Biological and pharmaceutical nanomaterials:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2006
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Nanotechnologies for the life sciences
2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 408 S. Ill., graph. Darst. |
ISBN: | 9783527313822 3527313826 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021237245 | ||
003 | DE-604 | ||
005 | 20060202 | ||
007 | t | ||
008 | 051123s2006 gw ad|| |||| 00||| eng d | ||
015 | |a 05,N28,1071 |2 dnb | ||
016 | 7 | |a 975304844 |2 DE-101 | |
020 | |a 9783527313822 |9 978-3-527-31382-2 | ||
020 | |a 3527313826 |c Gb. : ca. sfr 220.00 (freier Pr.), ca. EUR 139.00 (freier Pr.), ca. sfr 188.00 (Preis bei Abn. d. Gesamtwerkes), ca. EUR 119.00 (Preis bei Abn. d. Gesamtwerkes) |9 3-527-31382-6 | ||
024 | 3 | |a 9783527313822 | |
028 | 5 | 2 | |a 1131382 000 |
035 | |a (OCoLC)61703214 | ||
035 | |a (DE-599)BVBBV021237245 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-M49 |a DE-355 |a DE-703 |a DE-29 |a DE-19 |a DE-1051 |a DE-Er8 | ||
050 | 0 | |a TA418.9.N35 | |
082 | 0 | |a 620/.5 |2 22 | |
082 | 0 | |a 615.19 |2 22 | |
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a 610 |2 sdnb | ||
084 | |a CHE 800f |2 stub | ||
084 | |a BIO 100f |2 stub | ||
084 | |a TEC 031f |2 stub | ||
084 | |a CHE 893f |2 stub | ||
245 | 1 | 0 | |a Biological and pharmaceutical nanomaterials |c ed. by Challa S. S. R. Kumar |
250 | |a 1. ed. | ||
264 | 1 | |a Weinheim |b WILEY-VCH |c 2006 | |
300 | |a XIX, 408 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Nanotechnologies for the life sciences |v 2 | |
650 | 4 | |a Biomatériaux | |
650 | 4 | |a Biotechnologie pharmaceutique | |
650 | 4 | |a Nanomatériaux | |
650 | 4 | |a Biomedical Technology | |
650 | 4 | |a Biomedical materials | |
650 | 4 | |a Nanostructured materials | |
650 | 4 | |a Nanostructures | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Pharmaceutical biotechnology | |
650 | 0 | 7 | |a Biomaterial |0 (DE-588)4267769-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pharmazeutische Chemie |0 (DE-588)4132158-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Biomaterial |0 (DE-588)4267769-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 1 | 1 | |a Pharmazeutische Chemie |0 (DE-588)4132158-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Kumar, Challa S. S. R. |e Sonstige |0 (DE-588)129740470 |4 oth | |
830 | 0 | |a Nanotechnologies for the life sciences |v 2 |w (DE-604)BV020030849 |9 2 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279998&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014279998 |
Datensatz im Suchindex
_version_ | 1804134682796752896 |
---|---|
adam_text | I V
Contents
Preface XIV
List of Contributors XVII
I DNA based Nanomaterials 1
1 Self assembled DNA Nanotubes 3
Thorn La Bean and Sung Ha Park
1.1 Introduction 3
1.2 DNA Nanotubes Self assembled from DX Tiles 4
1.3 3DAE E DX Tile Nanotubes 5
1.4 DAE 0 DX Tile Nanotubes 9
1.5 TX Tile Nanotubes 11
1.6 4x4 Tile Nanotubes 14
1.7 6HB Tile Nanotubes 26
1.8 Applications 18
1.9 Summary and Perspectives 29
References 20
2 Nucleic Acid Nanoparticles 23
Cuy Zuber, Benedicte Pons and Andrew W. Fraley
2.1 Introduction 23
2.2 The Chemical and Physical Properties of Therapeutic DNA 25
2.3 Preparation of Nucleic Acid Nanoparticles: Synthesis and
Characterization 27
2.3.1 Rationale 27
2.3.2 Synthesis, Characterization and Optimization of Surfactants 31
2.3.3 Organization of the Surfactant DNA Complexes 35
2.3.4 Quantification of the Stability of Surfactant DNA Complexes 35
2.4 DNA Functionalization for Cell Recognition and Internalization 37
2.4.1 Strategies for Functionalization 37
2.4.2 Intercalation 38
2.4.3 Triple Helix Formation with Oligodeoxyribonucleotides 39
Nanotechnologies for the Life Sciences Vol. 2
Biological and Pharmaceutical Nanomaterials. Edited by Challa S. S. R. Kumar
Copyright © 2006 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 3 527 31382 6
