The quantum in chemistry: an experimentalist's view
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2005
|
Schlagworte: | |
Online-Zugang: | Table of contents Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XIV, 459 S. Ill., graph. Darst. |
ISBN: | 0470013176 9780470013175 9780470013182 0470013184 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV020851187 | ||
003 | DE-604 | ||
005 | 20060110 | ||
007 | t | ||
008 | 051031s2005 xxkad|| |||| 00||| eng d | ||
010 | |a 2005009405 | ||
020 | |a 0470013176 |c cloth : acidfree paper |9 0-470-01317-6 | ||
020 | |a 9780470013175 |9 978-0-470-01317-5 | ||
020 | |a 9780470013182 |9 978-0-470-01318-2 | ||
020 | |a 0470013184 |c pbk. : acidfree paper |9 0-470-01318-4 | ||
035 | |a (OCoLC)58919972 | ||
035 | |a (DE-599)BVBBV020851187 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-91G |a DE-11 | ||
050 | 0 | |a QD462 | |
082 | 0 | |a 541/.28 |2 22 | |
084 | |a VE 5650 |0 (DE-625)147118:253 |2 rvk | ||
084 | |a CHE 187f |2 stub | ||
084 | |a CHE 160f |2 stub | ||
084 | |a CHE 150f |2 stub | ||
100 | 1 | |a Grinter, Roger |e Verfasser |4 aut | |
245 | 1 | 0 | |a The quantum in chemistry |b an experimentalist's view |c Roger Grinter |
264 | 1 | |a Chichester |b Wiley |c 2005 | |
300 | |a XIV, 459 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Quantum chemistry | |
650 | 4 | |a Spectrum analysis | |
650 | 4 | |a Quantum measure theory | |
650 | 0 | 7 | |a Spektroskopie |0 (DE-588)4056138-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenchemie |0 (DE-588)4047979-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenchemie |0 (DE-588)4047979-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Spektroskopie |0 (DE-588)4056138-0 |D s |
689 | 1 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip0510/2005009405.html |3 Table of contents | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014172891&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014172891 |
Datensatz im Suchindex
_version_ | 1804134564951490560 |
---|---|
adam_text | CONTENTS
PREFACE
.....................................................
XIII
CHAPTER
1
THE
ROLE
OF
THEORY
IN
THE
PHYSICAL
SCIENCES...............
1
1.0
INTRODUCTION.............................................
1
1.1
WHAT
IS
THE
ROLE
OF
THEORY
IN
SCIENCE?..........................
1
1.2
THE
GAS
LAWS
OF
BOYLE
AND
GAY-LUSSAC.........................
3
1.3
AN
ABSOLUTE
ZERO
OF
TEMPERATURE..............................
4
1.4
THE
GAS
EQUATION
OF
VAN
DER
WAALS............................
5
1.5
PHYSICAL
LAWS............................................
5
1.6
LAWS,
POSTULATES,
HYPOTHESES,
ETC..............................
6
1.7
THEORY
AT
THE
END
OF
THE
19TH
CENTURY..........................
7
1.8
BIBLIOGRAPHY
AND
FURTHER
READING..............................
8
CHAPTER
2
FROM
CLASSICAL
TO
QUANTUM
MECHANICS....................
9
2.0
INTRODUCTION.............................................
9
2.1
THE
MOTION
OF
THE
PLANETS:
TYCHO
BRAHE
AND
KEPLER...............
10
2.2
NEWTON,
LAGRANGE
AND
HAMILTON..............................
11
2.3
THE
POWER
OF
CLASSICAL
MECHANICS.............................
12
2.4
THE
FAILURE
OF
CLASSICAL
PHYSICS...............................
12
2.5
THE
BLACK-BODY
RADIATOR
AND
PLANCK*S
QUANTUM
HYPOTHESIS...........
13
2.5.1
PLANCK*S
SOLUTION
TO
THE
BLACK-BODY
RADIATION
PROBLEM........
15
2.5.2
A
QUALITATIVE
INTERPRETATION
OF
THE
FORM
OF
THE
BLACK-BODY
EMISSION
CURVE
IN
THE
LIGHT
OF
PLANCK*S
HYPOTHESIS..........
16
2.5.3
QUANTISATION
IN
CLASSICAL
MECHANICS.....................
18
2.6
THE
PHOTOELECTRIC
EFFECT....................................
20
2.6.1
EINSTEIN*S
THEORY
OF
THE
PHOTOELECTRIC
EFFECT
CONFIRMED
EXPERIMENTALLY.....................................
