Mathematics of large eddy simulation of turbulent flows:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Schriftenreihe: | Scientific computation
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Auch als Internetausgabe |
Beschreibung: | XVII, 348 S. graph. Darst. 235 mm x 155 mm |
ISBN: | 3540263160 9783540263166 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021236410 | ||
003 | DE-604 | ||
005 | 20051128 | ||
007 | t | ||
008 | 051123s2006 gw d||| |||| 00||| eng d | ||
015 | |a 05,N27,1127 |2 dnb | ||
016 | 7 | |a 975230492 |2 DE-101 | |
020 | |a 3540263160 |c Gb. : EUR 74.85 (freier Pr.), sfr 123.50 (freier Pr.) |9 3-540-26316-0 | ||
020 | |a 9783540263166 |9 978-3-540-26316-6 | ||
024 | 3 | |a 9783540263166 | |
028 | 5 | 2 | |a 10948262 |
035 | |a (OCoLC)62229870 | ||
035 | |a (DE-599)BVBBV021236410 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-824 |a DE-634 |a DE-188 | ||
050 | 0 | |a TA357.5.T87 | |
082 | 0 | |a 532/.0527015118 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Berselli, Luigi C. |d 1972- |e Verfasser |0 (DE-588)130510912 |4 aut | |
245 | 1 | 0 | |a Mathematics of large eddy simulation of turbulent flows |c L. C. Berselli ; T. Iliescu ; W. J. Layton |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XVII, 348 S. |b graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Scientific computation | |
500 | |a Auch als Internetausgabe | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Eddies |x Mathematical models | |
650 | 4 | |a Turbulence |x Mathematical models | |
650 | 0 | 7 | |a LES |g Strömung |0 (DE-588)4315616-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Turbulente Strömung |0 (DE-588)4117265-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a LES |g Strömung |0 (DE-588)4315616-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Iliescu, Traian |e Verfasser |0 (DE-588)122385128 |4 aut | |
700 | 1 | |a Layton, William J. |e Verfasser |0 (DE-588)1020165960 |4 aut | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2647699&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014279169 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804134681407389696 |
---|---|
adam_text | CONTENTS
PART
I
INTRODUCTION
1
INTRODUCTION
...............................................
3
1.1
CHARACTERISTICSOFTURBULENCE
.............................
6
1.2
WHATAREUSEFULAVERAGES?...............................
8
1.3
CONVENTIONALTURBULENCEMODELS
..........................
14
1.4
LARGEEDDYSIMULATION...................................
16
1.5
PROBLEMS
WITH
BOUNDARIES................................
17
1.6
THEINTERIORCLOSUREPROBLEMINLES
......................
18
1.7
EDDYVISCOSITYCLOSUREMODELSINLES.....................
20
1.8
CLOSURE
MODELS
BASED
ON
SYSTEMATIC
APPROXIMATION.........
22
1.9
MIXEDMODELS...........................................
25
1.10
NUMERICALVALIDATIONANDTESTINGINLES...................
26
2
THE
NAVIER-STOKES
EQUATIONS
..............................
29
2.1
ANINTRODUCTIONTOTHENSE
..............................
29
2.2
DERIVATIONOFTHENSE
...................................
32
2.3
BOUNDARY
CONDITIONS
....................................
36
2.4
AFEWRESULTSONTHEMATHEMATICSOFTHENSE..............
37
2.4.1
NOTATIONANDFUNCTIONSPACES
.....................
38
2.4.2
WEAKSOLUTIONSINTHESENSEOFLERAY-HOPF..........
42
2.4.3
THEENERGYBALANCE..............................
43
2.4.4
EXISTENCEOFWEAKSOLUTIONS
.......................
47
2.4.5
MOREREGULARSOLUTIONS
...........................
54
2.5
SOMEREMARKSONTHEEULEREQUATIONS.....................
62
2.6
THESTOCHASTICNAVIER-STOKESEQUATIONS....................
65
2.7
CONCLUSIONS.............................................
68
XIV
CONTENTS
PART
II
EDDY
VISCOSITY
MODELS
3
INTRODUCTION
TO
EDDY
VISCOSITY
MODELS
....................
71
3.1
INTRODUCTION............................................
