Regular Sequences Are Like Sequences of Variables
. 445
Blowup Algebra and Normal Cone of a Regular
Sequence
................... 445
Geometric Contexts of the
Koszul
Complex
......447
Contents xiii
18
Depth,
Codimension, and Cohen-Macaulay Rings 451
18.1
Depth .............................
451
18.1.1
Depth and the Vanishing of Ext
.......... 453
18.2
Cohen-Macaulay Rings
.................... 455
18.3
Proving Primeness with Serre s Criterion
.......... 461
18.4
Flatness and Depth
...................... 464
18.5
Some Examples
........................ 466
18.6
Exercises
............................ 469
19
Homological Theory of Regular Local Rings
473
19.1
Projective
Dimension and Minimal Resolutions
...... 473
19.2
Global Dimension and the Syzygy Theorem
........ 478
19.3
Depth and
Projective
Dimension: The Auslander-
Buchsbaum Formula
..................... 479
19.4
Stably Free Modules and Factoriality of Regular
Local Rings
.......................... 484
19.5
Exercises
............................ 488
Regular Rings
...................... 488
Modules over a Dedekind Domain
........... 488
The Auslander-Buchsbaum Formula
.......... 489
Projective
Dimension and Cohen-Macaulay Rings
. . 489
Hubert
Function and Grothendieck Group
...... 490
The Chern Polynomial
................. 492
20
Free Resolutions and Fitting Invariants
493
20.1
The Uniqueness of Free Resolutions
............. 494
20.2
Fitting Ideals
......................... 496
20.3
What Makes a Complex Exact?
............... 500
20.4
The Hilbert-Burch Theorem
................. 506
20.4.1
Cubic Surfaces and
Sextuples
of Points in the
Plane
......................... 508
20.5
Castelnuovo-Mumford Regularity
.............. 509
20.5.1
Regularity and
Hyperplane
Sections
........ 513
20.5.2
Regularity of Generic Initial Ideals
......... 514
20.5.3
Historical Notes on Regularity
........... 514
20.6
Exercises
............................ 515
Fitting Ideals and the Structure of Modules
..... 515
Projectives of Constant Rank
.............. 518
Castelnuovo-Mumford Regularity
........... 521
21
Duality, Canonical Modules, and Gorenstein Rings
523
21.1
Duality for Modules of Finite Length
............ 524
21.2
Zero-Dimensional Gorenstein Rings
............. 529
21.3
Canonical Modules and Gorenstein Rings in Higher
Dimension
........................... 532
xiv Contents
21.4 Maximal Cohen-Macaulay Modules............. 533
21.5 Modules
of Finite Injective
Dimension ........... 534
21.6
Uniqueness and (Often) Existence
.............. 538
21.7
Localization and Completion of the Canonical Module
. . 540
21.8
Complete Intersections and Other Gorenstein Rings
.... 541
21.9
Duality for Maximal Cohen-Macaulay Modules
...... 542
21.10
Linkage
............................-543
21.11
Duality in the Graded Case
................. 549
21.12
Exercises
............................ 550
The Zero-Dimensional Case and Duality
....... 550
Higher Dimension
.................... 552
The Canonical Module as Ideal
............. 555
Linkage and the Cayley-Bacharach Theorem
..... 556
Appendix
1
Field Theory
555
Al.l Transcendence Degree
.....................561
A1.2 Separability
..........................563
A1.3 p-Bases
.............................565
Al.3.1 Exercises
.......................568
Appendix
2
Multilinear Algebra
565
A2.1 Introduction
.......................... 571
A2.2 Tensor Products
........................ 573
A2.3 Symmetric and Exterior Algebras
.............. 574
A2.3.1 Bases
......................... 578
A2.3.2 Exercises
....................... 580
A2.4
Coalgebra
Structures and Divided Powers
......... 581
A2.4.1 S(M)· and S(M) as Modules over One Another
. 582
A2.5
Schur
Functors
......................... 590
A2.5.1 Exercises
....................... 594
A2.6 Complexes Constructed by Multilinear Algebra