22
2.7
THE
EMISSION
SPECTRA
OF
ATOMS...............................
23
2.7.1
BOHR*S
THEORY
OF
THE
STRUCTURE
OF
THE
HYDROGEN
ATOM.........
24
2.7.2
COMPARISON
OF
BOHR*S
MODEL
WITH
EXPERIMENT.............
26
2.7.3
FURTHER
DEVELOPMENT
OF
BOHR*S
THEORY...................
26
2.8
DE
BROGLIE*S
PROPOSAL......................................
26
2.9
THE
SCHROEDINGER
EQUATION...................................
28
2.9.1
EIGENFUNCTIONS
AND
EIGENVALUES........................
29
VI
CONTENTS
2.10
BIBLIOGRAPHY
AND
FURTHER
READING..............................
30
PROBLEMS
FOR
CHAPTER
2....................................
34
CHAPTER
3
THE
APPLICATION
OF
QUANTUM
MECHANICS...................
37
3.0
INTRODUCTION.............................................
38
3.1
OBSERVABLES,
OPERATORS,
EIGENFUNCTIONS
AND
EIGENVALUES.............
38
3.2
THE
SCHRODINGER
METHOD....................................
39
3.3
AN
ELECTRON
ON
A
RING......................................
40
3.3.1
THE
HAMILTONIAN
OPERATOR
FOR
THE
ELECTRON
ON
A
RING.........
40
3.3.2
SOLUTION
OF
THE
SCHRODINGER
EQUATION....................
41
3.3.3
THE
ACCEPTABLE
EIGENFUNCTIONS.........................
41
3.4
HIICKEL*S
(4
N
+
2)
RULE:
AROMATICITY
.
:.........................
44
3.5
NORMALISATION
AND
ORTHOGONALITY..............................
46
3.6
AN
ELECTRON
IN
A
LINEAR
BOX..................................
46
3.6.1
THE
HAMILTONIAN
OPERATOR
FOR
AN
ELECTRON
IN
A
LINEAR
BOX.....
46
3.6.2
THE
ACCEPTABLE
EIGENFUNCTIONS.........................
47
3.6.3
BOUNDARY
CONDITIONS................................
48
3.7
THE
LINEAR
AND
ANGULAR
MOMENTA
OF
ELECTRONS
CONFINED
WITHIN
A
ONE-DIMENSIONAL
BOX
OR
ON
A
RING.............................
48
3.7.1
THE
LINEAR
MOMENTUM
OF
AN
ELECTRON
IN
A
BOX..............
49
3.7.2
THE
ANGULAR
MOMENTUM
OF
AN
ELECTRON
ON
A
RING............
50
3.8
THE
EIGENFUNCTIONS
OF
DIFFERENT
OPERATORS........................
52
3.9
EIGENFUNCTIONS,
EIGENVALUES
AND
EXPERIMENTAL
MEASUREMENTS.........
53
3.10
MORE
ABOUT
MEASUREMENT:
THE
HEISENBERG
UNCERTAINTY
PRINCIPLE.......
55
3.11
THE
COMMUTATION
OF
OPERATORS...............................
57
3.12
COMBINATIONS
OF
EIGENFUNCTIONS
AND
THE
SUPERPOSITION
OF
STATES.......
58
3.13
OPERATORS
AND
JHEIR
FORMULATION..............................
59
3.13.1
POSITION
OR
CO-ORDINATE,
X
.............................
59
3.13.2
POTENTIAL
ENERGY,
V
.................................
59
3.13.3
LINEAR
MOMENTUM,
P
X
...............................
60
3.13.4
KINETIC
ENERGY,
W
..................................
60
3.13.5
ANGULAR
MOMENTUM,
L
..............................
60
3.14
SUMMARY...............................................
60
3.15
BIBLIOGRAPHY
AND
FURTHER
READING..............................
61
PROBLEMS
FOR
CHAPTER
3....................................
71
CHAPTER
4
ANGULAR
MOMENTUM..................................
73
4.0
INTRODUCTION.............................................
73
4.1
ANGULAR
MOMENTUM
IN
CLASSICAL
MECHANICS......................
73
4.2
THE
CONSERVATION
OF
ANGULAR
MOMENTUM........................
75
CONTENTS
VII
4.3
ANGULAR
MOMENTUM
AS
A
VECTOR
QUANTITY........................