71
3.2
EDDYVISCOSITYMODELS...................................
72
3.3
VARIATIONS
ON
THE
SMAGORINSKY
MODEL
......................
77
3.3.1
VANDRIESTDAMPING..............................
78
3.3.2
ALTERNATESCALINGS................................
78
3.3.3
MODELS
ACTING
ONLY
ON
THE
SMALLEST
RESOLVED
SCALES..
80
3.3.4
GERMANO SDYNAMICMODEL........................
80
3.4
MATHEMATICAL
PROPERTIES
OF
THE
SMAGORINSKY
MODEL..........
81
3.4.1
FURTHER
PROPERTIES
OF
MONOTONE
OPERATORS...........
93
3.5
BACKSCATTERANDTHEEDDYVISCOSITYMODELS.................102
3.6
CONCLUSIONS.............................................103
4
IMPROVED
EDDY
VISCOSITY
MODELS
..........................
105
4.1
INTRODUCTION............................................105
4.2
THEGAUSSIAN-LAPLACIANMODEL(GL)
......................111
4.2.1
MATHEMATICALPROPERTIES
..........................112
4.3
K
YY
YY
MODELING..........................................117
4.3.1
SELECTIVEMODELS
.................................118
4.4
CONCLUSIONS.............................................121
5
UNCERTAINTIES
IN
EDDY
VISCOSITY
MODELS
AND
IMPROVED
ESTIMATES
OF
TURBULENT
FLOW
FUNCTIONALS
.............................
123
5.1
INTRODUCTION............................................123
5.2
THE
SENSITIVITY
EQUATIONS
OF
EDDY
VISCOSITY
MODELS
.........124
5.2.1
CALCULATING
F
YY
=
YY
YYYY
F
..............................126
5.2.2
BOUNDARY
CONDITIONS
FOR
THE
SENSITIVITIES............127
5.3
IMPROVING
ESTIMATES
OF
FUNCTIONALS
OF
TURBULENT
QUANTITIES
..127
5.4
CONCLUSIONS:
ARE
U
AND
P
ENOUGH?
........................130
PART
III
ADVANCED
MODELS
6
BASIC
CRITERIA
FOR
SUBFILTER-SCALE
MODELING
.................
135
6.1
MODELING
THE
SUBFILTER-SCALE
STRESSES
.......................135
6.2
REQUIREMENTSFORASATISFACTORYCLOSUREMODEL..............136
CONTENTS
XV
7
CLOSURE
BASED
ON
WAVENUMBER
ASYMPTOTICS
...............
143
7.1
THEGRADIENT(TAYLOR)LESMODEL.........................145
7.1.1
DERIVATIONOFTHEGRADIENTLESMODEL
..............145
7.1.2
MATHEMATICAL
ANALYSIS
OF
THE
GRADIENT
LES
MODEL
...147
7.1.3
NUMERICALVALIDATIONANDTESTING
..................153
7.2
THERATIONALLESMODEL(RLES)
.........................154
7.2.1
MATHEMATICAL
ANALYSIS
FOR
THE
RATIONAL
LES
MODEL...157
7.2.2
ONTHEBREAKDOWNOFSTRONGSOLUTIONS..............170
7.2.3
NUMERICALVALIDATIONANDTESTING
..................177
7.3
THE
HIGHER-ORDER
SUBFILTER-SCALE
MODEL
(HOSFS)
............179
7.3.1
DERIVATIONOFTHEHOSFSMODEL....................179
7.3.2
MATHEMATICAL
ANALYSIS
OF
THE
HOSFS
MODEL.........181
7.3.3
NUMERICALVALIDATIONANDTESTING
..................188
7.4
CONCLUSIONS.............................................193
8
SCALE
SIMILARITY
MODELS
....................................