...... 596
A2.6.1 Strands of the
Koszul
Complex
........... 597
A2.6.2 Exercises
....................... 609
Appendix
3
Homological Algebra
611
A3.1 Introduction
.......................... 617
Part I: Resolutions and Derived Functors
.......... 614
A3.2 Free and
Projective
Modules
................. 621
A3.3 Free and Projective Resolutions
............... 623
A3.4 Injective Modules and Resolutions
.............. 624
A3.4.1 Exercises
....................... 630
Injective Envelopes
................... 630
Injective Modules over Noetherian Rings
....... 630
A3.5 Basic Constructions with Complexes
............ 632
A3.5.1 Notation and Definitions
.............. 632
Contents xv
A3.6
Maps and Homotopies of Complexes
............ 633
A3.7 Exact Sequences of Complexes
................ 637
АЗ^Л
Exercises
....................... 638
A3.8 The Long Exact Sequence in Homology
........... 639
A3.8.1 Exercises
....................... 640
Diagrams and Syzygies
................. 640
A3.9 Derived Functors
....................... 643
A3.9.1 Exercise on Derived Functors
............ 645
АЗ.ЮТог
............................... 646
A3.10.1 Exercises: Tor
.................... 646
A3.ll Ext
............................... 649
АЗ.П.І
Exercises: Ext
.................... 651
A3.11.2 Local Cohomology
.................. 656
Part II: From Mapping Cones to Spectral Sequences
. . 650
A3.12
The Mapping Cone and Double Complexes
......... 656
A3.12.1
Exercises: Mapping Cones and Double Complexes
660
A3.13 Spectral Sequences
...................... 663
A3.13.1
Mapping Cones Revisited
.............. 664
A3.13.2 Exact Couples
.................... 665
A3.13.3
Filtered Differential Modules and Complexes
... 668
A3.13.4
The Spectral Sequence of a Double Complex
... 671
A3.13.5
Exact Sequence of Terms of Low Degree
...... 677
A3.13.6 Exercises on Spectral Sequences
.......... 678
A3.14 Derived Categories
...................... 684
A3.14.1
Step One: The Homotopy Category of Complexes
685
A3.14.2 Step Two: The Derived Category
.......... 686
A3.14.3
Exercises on the Derived Category
......... 688
Appendix
4
Λ
Sketch of Local Cohomology
683
A4.1 Local Cohomology and Global Cohomology
........ 693
A4.2 Local Duality
......................... 694
A4.3 Depth and Dimension
..................... 695
Appendix
5
Category Theory
689
A5.1 Categories, Functors, and Natural Transformations
.... 697
A5.2 Adjoint Functors
....................... 699
A5.2.1 Uniqueness
...................... 700
A5.2.2 Some Examples
................... 700
A5.2.3 Another Characterization of
Adjoints
....... 701
A5.2.4
Adjoints
and Limits
................. 702
A5.3 Representable Functors and Yoneda s Lemma
....... 703
xvi Contents
Appendix 6 Limits and Colimits 697
A6.1 Colimits in
the Category of
Modules............708
A6.2
Flat
Modules
as
Colimits
of Free
Modules.........711
A6.3 Colimits in the Category of Commutative Algebras
.... 713
A6.4 Exercises
............................715
Appendix
7
Where Next?
709
Hints and Solutions for Selected1 Exercises
711
References
757
Index of Notation
775
Index
779
|
adam_txt |
Contents
Introduction
1
Advice
for the Beginner
. 2
Information for the Expert
. 2
Prerequisites
. 6
Sources
. 6
Courses
. 7
A First Course
. 7
A Second Course
. 8
Acknowledgements
. 9
0
Elementary Definitions
11
0.1
Rings and Ideals
. 11
0.2
Unique Factorization
. 13
0.3
Modules
. 15
I Basic Constructions
19
1
Roots of Commutative Algebra
21
1.1
Number Theory
. 21
1.2
Algebraic Curves and Function Theory
. 23
1.3
Invariant Theory
. 24
1.4
The Basis Theorem
. 27
1.4.1
Finite Generation of Invariants
. 29
viii Contents
1.5
Graded Rings
.
i0
1.6
Algebra and Geometry: The
Nullstellensatz . 31
1.7
Geometric Invariant Theory
. 37
1.8
Projective
Varieties
. 39
1.9
Hubert Functions and Polynomials
.