VII Contents
2.4.4 Peptide Nucleic Acids (PNAs) 41 .
2.4.5 Interactions of DNA with Fusion Proteins 42
2.4.6 Agents that Bind to the Minor Groove 43
2.5 DNA Nanoparticles: Sophistication for Cell Recognition and
Internalization 43 H
2.5.1 Preparation of DNA Nanoparticles Enveloped with a Protective Coat and ,
Cell Internalization Elements 43
2.5.2 Biomedical Application: Cell Targeting and Internalization Properties of
Folate PEG coated Nanoparticles 46
2.6 Concluding Remarks 46
References 47
3 Lipoplexes 51
Sarah Weisman
3.1 Introduction 51
3.2 DNA Lipoplexes 51
3.2.1 Composition 51
3.2.2 Nanostructure and Microstructure 52
3.2.2.1 Equilibrium Morphology 52
3.2.2.2 Nonequilibrium Morphology 55
3.2.2.3 Iipoplex Size 57
3.2.3 Lipofection Efficiency 57
3.2.3.1 In Vitro 57
3.2.3.2 In Vivo 59
3.3 ODN Lipoplexes 60
3.4 siRNA Lipoplexes 62
Acknowledgments 62
References 62
4 DNA Chitosan Nanoparticles for Gene Therapy: Current Knowledge and
Future Trends 68
Julio C. Fernandes, March Jose Tiera and Francoise M. Winnik
4.1 Introduction 68
4.2 Chitosan as a Carrier for Gene Therapy 69
4.2.1 Chitosan Chemistry 69
4.2.2 General Strategies for Chitosan Modification 71
4.2.3 Chitosan DNA interactions: Transfection Efficacy of Unmodified
Chitosan 71
4.3 Modified Chitosans: Strategies to Improve the Transfection
Efficacy 79
4.3.1 The Effects of Charge Density/Solubility and Degree of Acetylation
79
4.3.2 Improving the Physicochemical Characteristics of the Nanoparticulate
Systems: Solubility, Aggregation and RES Uptake 80
Contents I VII
4.3.3 Targeting Mediated by Cell Surface Receptors 81
4.3.4 Hydrophobic Modification: Protecting the DNA and Improving the
Internalization Process 83
4.4 Methods of Preparation of Chitosan Nanoparticles 84
4.4.1 Complex Coacervation 84
4.4.2 Crosslinking Methods 86
4.4.2.1 Chemical Crosslinking 86
4.4.2.2 Ionic Crosslinking or Ionic Gelation 86
4.4.2.3 Emulsion Crosslinking 87
4.4.2.4 Spray Drying 88
4.4.2.5 Other Methods 89
4.5 DNA Loading into Nano and Microparticles of Chitosan 91
4.6 DNA Release and Release Kinetics 93
4.7 Preclinical Evidence of Chitosan DNA Complex Efficacy 95
4.8 Potential Clinical Applications of Chitosan DNA in Gene Therapy 97
4.9 Conclusion 99
Acknowledgments 99
References 99
II Protein Peptide based Nanomaterials 115
5 Plant Protein based Nanoparticles 117
Anne Marie Orecchioni, Cecile Duclairoir, Juan Manuel Irache and
Evelyne Nakache
5.1 Introduction 117
5.2 Description of Plant Proteins 118
5.2.1 Pea Seed Proteins 119
5.2.2 Wheat Proteins 119
5.3 Preparation of Protein Nanoparticles 120
5.3.1 Preparation of Legumin and Vicilin Nanoparticles 121
5.3.2 Preparation of Gliadin Nanoparticles 122
5.4 Drug Encapsulation in Plant Protein Nanoparticles 124
5.4.1 RA Encapsulation in Gliadin Nanoparticles 124
5.4.2 VE Encapsulation in Gliadin Nanoparticles 125
5.4.3 Lipophilic, Hydrophilic or Amphiphilic Drug Encapsulation 326
5.5 Preparation of Ligand Gliadin Nanoparticle Conjugates 127
5.6 Bioadhesive Properties of Gliadin Nanoparticles 129
5.6.1 Ex Vivo Studies with Gastrointestinal Mucosal Segments 130
5.6.2 In Vivo Studies with Laboratory Animals 131
5.7 Future Perspectives 135
5.7.1 Size Optimization 135
5.7.2 Immunization in Animals 136
5.8 Conclusion 137
References 137
Vlil I Contents |
6 Peptide Nanoparticles 145 1
Klaus Longer
6.1 Introduction 145 ;
6.2 Starting Materials for the Preparation of Nanoparticles 146
6.3 Preparation Methods 148
6.3.1 Nanopartide Preparation by Emulsion Techniques 148
6.3.1.1 Emulsion Technique for the Preparation of Albumin based
Microspheres and Nanoparticles 148 j
6.3.1.2 Emulsion Technique for the Preparation of Gelatin based Microspheres j
and Nanoparticles 151 !
6.3.1.3 Emulsion Technique for the Preparation of Casein based Microspheres :
and Nanoparticles 153 ;
6.3.2 Nanopartide Preparation by Coacervation 154
6.3.2.1 Complex Coacervation Techniques for the Preparation of
Nanopartides 154
6.3.2.2 Simple Coacervation (Desolvation) Techniques for the Preparation of
Nanopartides 155
6.4 Basic Characterization Techniques for Peptide Nanopartides 159
6.5 Drug Targeting with Nanoparticles 161
6.5.1 Passive Drug Targeting with Particle Systems 163
6.5.2 Active Drug Targeting with Particle Systems 163
6.5.3 Surface Modifications of Protein based Nanoparticles 164
6.5.4 Surface Modification by Different Hydrophilic Compounds 164
6.5.5 Surface Modification by Polyethylene Glycol (PEG) Derivatives 165
6.5.6 Surface Modification by Drug targeting Ligands 166
6.57 Different Surface Modification Strategies 168
6.6 Applications as Drug Carriers and for Diagnostic Purposes 169
6.6.1 Protein based Nanopartides in Gene Therapy 170
6.6.2 Parenteral Application Route 172
6.6.2.1 Predinical Studies with Protein based Partides 172
6.6.2.2 Clinical Studies with Protein based Partides 172