195
8.1
INTRODUCTION............................................195
8.1.1
THEBARDINAMODEL...............................195
8.2
OTHERSCALESIMILARITYMODELS.............................200
8.2.1
GERMANODYNAMICMODEL
.........................200
8.2.2
THEFILTEREDBARDINAMODEL
.......................200
8.2.3
THEMIXED-SCALESIMILARITYMODEL
..................201
8.3
RECENT
IDEAS
IN
SCALE
SIMILARITY
MODELS
....................201
8.4
THE
S
4
=SKEW-SYMMETRICSCALESIMILARITYMODEL
...........205
8.4.1
ANALYSISOFTHEMODEL.............................206
8.4.2
LIMIT
CONSISTENCY
AND
VERIFIABILITY
OF
THE
S
4
MODEL
..208
8.5
THEFIRSTENERGY-SPONGESCALESIMILARITYMODEL.............213
8.5.1
MOREACCURATE MODELS..........................217
8.6
THE
HIGHER
ORDER,
STOLZ-ADAMS
DECONVOLUTION
MODELS.......219
8.6.1
THEVANCITTERTAPPROXIMATIONS
...................220
8.7
CONCLUSIONS.............................................223
PART
IV
BOUNDARY
CONDITIONS
9
FILTERING
ON
BOUNDED
DOMAINS
............................
227
9.1
FILTERSWITHNONCONSTANTRADIUS
..........................229
9.1.1
DEFINITIONOFTHEFILTERING
.........................230
9.1.2
SOME
ESTIMATES
OF
THE
COMMUTATION
ERROR
..........234
9.2
FILTERSWITHCONSTANTRADIUS
.............................240
9.2.1
DERIVATION
OF
THE
BOUNDARY
COMMUTATION
ERROR(BCE).....................................241
9.2.2
ESTIMATESOFTHEBCE.............................246
9.2.3
ERROR
ESTIMATES
FOR
A
WEAK
FORM
OF
THE
BCE........249
9.2.4
NUMERICALAPPROXIMATIONOFTHEBCE
..............250
9.3
CONCLUSIONS.............................................251
XVI
CONTENTS
10
NEAR
WALL
MODELS
IN
LES
..................................
253
10.1
INTRODUCTION............................................253
10.2
WALL
LAWS
IN
CONVENTIONAL
TURBULENCE
MODELING
............254
10.3
CURRENTIDEASINNEARWALLMODELINGFORLES...............256
10.4
NEWPERSPECTIVESINNEARWALLMODELS.....................259
10.4.1
THE
1
/
7THPOWERLAWIN3D.......................261
10.4.2
THE
1
/N
THPOWERLAWIN3D.......................266
10.4.3
A
NEAR
WALL
MODEL
FOR
RECIRCULATING
FLOWS..........268
10.4.4
A
NWM
FOR
TIME-FLUCTUATING
QUANTITIES
............270
10.4.5
A
NWM
FOR
REATTACHMENT
AND
SEPARATION
POINTS
....271
10.5
CONCLUSIONS.............................................272
PART
V
NUMERICAL
TESTS
11
VARIATIONAL
APPROXIMATION
OF
LES
MODELS
.................
275
11.1
INTRODUCTION............................................275
11.2
LES
MODELS
AND
THEIR
VARIATIONAL
APPROXIMATION............276
11.2.1
VARIATIONALFORMULATION...........................277
11.3
EXAMPLESOFVARIATIONALMETHODS..........................281
11.3.1
SPECTRALMETHODS
................................281
11.3.2
FINITEELEMENTMETHODS...........................282
11.3.3
SPECTRALELEMENTMETHODS.........................282
11.4
NUMERICAL
ANALYSIS
OF
VARIATIONAL
APPROXIMATIONS...........282
11.5
INTRODUCTION
TO
VARIATIONAL
MULTISCALE
METHODS
(VMM)
......285
11.6
EDDYVISCOSITYACTINGONFLUCTUATIONSASAVMM...........289
11.7
CONCLUSIONS.............................................293
12
TEST
PROBLEMS
FOR
LES
....................................