42
1.10
Free Resolutions and the Syzygy Theorem
.
44
1.11
Exercises
.
46
Noetherian Rings and Modules
.
4*>
An Analysis of Hubert's Finiteness Argument
. 47
Some Rings of Invariants
.
48
Algebra and Geometry
.
4^
Graded Rings and
Projective
Geometry
. 52
Hubert Functions
. 53
Free Resolutions
. 54
Spec, max-Spec, and the Zariski Topology
. 54
2
Localization
57
2.1
Fractions
. 59
2.2
Hom
and Tensor
. 62
2.3
The Construction of Primes
.
70
2.4
Rings and Modules of Finite Length
. 71
2.5
Products of Domains
. 78
2.6
Exercises
. 78
Z-graded Rings and Their Localizations
. 81
Partitions of Unity
. 83
Gluing
. 83
Constructing Primes
. 84
Idempotents, Products, and Connected Components
. 85
3
Associated Primes and Primary Decomposition
87
3.1
Associated Primes
. 89
3.2
Prime Avoidance
. 90
3.3
Primary Decomposition
. 94
3.4
Primary Decomposition and Factoriality
. 98
3.5
Primary Decomposition in the Graded Case
. 99
3.6
Extracting Information from Primary Decomposition
. . . 100
3.7
Why Primary Decomposition Is Not Unique
. 102
3.8
Geometric Interpretation of Primary Decomposition
. 103
3.9
Symbolic Powers and Functions Vanishing to High Order
. 105
3.9.1
A Determinantal Example
. 107
3.10
Exercises
. 109
General Graded Primary Decomposition
. 110
Primary Decomposition of Monomial Ideals
.
Ill
The Question of Uniqueness
. 112
Determinantal Ideals
. 113
Contents ix
Total
Quotients.
113
Prime Avoidance
. 114
4
Integral Dependence and the
Nullstellensatz 117
4.1
The Cayley-Hamilton Theorem and Nakayama's Lemma
. 119
4.2
Normal Domains and the Normalization Process
. 125
4.3
Normalization in the Analytic Case
. 128
4.4
Primes in an Integral Extension
. 129
4.5
The
Nullstellensatz. 131
4.6
Exercises
. 135
Nakayama's Lemma
. 136
Projective
Modules and Locally Free Modules
. 136
Integral Closure of Ideals
. 137
Normalization
. 138
Normalization and Convexity
. 139
Nullstellensatz. 142
Three More Proofs of the
Nullstellensatz. 142
5
Filtrations and the Artin-Rees Lemma
147
5.1
Associated Graded Rings and Modules
. 148
5.2
The Blowup Algebra
. 150
5.3
The Krull Intersection Theorem
. 152
5.4
The Tangent Cone
. 153
5.5
Exercises
. 154
6
Flat Families
157
6.1
Elementary Examples
. 159
6.2
Introduction to Tor
. 161
6.3
Criteria for Flatness
. 162
6.4
The Local Criterion for Flatness
. 167
6.5
The
Rees
Algebra
. 171
6.6
Exercises
. 172
Flat Families of Graded Modules
. 175
Embedded First-Order Deformations
. 176
7
Completions and Hensel's Lemma
181
7.1
Examples and Definitions
. 181
7.2
The Utility of Completions
. 184
7.3
Lifting Idempotents
. 188
7.4
Cohen Structure Theory and Coefficient Fields
. 191
7.5
Basic Properties of Completion
. 194
7.6
Maps from Power Series Rings
. 200
7.7
Exercises
. 205
Modules Whose Completions Are Isomorphic
. 205
The Krull Topology and Cauchy Sequences
. 206
Contents
Completions from Power Series
.207
Coefficient Fields
.