6.6.3 Topical Application of Protein based Particles 174
6.6.4 Peroral Application of Protein based Particles 175
6.7 Immunological Reactions with Protein based Microspheres 175
6.8 Concluding Remarks 176
References 176
7 Albumin Nanoparticles 185
Juan Manuel Irache and Socorro Espuelas
7.1 Introduction 185
7.2 Serum Albumin 186
7.3 Preparation of Albumin Nanopartides 187
7.3.1 Conventional Albumin Nanopartides 188
7.3.1.1 Preparation of Albumin Nanopartides by Desolvation or
Coacervation 189
Contents IIX
7.3.1.2 Preparation of Albumin Nanopartides by Emulsification 192
7.3.1.3 Other Techniques to Prepare Albumin Nanopartides 193
7.3.2 Surface modified Albumin Nanopartides 193
7.3.3 Drug Encapsulation in Albumin Nanopartides 194
7.4 Biodistribution of Albumin Nanopartides 196
7.5 Pharmaceutical Applications 198
7.5.1 Albumin Nanopartides for Diagnostic Purposes 198
7.5.1.1 Radiopharmaceuticals 198
7.5.1.2 Echo contrast Agents 199
7.5.2 Albumin Nanopartides as Carriers for Oligonucleotides and DNA
199
7.5.3 Albumin Nanopartides in the Treatment of Cancer 201
7.5.3.1 Fluorouracil and Methotrexate Delivery 201
7.5.3.2 Paclitaxel Delivery 202
7.5.3.3 Albumin Nanopartides in Suicide Gene Therapy 203
7.5.4 Magnetic Albumin Nanopartides 204
7.5.5 Albumin Nanopartides for Ocular Drug Delivery 205
7.5.5.1 Topical Drug Delivery 205
7.5.5.2 Inrravitreal Drug Delivery 205
7.6 Concluding Remarks 207
References 208
8 Nanoscale Patterning of S Layer Proteins as a Natural Self assembly
System 219
Margit Sara, D. Pum, C. Huber, N. Ilk, M. Pleschberger and U. B. Sleytr
8.1 Introduction 219
8.2 General Properties of S Layers 220
8.2.1 Structure, Isolation, Self Assembly and Recrystallization 220
8.2.2 Chemistry and Molecular Biology 221
8.2.3 S Layers as Carbohydrate binding Proteins 223
8.3 Nanoscale Patterning of S Layer Proteins 224
8.3.1 Properties of S Layer Proteins Relevant for Nanoscale Patterning
224
8.3.2 Immobilization of Functionalities by Chemical Methods 225
8.3.3 Patterning by Genetic Approaches 226
8.3.3.1 The S Layer Proteins SbsA, SbsB and SbsC 226
8.3.3.2 S Layer Fusion Proteins 228
8.4 Spatial Control over S Layer Reassembly 241
8.5 S Layers as Templates for the Formation of Regularly Arranged
Nanopartides 242
8.5.1 Binding of Molecules and Nanopartides to Functional Domains 242
8.5.2 In Situ Synthesis of Nanopartides on S Layers 244
8.6 Conclusions and Outlook 244
Acknowledgments 245
References 245
XI Contents
III Pharmaceutically Important Nanomaterials 253
9 Methods of Preparation of Drug Nanoparticles 255
Jonghwi Lee, Cio Bin Lim and Hesson Chung
9.1 Introduction 255
9.2 Structures of Drug Nanoparticles 257
9.3 Thermodynamic Approaches 257
9.3.1 Iipid based Pharmaceutical Nanoparticles 258
9.3.2 What is a Iipid? 259
9.3.3 Liquid Crystalline Phases of Hydrated Iipids with Planar and Curved !
Interfaces 260
9.3.4 Oil in water type Iipid Emulsion 261
9.3.5 liposomes 262
9.3.6 Cubosomes and Hexosomes 262
9.3.7 Other Iipid based Pharmaceutical Nanoparticles 263
9.4 Mechanical Approaches 264
9.4.1 Types of Processing 264
9.4.2 Characteristics of Wet Comminution 266
9.4.3 Drying of Liquid Nanodispersions 267
9.5 SCF Approaches 270
9.5.1 SCF Characteristics 270
9.5.2 Classification of SCF Particle Formation Processes 271
9.5.3 RESS 272
9.5.4 SAS 273
9.5.5 SEDS 274
9.6 Electrostatic Approaches 275
9.6.1 Electrical Potential and Interfaces 275
9.6.2 Electrospraying 277
References 280
10 Production of Biofunctionalized Solid Lipid Nanoparticles for Site specific
Drug Delivery 287
Rainer H. Miiller, Eliana B. Souto, Torsten Coppert and Sven Cohla
10.1 Introduction 287
10.2 Concept of Differential Adsorption 289
10.3 Production of SLN 292
10.4 Functionalization by Surface Modification 294
10.5 Conclusions 298
References 299
11 Biocompatible Nanoparticulate Systems for Tumor Diagnosis and
Therapy 304
Mostafa Sadoqi, Sunil Kumar, Cesar Lau Cam and Vishal Saxena
11.1 Introduction 304
Contents I XI
11.2 Nanoscale Particulate Systems and their Building Blocks/
Components 305
11.2.1 Dendrimers 305
11.2.2 Buckyballs and Buckytubes 307
11.2.3 Quantum Dots 309
11.2.4 Polymeric Micelles 310
11.2.5 Liposomes 310
11.3 Biodegradable Nanoparticles 312
11.3.1 Preparation of Nanoparticles 313
11.4 Biodegradable Optical Nanoparticles 314
11.4.1 Optical Nanoparticles as a Potential Technology for Tumor
Diagnosis 314
11.4.2 Optical Nanoparticles as a Potential Technology for Tumor
Treatment 315
11.5 Optical Imaging and PDT 317
11.5.1 Optical Imaging 317
11.5.1.1 Fluorescence based Optical Imaging 317
11.5.1.2 NIR Fluorescence Imaging 317
11.5.1.3 NIR Dyes for Fluorescence Imaging 318
11.5.2 PDT 318
11.5.2.1 Basis of PDT 319
11.5.2.2 Photosensitizers for PDT 320
11.5.3 ICG: An Ideal Photoactive Agent for Tumor Diagnosis and
Treatment 320
11.5.3.1 Clinical Uses of ICG 320