295
12.1
GENERALCOMMENTS
......................................295
12.2
TURBULENTCHANNELFLOWS.................................296
12.2.1
COMPUTATIONALSETTING............................297
12.2.2
DEFINITION
OF
RE
YY
.................................298
12.2.3
INITIALCONDITIONS
................................300
12.2.4
STATISTICS........................................301
12.2.5
LESMODELSTESTED...............................303
12.2.6
NUMERICAL
METHOD
AND
NUMERICAL
SETTING
...........305
12.2.7
A
POSTERIORI
TESTS
FOR
RE
YY
=180...................307
12.2.8
A
POSTERIORI
TESTS
FOR
RE
YY
=395...................310
12.2.9
BACKSCATTER
IN
THE
RATIONAL
LES
MODEL
.............312
12.2.10
NUMERICALRESULTS................................315
12.2.11
SUMMARYOFRESULTS
..............................318
CONTENTS
XVII
12.3
A
FEW
REMARKS
ON
ISOTROPIC
HOMOGENEOUS
TURBULENCE
.......320
12.3.1
COMPUTATIONALSETTING............................321
12.3.2
INITIALCONDITIONS
................................322
12.3.3
EXPERIMENTALRESULTS.............................323
12.3.4
COMPUTATIONALCOST..............................323
12.3.5
LES
OF
THE
COMTE-BELLOT
CORRSIN
EXPERIMENT
........324
12.4
FINALREMARKS
..........................................324
REFERENCES
.....................................................
327
INDEX
..........................................................
345
|
adam_txt |
CONTENTS
PART
I
INTRODUCTION
1
INTRODUCTION
.
3
1.1
CHARACTERISTICSOFTURBULENCE
.
6
1.2
WHATAREUSEFULAVERAGES?.
8
1.3
CONVENTIONALTURBULENCEMODELS
.
14
1.4
LARGEEDDYSIMULATION.
16
1.5
PROBLEMS
WITH
BOUNDARIES.
17
1.6
THEINTERIORCLOSUREPROBLEMINLES
.
18
1.7
EDDYVISCOSITYCLOSUREMODELSINLES.
20
1.8
CLOSURE
MODELS
BASED
ON
SYSTEMATIC
APPROXIMATION.
22
1.9
MIXEDMODELS.
25
1.10
NUMERICALVALIDATIONANDTESTINGINLES.
26
2
THE
NAVIER-STOKES
EQUATIONS
.
29
2.1
ANINTRODUCTIONTOTHENSE
.
29
2.2
DERIVATIONOFTHENSE
.
32
2.3
BOUNDARY
CONDITIONS
.
36
2.4
AFEWRESULTSONTHEMATHEMATICSOFTHENSE.
37
2.4.1
NOTATIONANDFUNCTIONSPACES
.
38
2.4.2
WEAKSOLUTIONSINTHESENSEOFLERAY-HOPF.
42
2.4.3
THEENERGYBALANCE.
43
2.4.4
EXISTENCEOFWEAKSOLUTIONS
.
47
2.4.5
MOREREGULARSOLUTIONS
.
54
2.5
SOMEREMARKSONTHEEULEREQUATIONS.
62
2.6
THESTOCHASTICNAVIER-STOKESEQUATIONS.
65
2.7
CONCLUSIONS.
68
XIV
CONTENTS
PART
II
EDDY
VISCOSITY
MODELS
3
INTRODUCTION
TO
EDDY
VISCOSITY
MODELS
.
71
3.1
INTRODUCTION.
71
3.2
EDDYVISCOSITYMODELS.
72
3.3
VARIATIONS
ON
THE
SMAGORINSKY
MODEL
.
77
3.3.1
VANDRIESTDAMPING.
78
3.3.2
ALTERNATESCALINGS.
78
3.3.3
MODELS
ACTING
ONLY
ON
THE
SMALLEST
RESOLVED
SCALES.
80
3.3.4
GERMANO'SDYNAMICMODEL.
80
3.4
MATHEMATICAL
PROPERTIES
OF
THE
SMAGORINSKY
MODEL.
81
3.4.1
FURTHER
PROPERTIES
OF
MONOTONE
OPERATORS.
93
3.5
BACKSCATTERANDTHEEDDYVISCOSITYMODELS.102
3.6
CONCLUSIONS.103
4
IMPROVED
EDDY
VISCOSITY
MODELS
.
105
4.1
INTRODUCTION.105
4.2
THEGAUSSIAN-LAPLACIANMODEL(GL)
.111
4.2.1
MATHEMATICALPROPERTIES
.112
4.3
K
YY
YY
MODELING.117
4.3.1
SELECTIVEMODELS
.118
4.4
CONCLUSIONS.121
5
UNCERTAINTIES
IN
EDDY
VISCOSITY
MODELS
AND
IMPROVED
ESTIMATES
OF
TURBULENT
FLOW
FUNCTIONALS
.