207
Other Versions of
Henseľs
Lemma
.208
II Dimension Theory 213
8
Introduction to Dimension Theory 215
8.1
Axioms for Dimension
. 220
8.2
Other Characterizations of Dimension
. 222
8.2.1 Affine
Rings and Noether Normalization
. 223
8.2.2
Systems of Parameters and Krull's Principal Ideal
Theorem
. 224
8.2.3
The Degree of the Hubert Polynomial
. 225
9
Fundamental Definitions of Dimension Theory
227
9.1
Dimension Zero
.229
9.2
Exercises
.230
10
The Principal Ideal Theorem and Systems of Parameters
233
10.1
Systems of Parameters and Ideals of Finite Colength
. . . 236
10.2
Dimension of Base and Fiber
. 238
10.3
Regular Local Rings
. 242
10.4
Exercises
. 244
Determinantal Ideals
.246
Hubert Series of a Graded Module
.247
11
Dimension and Codimension One
251
11.1
Discrete Valuation Rings
. 251
11.2
Normal Rings and Serre's Criterion
. 253
11.3
Invertible Modules
. 257
11.4
Unique Factorization of Codimension-One Ideals
. 260
11.5
Divisors and Multiplicities
. 262
11.6
Multiplicity of Principal Ideals
. 265
11.7
Exercises
. 268
Valuation Rings
. 268
The Grothendieck Ring
. 269
12
Dimension and Hilbert-Samuel Polynomials
275
12.1
Hilbert-Samuel Functions
.276
12.2
Exercises
.279
Analytic Spread and the Fiber of a Blowup
.280
Multiplicities
.280
Hubert Series
.284
Contents xi
13 The Dimension
of
Affine Rings 285
13.1 Noether
Normalization
. 285
13.2 The Nullstellensatz. 296
13.3 Finiteness
of the
Integral
Closure.
297
13.4
Exercises
. 300
Quotients by Finite Groups
. 300
Primes in Polynomial Rings
. 301
Dimension in the Graded Case
. 302
Noether Normalization in the Complete Case
. 303
Products and Reduction to the Diagonal
. 304
Equational Characterization of Systems of Parameters
306
14
Elimination Theory, Generic Freeness, and the Dimension
of Fibers
307
14.1
Elimination Theory
. 307
14.2
Generic Freeness
. 312
14.3
The Dimension of Fibers
. 313
14.4
Exercises
. 318
Elimination Theory
. 318
15 Gröbner
Bases
321
Constructive Module Theory
. 322
Elimination Theory
. 322
15.1
Monomials and Terms
. 323
151.1
Hubert Function and Polynomial
. 324
15.1.2
Syzygies of Monomial
Submodules
. 326
15.2
Monomial Orders
. 327
15.3
The Division Algorithm
. 333
15.4 Gröbner
Bases
. 335
15.5
Syzygies
. 337
15.6
History of
Gröbner
Bases
. 340
15.7
A Property of Reverse Lexicographic Order
. 342
15.8 Gröbner
Bases and Flat Families
. 345
15.9
Generic Initial Ideals
. 351
15.9.1
Existence of the Generic Initial Ideal
. 353
15.9.2
The Generic Initial Ideal is Borel-Fixed
. 354
15.9.3
The Nature of Borel-Fixed Ideals
. 355
15.10
Applications
. 358
15.10.1
Ideal Membership
. 359
15.10.2
Hubert Function and Polynomial
. 359
15.10.3
Associated Graded Ring
. 360
15.10.4
Elimination
. 361
15.10.5
Projective Closure and Ideal at Infinity
. 362
15.10.6
Saturation
. 363
15.10.7
Lifting Homomorphisms
. 364
xii Contents
15.10.8
Syzygies and Constructive Module Theory
. 365
15.10.9
What's Left?
. 367
15.11
Exercises
. 368
15.12
Appendix: Some Computer Algebra Projects
. 378
Project
1.
Zero-dimensional Gorenstein Ideals
. 376
Project
2.
Factoring Out a General Element from an
sth Syzygy
. 377
Project
3.
Resolutions over Hypersurfaces
. 377
Project
4.