11.5.3.2 Structure and Physicochemical Properties of ICG 321
11.5.3.3 Binding Properties of ICG 321
11.5.3.4 Metabolism, Excretion and Pharmacokinetics of ICG 322
11.5.3.5 Toxicity of ICG 322
11.5.3.6 Tumor Imaging with ICG 322
11.5.3.7 PDT with ICG 323
11.5.3.8 Limitations of ICG for Tumor Diagnosis and Treatment 324
11.5.3.9 Recent Approaches for Improving the Blood Circulation Time and
Uptake of ICG by Tumors 325
11.5.3.10 Recent Approaches for ICG Stabilization In Vitro 326
11.6 PLGA based Nanoparticulate Delivery System for ICG 327
11.6.1 Rationale of Using a PLGA based Nanoparticulate Delivery System for
ICG 327
11.6.2 In Vivo Pharmacokinetics of ICG Solutions and Nanoparticles 331
11.7 Conclusions and Future Work 336
References 338
12 Nanoparticles for Crossing Biological Membranes 349
R. Pawar, A. Avramoffand A. J. Domb
12.1 Introduction 349
XIII Contents
12.2 Cell Membranes 350
12.2.1 Functions of Biological Membranes 351 1
12.2.2 Kinetic and Thermodynamic Aspects of Biological Membranes 352 j
12.3 Problems of Drugs Crossing through Biological Membranes 354 ]
12.3.1 Through the Skin 354
12.3.1.1 Mechanical Irritation of Skin 355 |
12.3.1.2 Low voltage Electroporation of the Skin 355 j
12.3.2 Through the BBB 357 ;
12.3.2.1 Small Drugs 359
12.3.2.1.1 Limitations of Small Drugs 359
12.3.2.2 Peptide Drug Delivery via SynB Vectors 360
12.3.3 GI Barrier 360
12.3.3.1 Intestinal Translocation and Disease 361
12.4 Nanoparticulate Drug Delivery 362
12.4.1 Skin 363
12.4.1.1 Skin as Semipermeable Nanoporous Barrier 363
12.4.1.2 Hydrophilic Pathway through the Skin Barrier 363
12.4.2 Solid Iipid Nanoparticles (SLN) Skin Delivery 364
12.4.2.1 Chemical Stability of SLN 364
12.4.2.2 In Vitro Occlusion of SLN 365
12.4.2.3 In Vivo SLN: Occlusion, Elasticity and Wrinkles 365
12.4.2.4 Active Compound Penetration into the Skin 365
12.4.2.5 Controlled Release of Cosmetic Compounds 365
12.4.2.6 Novel UV Sunscreen System Using SLN 366
12.4.3 Polymer based Nanoparticulate Delivery to the Skin 366
12.4.4 Subcutaneous Nanoparticulate Antiepileptic Drug Delivery 366
12.4.5 Nanoparticulate Anticancer Drug Delivery 367
12.4.5.1 Paditaxel 368
12.4.5.2 Doxorubicin 368
12.4.5.3 5 Fluorouracil (5 FU) 369
12.4.5.4 Antineoplastic Agents 369
12.4.5.5 Gene Delivery 369
12.4.5.6 Breast Cancer 370
12.4.6 Nanofibers Composed of Nonbiodegradable Polymer 370
12.4.6.1 Electrostatic Spinning 371
12.4.6.2 Scanning Electron Microscopy 371
12.4.6.3 Differential Scanning Calorimetry (DSC) 371
12.5 Nanoparticulate Delivery to the BBB 371
12.5.1 Peptide Delivery to the BBB 372
12.5.1.1 Peptide Conjugation through a Disulfide Bond 373
12.5.2 Biodegradable Polymer Based Nanoparticulate Delivery to BBB 373
12.5.3 Nanoparticulate Gene Delivery to the BBB 374
12.5.4 Mechanism of Nanoparticulate Drug Delivery to the BBB 37S
12.5.5 Nanoparticulate Thiamine coated Delivery to the BBB 376
12.5.6 Nanopartide Optics and Living Cell Imaging 376
Contents I XIII
12.6 Oral Nanoparticulate Delivery 378
12.6.1 Lectin conjugated Nanoparticulate Oral Delivery 379
12.6.2 Oral Peptide Nanoparticulate based Delivery 380
12.6.3 Polymer Based Oral Peptide Nanoparticulate Delivery 381
12.6.3.1 Polyacrylamide Nanospheres 381
12.6.3.2 Poly(alkyl cyanoacrylate) PACA Nanocapsules 381
12.6.3.3 Derivatized Amino Acid Microspheres 382
12.6.4 Lymphatic Oral Nanoparticulate Delivery 382
12.6.5 Oral Nanosuspension Delivery 383
12.6.6 Mucoadhesion of Nanoparticles after Oral Administration 384
12.6.7 Protein Nanoparticulate Oral Delivery 384
References 385
Index 394
|
adam_txt |
I V
Contents
Preface XIV
List of Contributors XVII
I DNA based Nanomaterials 1
1 Self assembled DNA Nanotubes 3
Thorn La Bean and Sung Ha Park
1.1 Introduction 3
1.2 DNA Nanotubes Self assembled from DX Tiles 4
1.3 3DAE E DX Tile Nanotubes 5
1.4 DAE 0 DX Tile Nanotubes 9
1.5 TX Tile Nanotubes 11
1.6 4x4 Tile Nanotubes 14
1.7 6HB Tile Nanotubes 26
1.8 Applications 18
1.9 Summary and Perspectives 29
References 20
2 Nucleic Acid Nanoparticles 23
Cuy Zuber, Benedicte Pons and Andrew W. Fraley
2.1 Introduction 23
2.2 The Chemical and Physical Properties of Therapeutic DNA 25
2.3 Preparation of Nucleic Acid Nanoparticles: Synthesis and
Characterization 27
2.3.1 Rationale 27
2.3.2 Synthesis, Characterization and Optimization of Surfactants 31
2.3.3 Organization of the Surfactant DNA Complexes 35
2.3.4 Quantification of the Stability of Surfactant DNA Complexes 35
2.4 DNA Functionalization for Cell Recognition and Internalization 37
2.4.1 Strategies for Functionalization 37
2.4.2 Intercalation 38
2.4.3 Triple Helix Formation with Oligodeoxyribonucleotides 39
Nanotechnologies for the Life Sciences Vol. 2
Biological and Pharmaceutical Nanomaterials. Edited by Challa S. S. R. Kumar
Copyright © 2006 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 3 527 31382 6