123
5.1
INTRODUCTION.123
5.2
THE
SENSITIVITY
EQUATIONS
OF
EDDY
VISCOSITY
MODELS
.124
5.2.1
CALCULATING
F
YY
=
YY
YYYY
F
.126
5.2.2
BOUNDARY
CONDITIONS
FOR
THE
SENSITIVITIES.127
5.3
IMPROVING
ESTIMATES
OF
FUNCTIONALS
OF
TURBULENT
QUANTITIES
.127
5.4
CONCLUSIONS:
ARE
U
AND
P
ENOUGH?
.130
PART
III
ADVANCED
MODELS
6
BASIC
CRITERIA
FOR
SUBFILTER-SCALE
MODELING
.
135
6.1
MODELING
THE
SUBFILTER-SCALE
STRESSES
.135
6.2
REQUIREMENTSFORASATISFACTORYCLOSUREMODEL.136
CONTENTS
XV
7
CLOSURE
BASED
ON
WAVENUMBER
ASYMPTOTICS
.
143
7.1
THEGRADIENT(TAYLOR)LESMODEL.145
7.1.1
DERIVATIONOFTHEGRADIENTLESMODEL
.145
7.1.2
MATHEMATICAL
ANALYSIS
OF
THE
GRADIENT
LES
MODEL
.147
7.1.3
NUMERICALVALIDATIONANDTESTING
.153
7.2
THERATIONALLESMODEL(RLES)
.154
7.2.1
MATHEMATICAL
ANALYSIS
FOR
THE
RATIONAL
LES
MODEL.157
7.2.2
ONTHEBREAKDOWNOFSTRONGSOLUTIONS.170
7.2.3
NUMERICALVALIDATIONANDTESTING
.177
7.3
THE
HIGHER-ORDER
SUBFILTER-SCALE
MODEL
(HOSFS)
.179
7.3.1
DERIVATIONOFTHEHOSFSMODEL.179
7.3.2
MATHEMATICAL
ANALYSIS
OF
THE
HOSFS
MODEL.181
7.3.3
NUMERICALVALIDATIONANDTESTING
.188
7.4
CONCLUSIONS.193
8
SCALE
SIMILARITY
MODELS
.
195
8.1
INTRODUCTION.195
8.1.1
THEBARDINAMODEL.195
8.2
OTHERSCALESIMILARITYMODELS.200
8.2.1
GERMANODYNAMICMODEL
.200
8.2.2
THEFILTEREDBARDINAMODEL
.200
8.2.3
THEMIXED-SCALESIMILARITYMODEL
.201
8.3
RECENT
IDEAS
IN
SCALE
SIMILARITY
MODELS
.201
8.4
THE
S
4
=SKEW-SYMMETRICSCALESIMILARITYMODEL
.205
8.4.1
ANALYSISOFTHEMODEL.206
8.4.2
LIMIT
CONSISTENCY
AND
VERIFIABILITY
OF
THE
S
4
MODEL
.208
8.5
THEFIRSTENERGY-SPONGESCALESIMILARITYMODEL.213
8.5.1
"MOREACCURATE"MODELS.217
8.6
THE
HIGHER
ORDER,
STOLZ-ADAMS
DECONVOLUTION
MODELS.219
8.6.1
THEVANCITTERTAPPROXIMATIONS
.220
8.7
CONCLUSIONS.223
PART
IV
BOUNDARY
CONDITIONS
9
FILTERING
ON
BOUNDED
DOMAINS
.
227
9.1
FILTERSWITHNONCONSTANTRADIUS
.229
9.1.1
DEFINITIONOFTHEFILTERING
.230
9.1.2
SOME
ESTIMATES
OF
THE
COMMUTATION
ERROR
.234
9.2
FILTERSWITHCONSTANTRADIUS
.240
9.2.1
DERIVATION
OF
THE
BOUNDARY
COMMUTATION
ERROR(BCE).241
9.2.2
ESTIMATESOFTHEBCE.246
9.2.3
ERROR
ESTIMATES
FOR
A
WEAK
FORM
OF
THE
BCE.249
9.2.4
NUMERICALAPPROXIMATIONOFTHEBCE
.250
9.3
CONCLUSIONS.251
XVI
CONTENTS
10
NEAR
WALL
MODELS
IN
LES
.