Rational Curves of Degree
Г+
1
in Pr.
. 378
Project
5.
Regularity of Rational Curves
. 378
Project
6.
Some Monomial Curve Singularities
. 379
Project
7.
Some Interesting Prime Ideals
. 379
16
Modules of Differentials
385
16.1
Computation of Differentials
. 390
16.2
Differentials and the Cotangent Bundle
. 390
16.3
Colimits and Localization
. 393
16.4
Tangent Vector Fields and Infinitesimal Morphisms
. 398
16.5
Differentials and Field Extensions
. 400
16.6
Jacobian Criterion for Regularity
. 404
16.7
Smoothness and Generic Smoothness
. 407
16.8
Appendix: Another Construction of
Kahler
Differentials
. 410
16.9
Exercises
.412
III Homological Methods
421
17
Regular Sequences and the
Koszul
Complex
423
17.1
Koszul
Complexes of Lengths
1
and
2. 424
17.2
Koszul
Complexes in General
. 427
17.3
Building the
Koszul
Complex from Parts
. 431
17.4
Duality and Homotopies
. 436
17.5
The
Koszul
Complex and the Cotangent Bundle of
Projective
Space
. 440
17.6
Exercises
. 441
Free Resolutions of Monomial Ideals
. 443
Conormal Sequence of a Complete Intersection
. 444
Regular Sequences Are Like Sequences of Variables
. 445
Blowup Algebra and Normal Cone of a Regular
Sequence
. 445
Geometric Contexts of the
Koszul
Complex
.447
Contents xiii
18
Depth,
Codimension, and Cohen-Macaulay Rings 451
18.1
Depth .
451
18.1.1
Depth and the Vanishing of Ext
. 453
18.2
Cohen-Macaulay Rings
. 455
18.3
Proving Primeness with Serre's Criterion
. 461
18.4
Flatness and Depth
. 464
18.5
Some Examples
. 466
18.6
Exercises
. 469
19
Homological Theory of Regular Local Rings
473
19.1
Projective
Dimension and Minimal Resolutions
. 473
19.2
Global Dimension and the Syzygy Theorem
. 478
19.3
Depth and
Projective
Dimension: The Auslander-
Buchsbaum Formula
. 479
19.4
Stably Free Modules and Factoriality of Regular
Local Rings
. 484
19.5
Exercises
. 488
Regular Rings
. 488
Modules over a Dedekind Domain
. 488
The Auslander-Buchsbaum Formula
. 489
Projective
Dimension and Cohen-Macaulay Rings
. . 489
Hubert
Function and Grothendieck Group
. 490
The Chern Polynomial
. 492
20
Free Resolutions and Fitting Invariants
493
20.1
The Uniqueness of Free Resolutions
. 494
20.2
Fitting Ideals
. 496
20.3
What Makes a Complex Exact?
. 500
20.4
The Hilbert-Burch Theorem
. 506
20.4.1
Cubic Surfaces and
Sextuples
of Points in the
Plane
. 508
20.5
Castelnuovo-Mumford Regularity
. 509
20.5.1
Regularity and
Hyperplane
Sections
. 513
20.5.2
Regularity of Generic Initial Ideals
. 514
20.5.3
Historical Notes on Regularity
. 514
20.6
Exercises
. 515
Fitting Ideals and the Structure of Modules
. 515
Projectives of Constant Rank
. 518
Castelnuovo-Mumford Regularity
. 521
21
Duality, Canonical Modules, and Gorenstein Rings
523
21.1
Duality for Modules of Finite Length
. 524
21.2
Zero-Dimensional Gorenstein Rings
. 529
21.3
Canonical Modules and Gorenstein Rings in Higher
Dimension
. 532
xiv Contents
21.4 Maximal Cohen-Macaulay Modules. 533
21.5 Modules
of Finite Injective
Dimension . 534
21.6
Uniqueness and (Often) Existence
. 538
21.7
Localization and Completion of the Canonical Module
. . 540
21.8