VII Contents
2.4.4 Peptide Nucleic Acids (PNAs) 41 .
2.4.5 Interactions of DNA with Fusion Proteins 42 \
2.4.6 Agents that Bind to the Minor Groove 43 \
2.5 DNA Nanoparticles: Sophistication for Cell Recognition and
Internalization 43 H
2.5.1 Preparation of DNA Nanoparticles Enveloped with a Protective Coat and ,
Cell Internalization Elements 43
2.5.2 Biomedical Application: Cell Targeting and Internalization Properties of
Folate PEG coated Nanoparticles 46
2.6 Concluding Remarks 46
References 47
3 Lipoplexes 51
Sarah Weisman
3.1 Introduction 51
3.2 DNA Lipoplexes 51
3.2.1 Composition 51
3.2.2 Nanostructure and Microstructure 52
3.2.2.1 Equilibrium Morphology 52
3.2.2.2 Nonequilibrium Morphology 55
3.2.2.3 Iipoplex Size 57
3.2.3 Lipofection Efficiency 57
3.2.3.1 In Vitro 57
3.2.3.2 In Vivo 59
3.3 ODN Lipoplexes 60
3.4 siRNA Lipoplexes 62
Acknowledgments 62
References 62
4 DNA Chitosan Nanoparticles for Gene Therapy: Current Knowledge and
Future Trends 68
Julio C. Fernandes, March Jose Tiera and Francoise M. Winnik
4.1 Introduction 68
4.2 Chitosan as a Carrier for Gene Therapy 69
4.2.1 Chitosan Chemistry 69
4.2.2 General Strategies for Chitosan Modification 71
4.2.3 Chitosan DNA interactions: Transfection Efficacy of Unmodified
Chitosan 71
4.3 Modified Chitosans: Strategies to Improve the Transfection
Efficacy 79
4.3.1 The Effects of Charge Density/Solubility and Degree of Acetylation
79
4.3.2 Improving the Physicochemical Characteristics of the Nanoparticulate
Systems: Solubility, Aggregation and RES Uptake 80
Contents I VII
4.3.3 Targeting Mediated by Cell Surface Receptors 81
4.3.4 Hydrophobic Modification: Protecting the DNA and Improving the
Internalization Process 83
4.4 Methods of Preparation of Chitosan Nanoparticles 84
4.4.1 Complex Coacervation 84
4.4.2 Crosslinking Methods 86
4.4.2.1 Chemical Crosslinking 86
4.4.2.2 Ionic Crosslinking or Ionic Gelation 86
4.4.2.3 Emulsion Crosslinking 87
4.4.2.4 Spray Drying 88
4.4.2.5 Other Methods 89
4.5 DNA Loading into Nano and Microparticles of Chitosan 91
4.6 DNA Release and Release Kinetics 93
4.7 Preclinical Evidence of Chitosan DNA Complex Efficacy 95
4.8 Potential Clinical Applications of Chitosan DNA in Gene Therapy 97
4.9 Conclusion 99
Acknowledgments 99
References 99
II Protein Peptide based Nanomaterials 115
5 Plant Protein based Nanoparticles 117
Anne Marie Orecchioni, Cecile Duclairoir, Juan Manuel Irache and
Evelyne Nakache
5.1 Introduction 117
5.2 Description of Plant Proteins 118
5.2.1 Pea Seed Proteins 119
5.2.2 Wheat Proteins 119
5.3 Preparation of Protein Nanoparticles 120
5.3.1 Preparation of Legumin and Vicilin Nanoparticles 121
5.3.2 Preparation of Gliadin Nanoparticles 122
5.4 Drug Encapsulation in Plant Protein Nanoparticles 124
5.4.1 RA Encapsulation in Gliadin Nanoparticles 124
5.4.2 VE Encapsulation in Gliadin Nanoparticles 125
5.4.3 Lipophilic, Hydrophilic or Amphiphilic Drug Encapsulation 326
5.5 Preparation of Ligand Gliadin Nanoparticle Conjugates 127
5.6 Bioadhesive Properties of Gliadin Nanoparticles 129
5.6.1 Ex Vivo Studies with Gastrointestinal Mucosal Segments 130
5.6.2 In Vivo Studies with Laboratory Animals 131
5.7 Future Perspectives 135
5.7.1 Size Optimization 135
5.7.2 Immunization in Animals 136
5.8 Conclusion 137
References 137
Vlil I Contents |
6 Peptide Nanoparticles 145 1
Klaus Longer
6.1 Introduction 145 ;
6.2 Starting Materials for the Preparation of Nanoparticles 146
6.3 Preparation Methods 148
6.3.1 Nanopartide Preparation by Emulsion Techniques 148
6.3.1.1 Emulsion Technique for the Preparation of Albumin based
Microspheres and Nanoparticles 148 j
6.3.1.2 Emulsion Technique for the Preparation of Gelatin based Microspheres j
and Nanoparticles 151 !