75
4.4
ORBITAL
ANGULAR
MOMENTUM
IN
QUANTUM
MECHANICS.................
76
4.4.1
THE
VECTOR
MODEL..................................
77
4.5
SPIN
ANGULAR
MOMENTUM....................................
78
4.6
TOTAL
ANGULAR
MOMENTUM...................................
78
4.6.1
THE
ADDITION
AND
CONSERVATION
OF
ANGULAR
MOMENTUM
IN
QUANTUM
MECHANICS.................................
79
4.6.2
THE
LAWS
OF
QUANTUM-MECHANICAL
ANGULAR
MOMENTUM........
81
4.7
ANGULAR
MOMENTUM
OPERATORS
AND
EIGENFUNCTIONS.................
82
4.7.1
THE
RAISING
AND
LOWERING,
SHIFT
OR
LADDER
OPERATORS..........
82
4.8
NOTATION...............................................
83
4.9
SOME
EXAMPLES............................
84
4.10
BIBLIOGRAPHY
AND
FURTHER
READING..............................
86
PROBLEMS
FOR
CHAPTER
4....................................
93
CHAPTER
5
THE
STRUCTURE
AND
SPECTROSCOPY
OF
THE
ATOM...............
95
5.0
INTRODUCTION.............................................
96
5.1
THE
EIGENVALUES
OF
THE
HYDROGEN
ATOM.........................
96
5.2
THE
WAVE
FUNCTIONS
OF
THE
HYDROGEN
ATOM.......................
97
5.2.1
THE
RADIAL
FUNCTION,
R*,I(R)
...........................
98
5.2.2
THE
ANGULAR
FUNCTIONS,
)
AND
4
M
(0)................
99
5.3
POLAR
DIAGRAMS
OF
THE
ANGULAR
FUNCTIONS........................
100
5.3.1
THE
^-FUNCTIONS....................................
101
5.3.2
THE
P-FUNCTIONS....................................
101
5.3.3
THE
D-FUNCTIONS....................................
103
5.4
THE
COMPLETE
ORBITAL
WAVE
FUNCTIONS...........................
104
5.5
OTHER
ONE-ELECTRON
ATOMS...................................
104
5.6
ELECTRON
SPIN............................................
105
5.7
ATOMS
AND
IONS
WITH
MORE
THAN
ONE
ELECTRON.....................
105
5.7.1
THE
SELF-CONSISTENT
FIELD..............................
106
5.7.2
ELECTRON
CORRELATION.................................
106
5.7.3
THE
PERIODIC
TABLE
OF
THE
ELEMENTS......................
107
5.8
THE
ELECTRONIC
STATES
OF
THE
ATOM..............................
107
5.8.1
THE
FIVE
QUANTUM
NUMBERS
OF
A
SINGLE
ELECTRON.............
108
5.8.2
QUANTUM
NUMBERS
FOR
THE
MANY-ELECTRON
ATOM.............
108
5.8.3
THE
ASSIGNMENT
OF
TERM
SYMBOLS.......................
108
5.8.4
TERM
ENERGIES
AND
HUND*S
RULES........................
110
5.9
SPIN-ORBIT
COUPLING........................................
ILL
5.9.1
RUSSELL-SAUNDERS
OR
LS
COUPLING......................
ILL
5.9.2
_/_/
C
U
PLING.......................................
112
5.9.3
INTERMEDIATE
COUPLING...............................
113
5.9.4
INTER-ELECTRONIC
SPIN-ORBIT
COUPLING......................
115
5.10
SELECTION
RULES
IN
ATOMIC
SPECTROSCOPY.........................
115
5.10.1
ANGULAR
MOMENTUM.................................
115
5.10.2
PARITY...........................................
116
VIII
CONTENTS
5.11
THE
ZEEMAN
EFFECT........................................
117
5.11.1
THE
NORMAL
ZEEMAN
EFFECT............................
118
5.11.2
THE
ANOMALOUS
ZEEMAN
EFFECT.........................
120
5.12
BIBLIOGRAPHY
AND
FURTHER
READING..............................
121
PROBLEMS
FOR
CHAPTER
5....................................
129
CHAPTER
6
THE
COVALENT
CHEMICAL
BOND...........................
131
6.0
INTRODUCTION.............................................
132
6.1
THE
BINDING
ENERGY
OF
THE
HYDROGEN
MOLECULE....................
133
6.2
THE
HAMILTONIAN
OPERATOR
FOR
THE
HYDROGEN
MOLECULE...............