Complete Intersections and Other Gorenstein Rings
. 541
21.9
Duality for Maximal Cohen-Macaulay Modules
. 542
21.10
Linkage
.-543
21.11
Duality in the Graded Case
. 549
21.12
Exercises
. 550
The Zero-Dimensional Case and Duality
. 550
Higher Dimension
. 552
The Canonical Module as Ideal
. 555
Linkage and the Cayley-Bacharach Theorem
. 556
Appendix
1
Field Theory
555
Al.l Transcendence Degree
.561
A1.2 Separability
.563
A1.3 p-Bases
.565
Al.3.1 Exercises
.568
Appendix
2
Multilinear Algebra
565
A2.1 Introduction
. 571
A2.2 Tensor Products
. 573
A2.3 Symmetric and Exterior Algebras
. 574
A2.3.1 Bases
. 578
A2.3.2 Exercises
. 580
A2.4
Coalgebra
Structures and Divided Powers
. 581
A2.4.1 S(M)· and S(M) as Modules over One Another
. 582
A2.5
Schur
Functors
. 590
A2.5.1 Exercises
. 594
A2.6 Complexes Constructed by Multilinear Algebra
. 596
A2.6.1 Strands of the
Koszul
Complex
. 597
A2.6.2 Exercises
. 609
Appendix
3
Homological Algebra
611
A3.1 Introduction
. 617
Part I: Resolutions and Derived Functors
. 614
A3.2 Free and
Projective
Modules
. 621
A3.3 Free and Projective Resolutions
. 623
A3.4 Injective Modules and Resolutions
. 624
A3.4.1 Exercises
. 630
Injective Envelopes
. 630
Injective Modules over Noetherian Rings
. 630
A3.5 Basic Constructions with Complexes
. 632
A3.5.1 Notation and Definitions
. 632
Contents xv
A3.6
Maps and Homotopies of Complexes
. 633
A3.7 Exact Sequences of Complexes
. 637
АЗ^Л
Exercises
. 638
A3.8 The Long Exact Sequence in Homology
. 639
A3.8.1 Exercises
. 640
Diagrams and Syzygies
. 640
A3.9 Derived Functors
. 643
A3.9.1 Exercise on Derived Functors
. 645
АЗ.ЮТог
. 646
A3.10.1 Exercises: Tor
. 646
A3.ll Ext
. 649
АЗ.П.І
Exercises: Ext
. 651
A3.11.2 Local Cohomology
. 656
Part II: From Mapping Cones to Spectral Sequences
. . 650
A3.12
The Mapping Cone and Double Complexes
. 656
A3.12.1
Exercises: Mapping Cones and Double Complexes
660
A3.13 Spectral Sequences
. 663
A3.13.1
Mapping Cones Revisited
. 664
A3.13.2 Exact Couples
. 665
A3.13.3
Filtered Differential Modules and Complexes
. 668
A3.13.4
The Spectral Sequence of a Double Complex
. 671
A3.13.5
Exact Sequence of Terms of Low Degree
. 677
A3.13.6 Exercises on Spectral Sequences
. 678
A3.14 Derived Categories
. 684
A3.14.1
Step One: The Homotopy Category of Complexes
685
A3.14.2 Step Two: The Derived Category
. 686
A3.14.3
Exercises on the Derived Category
. 688
Appendix
4
Λ
Sketch of Local Cohomology
683
A4.1 Local Cohomology and Global Cohomology
. 693
A4.2 Local Duality
. 694
A4.3 Depth and Dimension
. 695
Appendix
5
Category Theory
689
A5.1 Categories, Functors, and Natural Transformations
. 697
A5.2 Adjoint Functors
. 699
A5.2.1 Uniqueness
. 700
A5.2.2 Some Examples
. 700
A5.2.3 Another Characterization of
Adjoints
. 701
A5.2.4
Adjoints
and Limits
. 702
A5.3 Representable Functors and Yoneda's Lemma
. 703
xvi Contents
Appendix 6 Limits and Colimits 697
A6.1 Colimits in
the Category of
Modules.708
A6.2
Flat
Modules
as
Colimits
of Free
Modules.711
A6.3 Colimits in the Category of Commutative Algebras
. 713
A6.4 Exercises
.715
Appendix
7
Where Next?