6.3.1.3 Emulsion Technique for the Preparation of Casein based Microspheres :
and Nanoparticles 153 ;
6.3.2 Nanopartide Preparation by Coacervation 154
6.3.2.1 Complex Coacervation Techniques for the Preparation of
Nanopartides 154
6.3.2.2 Simple Coacervation (Desolvation) Techniques for the Preparation of
Nanopartides 155
6.4 Basic Characterization Techniques for Peptide Nanopartides 159
6.5 Drug Targeting with Nanoparticles 161
6.5.1 Passive Drug Targeting with Particle Systems 163
6.5.2 Active Drug Targeting with Particle Systems 163
6.5.3 Surface Modifications of Protein based Nanoparticles 164
6.5.4 Surface Modification by Different Hydrophilic Compounds 164
6.5.5 Surface Modification by Polyethylene Glycol (PEG) Derivatives 165
6.5.6 Surface Modification by Drug targeting Ligands 166
6.57 Different Surface Modification Strategies 168
6.6 Applications as Drug Carriers and for Diagnostic Purposes 169
6.6.1 Protein based Nanopartides in Gene Therapy 170
6.6.2 Parenteral Application Route 172
6.6.2.1 Predinical Studies with Protein based Partides 172
6.6.2.2 Clinical Studies with Protein based Partides 172
6.6.3 Topical Application of Protein based Particles 174
6.6.4 Peroral Application of Protein based Particles 175
6.7 Immunological Reactions with Protein based Microspheres 175
6.8 Concluding Remarks 176
References 176
7 Albumin Nanoparticles 185
Juan Manuel Irache and Socorro Espuelas
7.1 Introduction 185
7.2 Serum Albumin 186
7.3 Preparation of Albumin Nanopartides 187
7.3.1 "Conventional" Albumin Nanopartides 188
7.3.1.1 Preparation of Albumin Nanopartides by Desolvation or
Coacervation 189
Contents IIX
7.3.1.2 Preparation of Albumin Nanopartides by Emulsification 192
7.3.1.3 Other Techniques to Prepare Albumin Nanopartides 193
7.3.2 Surface modified Albumin Nanopartides 193
7.3.3 Drug Encapsulation in Albumin Nanopartides 194
7.4 Biodistribution of Albumin Nanopartides 196
7.5 Pharmaceutical Applications 198
7.5.1 Albumin Nanopartides for Diagnostic Purposes 198
7.5.1.1 Radiopharmaceuticals 198
7.5.1.2 Echo contrast Agents 199
7.5.2 Albumin Nanopartides as Carriers for Oligonucleotides and DNA
199
7.5.3 Albumin Nanopartides in the Treatment of Cancer 201
7.5.3.1 Fluorouracil and Methotrexate Delivery 201
7.5.3.2 Paclitaxel Delivery 202
7.5.3.3 Albumin Nanopartides in Suicide Gene Therapy 203
7.5.4 Magnetic Albumin Nanopartides 204
7.5.5 Albumin Nanopartides for Ocular Drug Delivery 205
7.5.5.1 Topical Drug Delivery 205
7.5.5.2 Inrravitreal Drug Delivery 205
7.6 Concluding Remarks 207
References 208
8 Nanoscale Patterning of S Layer Proteins as a Natural Self assembly
System 219
Margit Sara, D. Pum, C. Huber, N. Ilk, M. Pleschberger and U. B. Sleytr
8.1 Introduction 219
8.2 General Properties of S Layers 220
8.2.1 Structure, Isolation, Self Assembly and Recrystallization 220
8.2.2 Chemistry and Molecular Biology 221
8.2.3 S Layers as Carbohydrate binding Proteins 223
8.3 Nanoscale Patterning of S Layer Proteins 224
8.3.1 Properties of S Layer Proteins Relevant for Nanoscale Patterning
224
8.3.2 Immobilization of Functionalities by Chemical Methods 225
8.3.3 Patterning by Genetic Approaches 226
8.3.3.1 The S Layer Proteins SbsA, SbsB and SbsC 226
8.3.3.2 S Layer Fusion Proteins 228
8.4 Spatial Control over S Layer Reassembly 241
8.5 S Layers as Templates for the Formation of Regularly Arranged
Nanopartides 242
8.5.1 Binding of Molecules and Nanopartides to Functional Domains 242
8.5.2 In Situ Synthesis of Nanopartides on S Layers 244
8.6 Conclusions and Outlook 244
Acknowledgments 245
References 245
XI Contents
III Pharmaceutically Important Nanomaterials 253
9 Methods of Preparation of Drug Nanoparticles 255
Jonghwi Lee, Cio Bin Lim and Hesson Chung
9.1 Introduction 255
9.2 Structures of Drug Nanoparticles 257
9.3 Thermodynamic Approaches 257
9.3.1 Iipid based Pharmaceutical Nanoparticles 258
9.3.2 What is a Iipid? 259
9.3.3 Liquid Crystalline Phases of Hydrated Iipids with Planar and Curved !
Interfaces 260
9.3.4 Oil in water type Iipid Emulsion 261
9.3.5 liposomes 262
9.3.6 Cubosomes and Hexosomes 262
9.3.7 Other Iipid based Pharmaceutical Nanoparticles 263
9.4 Mechanical Approaches 264
9.4.1 Types of Processing 264
9.4.2 Characteristics of Wet Comminution 266
9.4.3 Drying of Liquid Nanodispersions 267
9.5 SCF Approaches 270
9.5.1 SCF Characteristics 270
9.5.2 Classification of SCF Particle Formation Processes 271
9.5.3 RESS 272
9.5.4 SAS 273
9.5.5 SEDS 274
9.6 Electrostatic Approaches 275
9.6.1 Electrical Potential and Interfaces 275
9.6.2 Electrospraying 277
References 280
10 Production of Biofunctionalized Solid Lipid Nanoparticles for Site specific
Drug Delivery 287
Rainer H. Miiller, Eliana B. Souto, Torsten Coppert and Sven Cohla
10.1 Introduction 287
10.2 Concept of Differential Adsorption 289
10.3 Production of SLN 292
10.4 Functionalization by Surface Modification 294
10.5 Conclusions 298
References 299
11 Biocompatible Nanoparticulate Systems for Tumor Diagnosis and
Therapy 304
Mostafa Sadoqi, Sunil Kumar, Cesar Lau Cam and Vishal Saxena
11.1 Introduction 304
Contents I XI
11.2 Nanoscale Particulate Systems and their Building Blocks/
Components 305
11.2.1 Dendrimers 305
11.2.2 Buckyballs and Buckytubes 307
11.2.3 Quantum Dots 309
11.2.4 Polymeric Micelles 310
11.2.5 Liposomes 310
11.3 Biodegradable Nanoparticles 312
11.3.1 Preparation of Nanoparticles 313
11.4 Biodegradable Optical Nanoparticles 314
11.4.1 Optical Nanoparticles as a Potential Technology for Tumor
Diagnosis 314
11.4.2 Optical Nanoparticles as a Potential Technology for Tumor
Treatment 315
11.5 Optical Imaging and PDT 317
11.5.1 Optical Imaging 317