134
6.3
THE
BORN-OPPENHEIMER
APPROXIMATION.........................
136
6.4
HEITLER
AND
LONDON:
THE
VALENCE
BOND
(VB)
MODEL................
137
6.5
HUND
AND
MULLIKEN:
THE
MOLECULAR
ORBITAL
(MO)
MODEL.............
139
6.6
IMPROVING
THE
WAVE
FUNCTIONS................................
140
6.6.1
THE
VALUE
OF
Z....................................
140
6.6.2
POLARISATION.......................................
140
6.7
UNIFICATION:
IONIC
STRUCTURES
AND
CONFIGURATION
INTERACTION...........
141
6.8
ELECTRON
CORRELATION.......................................
143
6.9
BONDING
AND
ANTIBONDING
MOS...............................
145
6.10
WHY
IS
THERE
NO
HE-HE
BOND?..............................
146
6.11
ATOMIC
ORBITAL
OVERLAP.....................................
146
6.11.1
A
(SIGMA)
OVERLAP..................................
147
6.11.2
7I
(PI)
OVERLAP.....................................
147
6.11.3
8
(DELTA)
OVERLAP...................................
148
6.11.4
NON-BONDING
OVERLAP................................
148
6.12
THE
HOMONUCLEAR
DIATOMIC
MOLECULES
FROM
LITHIUM
TO
FLUORINE.......
149
6.13
HETERONUCLEAR
DIATOMIC
MOLECULES.............................
151
6.14
CHARGE
DISTRIBUTION........................................
153
6.15
HYBRIDISATION
AND
RESONANCE.................................
153
6.15.1
HYBRIDISATION:
PAULING
1931...........................
153
6.15.2
HYBRIDISATION
AND
THE
VALENCE
BOND
THEORY................
156
6.15.3
HYBRIDISATION
OF
CARBON
AOS..........................
156
6.15.4
THE
CHOICE
OF
HYBRID
ORBITALS..........................
161
6.15.5
THE
PROPERTIES
OF
HYBRID-ORBITAL
BONDS...................
162
6.16
RESONANCE
AND
THE
VALENCE
BOND
THEORY........................
163
6.17
MOLECULAR
GEOMETRY.......................................
163
6.17.1
THE
VALENCE-SHELL
ELECTRON-PAIR
REPULSION
(VSEPR)
MODEL.....
164
6.17.2
THE
VSEPR
MODEL
AND
MULTIPLE
BONDS...................
165
6.18
COMPUTATIONAL
DEVELOPMENTS................................
167
6.19
BIBLIOGRAPHY
AND
FURTHER
READING..............................
168
PROBLEMS
FOR
CHAPTER
6....................................
176
CHAPTER
7
BONDING,
SPECTROSCOPY
AND
MAGNETISM
IN
TRANSITION-METAL
COMPLEXES........................................
181
7.0
INTRODUCTION.............................................
181
CONTENTS
IX
7.1
HISTORICAL
DEVELOPMENT.....................................
182
7.2
THE
CRYSTAL
FIELD
THEORY.....................................
182
7.3
THE
ELECTRONIC
ENERGY
LEVELS
OF
TRANSITION-METAL
COMPLEXES..........
187
7.3.1
THE
WEAK-FIELD
SCHEME
FOR
D
2
(EXAMPLE
OF
3
F
IN
AN
OCTAHEDRAL
FIELD)............................................
189
7.3.2
THE
WEAK-FIELD
SCHEME
FOR
D
2
(INCLUSION
OF
3
P).............
190
7.3.3
THE
D
2
ENERGY
LEVELS
FOR
WEAK,
STRONG
AND
INTERMEDIATE
OCTAHEDRAL
FIELDS...................................
191
7.3.4
THE
STRONG-FIELD
SCHEME
FOR
D
2
IN
AN
OCTAHEDRAL
FIELD........
193
7.3.5
SPIN-ORBIT
COUPLING.................................
195
7.4
THE
ELECTRONIC
SPECTROSCOPY
OF
TRANSITION-METAL
COMPLEXES...........
196
7.5
PAIRING
ENERGIES;
LOW-SPIN
AND
HIGH-SPIN
COMPLEXES................
197
7.6
THE
MAGNETISM
OF
TRANSITION-METAL
COMPLEXES....................
197
7.7
COVALENCY
AND
THE
LIGAND
FIELD
THEORY..........................
199
7.8
BIBLIOGRAPHY
AND
FURTHER
READING..............................