253
10.1
INTRODUCTION.253
10.2
WALL
LAWS
IN
CONVENTIONAL
TURBULENCE
MODELING
.254
10.3
CURRENTIDEASINNEARWALLMODELINGFORLES.256
10.4
NEWPERSPECTIVESINNEARWALLMODELS.259
10.4.1
THE
1
/
7THPOWERLAWIN3D.261
10.4.2
THE
1
/N
THPOWERLAWIN3D.266
10.4.3
A
NEAR
WALL
MODEL
FOR
RECIRCULATING
FLOWS.268
10.4.4
A
NWM
FOR
TIME-FLUCTUATING
QUANTITIES
.270
10.4.5
A
NWM
FOR
REATTACHMENT
AND
SEPARATION
POINTS
.271
10.5
CONCLUSIONS.272
PART
V
NUMERICAL
TESTS
11
VARIATIONAL
APPROXIMATION
OF
LES
MODELS
.
275
11.1
INTRODUCTION.275
11.2
LES
MODELS
AND
THEIR
VARIATIONAL
APPROXIMATION.276
11.2.1
VARIATIONALFORMULATION.277
11.3
EXAMPLESOFVARIATIONALMETHODS.281
11.3.1
SPECTRALMETHODS
.281
11.3.2
FINITEELEMENTMETHODS.282
11.3.3
SPECTRALELEMENTMETHODS.282
11.4
NUMERICAL
ANALYSIS
OF
VARIATIONAL
APPROXIMATIONS.282
11.5
INTRODUCTION
TO
VARIATIONAL
MULTISCALE
METHODS
(VMM)
.285
11.6
EDDYVISCOSITYACTINGONFLUCTUATIONSASAVMM.289
11.7
CONCLUSIONS.293
12
TEST
PROBLEMS
FOR
LES
.
295
12.1
GENERALCOMMENTS
.295
12.2
TURBULENTCHANNELFLOWS.296
12.2.1
COMPUTATIONALSETTING.297
12.2.2
DEFINITION
OF
RE
YY
.298
12.2.3
INITIALCONDITIONS
.300
12.2.4
STATISTICS.301
12.2.5
LESMODELSTESTED.303
12.2.6
NUMERICAL
METHOD
AND
NUMERICAL
SETTING
.305
12.2.7
A
POSTERIORI
TESTS
FOR
RE
YY
=180.307
12.2.8
A
POSTERIORI
TESTS
FOR
RE
YY
=395.310
12.2.9
BACKSCATTER
IN
THE
RATIONAL
LES
MODEL
.312
12.2.10
NUMERICALRESULTS.315
12.2.11
SUMMARYOFRESULTS
.318
CONTENTS
XVII
12.3
A
FEW
REMARKS
ON
ISOTROPIC
HOMOGENEOUS
TURBULENCE
.320
12.3.1
COMPUTATIONALSETTING.321
12.3.2
INITIALCONDITIONS
.322
12.3.3
EXPERIMENTALRESULTS.323
12.3.4
COMPUTATIONALCOST.323
12.3.5
LES
OF
THE
COMTE-BELLOT
CORRSIN
EXPERIMENT
.324
12.4
FINALREMARKS
.324
REFERENCES
.
327
INDEX
.