11.5.1.1 Fluorescence based Optical Imaging 317
11.5.1.2 NIR Fluorescence Imaging 317
11.5.1.3 NIR Dyes for Fluorescence Imaging 318
11.5.2 PDT 318
11.5.2.1 Basis of PDT 319
11.5.2.2 Photosensitizers for PDT 320
11.5.3 ICG: An Ideal Photoactive Agent for Tumor Diagnosis and
Treatment 320
11.5.3.1 Clinical Uses of ICG 320
11.5.3.2 Structure and Physicochemical Properties of ICG 321
11.5.3.3 Binding Properties of ICG 321
11.5.3.4 Metabolism, Excretion and Pharmacokinetics of ICG 322
11.5.3.5 Toxicity of ICG 322
11.5.3.6 Tumor Imaging with ICG 322
11.5.3.7 PDT with ICG 323
11.5.3.8 Limitations of ICG for Tumor Diagnosis and Treatment 324
11.5.3.9 Recent Approaches for Improving the Blood Circulation Time and
Uptake of ICG by Tumors 325
11.5.3.10 Recent Approaches for ICG Stabilization In Vitro 326
11.6 PLGA based Nanoparticulate Delivery System for ICG 327
11.6.1 Rationale of Using a PLGA based Nanoparticulate Delivery System for
ICG 327
11.6.2 In Vivo Pharmacokinetics of ICG Solutions and Nanoparticles 331
11.7 Conclusions and Future Work 336
References 338
12 Nanoparticles for Crossing Biological Membranes 349
R. Pawar, A. Avramoffand A. J. Domb
12.1 Introduction 349
\
XIII Contents
12.2 Cell Membranes 350
12.2.1 Functions of Biological Membranes 351 1
12.2.2 Kinetic and Thermodynamic Aspects of Biological Membranes 352 j
12.3 Problems of Drugs Crossing through Biological Membranes 354 ]
12.3.1 Through the Skin 354
12.3.1.1 Mechanical Irritation of Skin 355 |
12.3.1.2 Low voltage Electroporation of the Skin 355 j
12.3.2 Through the BBB 357 ';
12.3.2.1 Small Drugs 359
12.3.2.1.1 Limitations of Small Drugs 359
12.3.2.2 Peptide Drug Delivery via SynB Vectors 360
12.3.3 GI Barrier 360
12.3.3.1 Intestinal Translocation and Disease 361
12.4 Nanoparticulate Drug Delivery 362
12.4.1 Skin 363
12.4.1.1 Skin as Semipermeable Nanoporous Barrier 363
12.4.1.2 Hydrophilic Pathway through the Skin Barrier 363
12.4.2 Solid Iipid Nanoparticles (SLN) Skin Delivery 364
12.4.2.1 Chemical Stability of SLN 364
12.4.2.2 In Vitro Occlusion of SLN 365
12.4.2.3 In Vivo SLN: Occlusion, Elasticity and Wrinkles 365
12.4.2.4 Active Compound Penetration into the Skin 365
12.4.2.5 Controlled Release of Cosmetic Compounds 365
12.4.2.6 Novel UV Sunscreen System Using SLN 366
12.4.3 Polymer based Nanoparticulate Delivery to the Skin 366
12.4.4 Subcutaneous Nanoparticulate Antiepileptic Drug Delivery 366
12.4.5 Nanoparticulate Anticancer Drug Delivery 367
12.4.5.1 Paditaxel 368
12.4.5.2 Doxorubicin 368
12.4.5.3 5 Fluorouracil (5 FU) 369
12.4.5.4 Antineoplastic Agents 369
12.4.5.5 Gene Delivery 369
12.4.5.6 Breast Cancer 370
12.4.6 Nanofibers Composed of Nonbiodegradable Polymer 370
12.4.6.1 Electrostatic Spinning 371
12.4.6.2 Scanning Electron Microscopy 371
12.4.6.3 Differential Scanning Calorimetry (DSC) 371
12.5 Nanoparticulate Delivery to the BBB 371
12.5.1 Peptide Delivery to the BBB 372
12.5.1.1 Peptide Conjugation through a Disulfide Bond 373
12.5.2 Biodegradable Polymer Based Nanoparticulate Delivery to BBB 373
12.5.3 Nanoparticulate Gene Delivery to the BBB 374
12.5.4 Mechanism of Nanoparticulate Drug Delivery to the BBB 37S
12.5.5 Nanoparticulate Thiamine coated Delivery to the BBB 376
12.5.6 Nanopartide Optics and Living Cell Imaging 376
Contents I XIII
12.6 Oral Nanoparticulate Delivery 378
12.6.1 Lectin conjugated Nanoparticulate Oral Delivery 379
12.6.2 Oral Peptide Nanoparticulate based Delivery 380
12.6.3 Polymer Based Oral Peptide Nanoparticulate Delivery 381
12.6.3.1 Polyacrylamide Nanospheres 381
12.6.3.2 Poly(alkyl cyanoacrylate) PACA Nanocapsules 381
12.6.3.3 Derivatized Amino Acid Microspheres 382
12.6.4 Lymphatic Oral Nanoparticulate Delivery 382
12.6.5 Oral Nanosuspension Delivery 383
12.6.6 Mucoadhesion of Nanoparticles after Oral Administration 384
12.6.7 Protein Nanoparticulate Oral Delivery 384
References 385
Index 394 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)129740470 |
building | Verbundindex |
bvnumber | BV021237245 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.N35 |
callnumber-search | TA418.9.N35 |
callnumber-sort | TA 3418.9 N35 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | VE 9850 |
classification_tum | CHE 800f BIO 100f TEC 031f CHE 893f |
ctrlnum | (OCoLC)61703214 (DE-599)BVBBV021237245 |
dewey-full | 620/.5 615.19 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations 615 - Pharmacology and therapeutics |
dewey-raw | 620/.5 615.19 |
dewey-search | 620/.5 615.19 |
dewey-sort | 3620 15 |
dewey-tens | 620 - Engineering and allied operations 610 - Medicine and health |
discipline | Chemie / Pharmazie Technik Biologie Chemie Medizin |
discipline_str_mv | Chemie / Pharmazie Technik Biologie Chemie Medizin |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02752nam a2200709 cb4500</leader><controlfield tag="001">BV021237245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060202 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051123s2006 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N28,1071</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">975304844</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527313822</subfield><subfield code="9">978-3-527-31382-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527313826</subfield><subfield code="c">Gb. : ca. sfr 220.00 (freier Pr.), ca. EUR 139.00 (freier Pr.), ca. sfr 188.00 (Preis bei Abn. d. Gesamtwerkes), ca. EUR 119.00 (Preis bei Abn. d. Gesamtwerkes)</subfield><subfield code="9">3-527-31382-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527313822</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131382 