709
Hints and Solutions for Selected1 Exercises
711
References
757
Index of Notation
775
Index
779 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Eisenbud, David 1947- |
author_GND | (DE-588)139999671 |
author_facet | Eisenbud, David 1947- |
author_role | aut |
author_sort | Eisenbud, David 1947- |
author_variant | d e de |
building | Verbundindex |
bvnumber | BV021253439 |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.3 |
callnumber-search | QA251.3 |
callnumber-sort | QA 3251.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 230 |
classification_tum | MAT 140f MAT 130f |
ctrlnum | (OCoLC)57717588 (DE-599)BVBBV021253439 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | [7. print] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02239nam a2200577 cb4500</leader><controlfield tag="001">BV021253439</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100719 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051206s2004 gw d||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540942696</subfield><subfield code="9">3-540-94269-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387942696</subfield><subfield code="9">0-387-94269-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387942688</subfield><subfield code="9">0-387-94268-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387942698</subfield><subfield code="9">978-0-387-94269-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57717588</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021253439</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 130f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eisenbud, David</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139999671</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commutative algebra with a view toward algebraic geometry</subfield><subfield code="c">David Eisenbud</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[7. print]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 797 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">150</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 757 - 774</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anéis e álgebras comutativos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria algébrica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">150</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">150</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014574789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014574789</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021253439 |
illustrated | Illustrated |
index_date | 2024-07-02T13:39:58Z |
indexdate | 2024-07-09T20:33:55Z |
institution | BVB |
isbn | 3540942696 0387942696 0387942688 9780387942698 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014574789 |
oclc_num | 57717588 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-188 DE-739 DE-83 DE-29T DE-20 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-188 DE-739 DE-83 DE-29T DE-20 |
physical | XVI, 797 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Eisenbud, David 1947- Verfasser (DE-588)139999671 aut Commutative algebra with a view toward algebraic geometry David Eisenbud [7. print] New York [u.a.] Springer 2004 XVI, 797 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 150 Literaturverz. S. 757 - 774 Anéis e álgebras comutativos larpcal Geometria algébrica larpcal Commutative algebra Geometry, Algebraic Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 s Kommutative Algebra (DE-588)4164821-3 s 1\p DE-604 DE-604 Graduate texts in mathematics 150 (DE-604)BV000000067 150 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014574789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eisenbud, David 1947- Commutative algebra with a view toward algebraic geometry Graduate texts in mathematics Anéis e álgebras comutativos larpcal Geometria algébrica larpcal Commutative algebra Geometry, Algebraic Algebraische Geometrie (DE-588)4001161-6 gnd Kommutative Algebra (DE-588)4164821-3 gnd |
subject_GND | (DE-588)4001161-6 (DE-588)4164821-3 |
title | Commutative algebra with a view toward algebraic geometry |
title_auth | Commutative algebra with a view toward algebraic geometry |
title_exact_search | Commutative algebra with a view toward algebraic geometry |
title_exact_search_txtP | Commutative algebra with a view toward algebraic geometry |
title_full | Commutative algebra with a view toward algebraic geometry David Eisenbud |
title_fullStr | Commutative algebra with a view toward algebraic geometry David Eisenbud |
title_full_unstemmed | Commutative algebra with a view toward algebraic geometry David Eisenbud |
title_short | Commutative algebra with a view toward algebraic geometry |
title_sort | commutative algebra with a view toward algebraic geometry |
topic | Anéis e álgebras comutativos larpcal Geometria algébrica larpcal Commutative algebra Geometry, Algebraic Algebraische Geometrie (DE-588)4001161-6 gnd Kommutative Algebra (DE-588)4164821-3 gnd |
topic_facet | Anéis e álgebras comutativos Geometria algébrica Commutative algebra Geometry, Algebraic Algebraische Geometrie Kommutative Algebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014574789&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT eisenbuddavid commutativealgebrawithaviewtowardalgebraicgeometry |