345 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Berselli, Luigi C. 1972- Iliescu, Traian Layton, William J. |
author_GND | (DE-588)130510912 (DE-588)122385128 (DE-588)1020165960 |
author_facet | Berselli, Luigi C. 1972- Iliescu, Traian Layton, William J. |
author_role | aut aut aut |
author_sort | Berselli, Luigi C. 1972- |
author_variant | l c b lc lcb t i ti w j l wj wjl |
building | Verbundindex |
bvnumber | BV021236410 |
callnumber-first | T - Technology |
callnumber-label | TA357 |
callnumber-raw | TA357.5.T87 |
callnumber-search | TA357.5.T87 |
callnumber-sort | TA 3357.5 T87 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | SK 950 |
ctrlnum | (OCoLC)62229870 (DE-599)BVBBV021236410 |
dewey-full | 532/.0527015118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0527015118 |
dewey-search | 532/.0527015118 |
dewey-sort | 3532 9527015118 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02303nam a2200565 c 4500</leader><controlfield tag="001">BV021236410</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20051128 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051123s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N27,1127</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">975230492</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540263160</subfield><subfield code="c">Gb. : EUR 74.85 (freier Pr.), sfr 123.50 (freier Pr.)</subfield><subfield code="9">3-540-26316-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540263166</subfield><subfield code="9">978-3-540-26316-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540263166</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10948262</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62229870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021236410</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA357.5.T87</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0527015118</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berselli, Luigi C.</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130510912</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics of large eddy simulation of turbulent flows</subfield><subfield code="c">L. C. Berselli ; T. Iliescu ; W. J. Layton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 348 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Scientific computation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eddies</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulence</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">LES</subfield><subfield code="g">Strömung</subfield><subfield code="0">(DE-588)4315616-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">LES</subfield><subfield code="g">Strömung</subfield><subfield code="0">(DE-588)4315616-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iliescu, Traian</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122385128</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Layton, William J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1020165960</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2647699&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014279169</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021236410 |
illustrated | Illustrated |
index_date | 2024-07-02T13:29:51Z |
indexdate | 2024-07-09T20:28:28Z |
institution | BVB |
isbn | 3540263160 9783540263166 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014279169 |
oclc_num | 62229870 |
open_access_boolean | |
owner | DE-824 DE-634 DE-188 |
owner_facet | DE-824 DE-634 DE-188 |
physical | XVII, 348 S. graph. Darst. 235 mm x 155 mm |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series2 | Scientific computation |
spelling | Berselli, Luigi C. 1972- Verfasser (DE-588)130510912 aut Mathematics of large eddy simulation of turbulent flows L. C. Berselli ; T. Iliescu ; W. J. Layton Berlin [u.a.] Springer 2006 XVII, 348 S. graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Scientific computation Auch als Internetausgabe Mathematisches Modell Eddies Mathematical models Turbulence Mathematical models LES Strömung (DE-588)4315616-2 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 gnd rswk-swf LES Strömung (DE-588)4315616-2 s DE-604 Turbulente Strömung (DE-588)4117265-6 s 1\p DE-604 Iliescu, Traian Verfasser (DE-588)122385128 aut Layton, William J. Verfasser (DE-588)1020165960 aut text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2647699&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Berselli, Luigi C. 1972- Iliescu, Traian Layton, William J. Mathematics of large eddy simulation of turbulent flows Mathematisches Modell Eddies Mathematical models Turbulence Mathematical models LES Strömung (DE-588)4315616-2 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
subject_GND | (DE-588)4315616-2 (DE-588)4117265-6 |
title | Mathematics of large eddy simulation of turbulent flows |
title_auth | Mathematics of large eddy simulation of turbulent flows |
title_exact_search | Mathematics of large eddy simulation of turbulent flows |
title_exact_search_txtP | Mathematics of large eddy simulation of turbulent flows |
title_full | Mathematics of large eddy simulation of turbulent flows L. C. Berselli ; T. Iliescu ; W. J. Layton |
title_fullStr | Mathematics of large eddy simulation of turbulent flows L. C. Berselli ; T. Iliescu ; W. J. Layton |
title_full_unstemmed | Mathematics of large eddy simulation of turbulent flows L. C. Berselli ; T. Iliescu ; W. J. Layton |
title_short | Mathematics of large eddy simulation of turbulent flows |
title_sort | mathematics of large eddy simulation of turbulent flows |
topic | Mathematisches Modell Eddies Mathematical models Turbulence Mathematical models LES Strömung (DE-588)4315616-2 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
topic_facet | Mathematisches Modell Eddies Mathematical models Turbulence Mathematical models LES Strömung Turbulente Strömung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2647699&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT berselliluigic mathematicsoflargeeddysimulationofturbulentflows AT iliescutraian mathematicsoflargeeddysimulationofturbulentflows AT laytonwilliamj mathematicsoflargeeddysimulationofturbulentflows |