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61703214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021237245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M49</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-Er8</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">615.19</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">610</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 800f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 100f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 031f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 893f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biological and pharmaceutical nanomaterials</subfield><subfield code="c">ed. by Challa S. S. R. Kumar</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 408 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nanotechnologies for the life sciences</subfield><subfield code="v">2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomatériaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biotechnologie pharmaceutique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanomatériaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical Technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmaceutical biotechnology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomaterial</subfield><subfield code="0">(DE-588)4267769-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pharmazeutische Chemie</subfield><subfield code="0">(DE-588)4132158-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biomaterial</subfield><subfield code="0">(DE-588)4267769-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Pharmazeutische Chemie</subfield><subfield code="0">(DE-588)4132158-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Challa S. S. R.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)129740470</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nanotechnologies for the life sciences</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV020030849</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279998&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014279998</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV021237245 |
illustrated | Illustrated |
index_date | 2024-07-02T13:30:07Z |
indexdate | 2024-07-09T20:28:30Z |
institution | BVB |
isbn | 9783527313822 3527313826 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014279998 |
oclc_num | 61703214 |
open_access_boolean | |
owner | DE-M49 DE-BY-TUM DE-355 DE-BY-UBR DE-703 DE-29 DE-19 DE-BY-UBM DE-1051 DE-Er8 |
owner_facet | DE-M49 DE-BY-TUM DE-355 DE-BY-UBR DE-703 DE-29 DE-19 DE-BY-UBM DE-1051 DE-Er8 |
physical | XIX, 408 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | WILEY-VCH |
record_format | marc |
series | Nanotechnologies for the life sciences |
series2 | Nanotechnologies for the life sciences |
spelling | Biological and pharmaceutical nanomaterials ed. by Challa S. S. R. Kumar 1. ed. Weinheim WILEY-VCH 2006 XIX, 408 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanotechnologies for the life sciences 2 Biomatériaux Biotechnologie pharmaceutique Nanomatériaux Biomedical Technology Biomedical materials Nanostructured materials Nanostructures Nanotechnology Pharmaceutical biotechnology Biomaterial (DE-588)4267769-5 gnd rswk-swf Pharmazeutische Chemie (DE-588)4132158-3 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Nanostrukturiertes Material (DE-588)4342626-8 s Biomaterial (DE-588)4267769-5 s DE-604 Pharmazeutische Chemie (DE-588)4132158-3 s Kumar, Challa S. S. R. Sonstige (DE-588)129740470 oth Nanotechnologies for the life sciences 2 (DE-604)BV020030849 2 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279998&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Biological and pharmaceutical nanomaterials Nanotechnologies for the life sciences Biomatériaux Biotechnologie pharmaceutique Nanomatériaux Biomedical Technology Biomedical materials Nanostructured materials Nanostructures Nanotechnology Pharmaceutical biotechnology Biomaterial (DE-588)4267769-5 gnd Pharmazeutische Chemie (DE-588)4132158-3 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
subject_GND | (DE-588)4267769-5 (DE-588)4132158-3 (DE-588)4342626-8 (DE-588)4143413-4 |
title | Biological and pharmaceutical nanomaterials |
title_auth | Biological and pharmaceutical nanomaterials |
title_exact_search | Biological and pharmaceutical nanomaterials |
title_exact_search_txtP | Biological and pharmaceutical nanomaterials |
title_full | Biological and pharmaceutical nanomaterials ed. by Challa S. S. R. Kumar |
title_fullStr | Biological and pharmaceutical nanomaterials ed. by Challa S. S. R. Kumar |
title_full_unstemmed | Biological and pharmaceutical nanomaterials ed. by Challa S. S. R. Kumar |
title_short | Biological and pharmaceutical nanomaterials |
title_sort | biological and pharmaceutical nanomaterials |
topic | Biomatériaux Biotechnologie pharmaceutique Nanomatériaux Biomedical Technology Biomedical materials Nanostructured materials Nanostructures Nanotechnology Pharmaceutical biotechnology Biomaterial (DE-588)4267769-5 gnd Pharmazeutische Chemie (DE-588)4132158-3 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
topic_facet | Biomatériaux Biotechnologie pharmaceutique Nanomatériaux Biomedical Technology Biomedical materials Nanostructured materials Nanostructures Nanotechnology Pharmaceutical biotechnology Biomaterial Pharmazeutische Chemie Nanostrukturiertes Material Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279998&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV020030849 |
work_keys_str_mv | AT kumarchallassr biologicalandpharmaceuticalnanomaterials |