203
PROBLEMS
FOR
CHAPTER
7....................................
212
CHAPTER
8
SPECTROSCOPY.......................................
215
8.0
THE
INTERACTION
OF
RADIATION
WITH
MATTER........................
216
8.1
ELECTROMAGNETIC
RADIATION...................................
216
8.1.1
THE
ELECTRIC
FIELD...................................
217
8.1.2
THE
MAGNETIC
FIELD..................................
219
8.2
POLARISED
LIGHT...........................................
219
8.2.1
LINEARLY
POLARISED
LIGHT..............................
220
8.2.2
CIRCULARLY
POLARISED
LIGHT.............................
221
8.3
THE
ELECTROMAGNETIC
SPECTRUM................................
222
8.3.1
THREE
FORMS
OF
ELECTROMAGNETIC
RADIATION.................
222
8.4
PHOTONS
AND
THEIR
PROPERTIES.................................
223
8.4.1
VELOCITY.........................................
223
8.4.2
ENERGY..........................................
224
8.4.3
MASS............................................
224
8.4.4
LINEAR
MOMENTUM..................................
224
8.4.5
ANGULAR
MOMENTUM.................................
225
8.4.6
PARITY...........................................
225
8.5
SELECTION
RULES...........................................
225
8.5.1
THE
BOHR-EINSTEIN
CONDITION..........................
226
8.6
THE
QUANTUM
MECHANICS
OF
TRANSITION
PROBABILITY..................
227
8.7
THE
NATURE
OF
THE
TIME-INDEPENDENT
INTERACTION
(0
F
|
V(X,
Y,
Z)| FT)......
233
8.7.1
THE
TRANSITION
DIPOLE
MOMENT..........................
234
8.7.2
THE
RELATIVE
INTENSITIES
OF
UV-VIS,
IR
AND
NMR
TRANSITIONS
.
.
238
8.7.3
THE
PARTICLE
AND
WAVE
VIEWS
OF
SPECTROSCOPIC
TRANSITIONS.....
242
8.8
SPECTROSCOPIC
TIME
SCALES...................................
245
8.9
QUANTUM
ELECTRODYNAMICS...................................
247
8.10
SPECTROSCOPIC
UNITS
AND
NOTATION..............................
247
8.10.1
THE
ENERGY/FREQUENCY/WAVELENGTH
AXIS...................
248
8.10.2
THE
INTENSITY/ABSORBANCE
AXIS..........................
249
X
CONTENTS
8.11
THE
EINSTEIN
COEFFICIENTS....................................
250
8.12
BIBLIOGRAPHY
AND
FURTHER
READING..............................
250
PROBLEMS
FOR
CHAPTER
8....................................
259
CHAPTER
9
NUCLEAR
MAGNETIC
RESONANCE
SPECTROSCOPY.................
261
9.0
INTRODUCTION.............................................
261
9.1
THE
MAGNETIC
PROPERTIES
OF
ATOMIC
NUCLEI.......................
262
9.2
THE
FREQUENCY
REGION
OF
NMR
SPECTROSCOPY.....................
264
9.3
THE
NMR
SELECTION
RULE....................................
264
9.4
THE
CHEMICAL
SHIFT........................................
267
9.4.1
THE
DELTA
(5)
SCALE..................................
268
9.4.2
THE
SHIELDING
CONSTANT,
A
(SIGMA)......................
270
9.5
NUCLEAR
SPIN-SPIN
COUPLING.................................
270
9.6
THE
ENERGY
LEVELS
OF
A
NUCLEAR
SPIN
SYSTEM......................
273
9.6.1
FIRST
ORDER
SPECTRA..................................
274
9.6.2
SECOND
ORDER
SPECTRA................................
275
9.7
THE
INTENSITIES
OF
NMR
SPECTRAL
LINES..........................
276
9.8
QUANTUM
MECHANICS
AND
NMR
SPECTROSCOPY.....................
277
9.9
BIBLIOGRAPHY
AND
FURTHER
READING..............................
278
PROBLEMS
FOR
CHAPTER
9....................................
287
CHAPTER
10
INFRARED
SPECTROSCOPY................................
289
10.0
INTRODUCTION.............................................
289
10.1
THE
ORIGIN
OF
THE
INFRARED
SPECTRA
OF
MOLECULES...................
290
10.2
SIMPLE
HARMONIC
MOTION....................................
290
10.3
THE
QUANTUM-MECHANICAL
HARMONIC
OSCILLATOR....................
293
10.3.1
QUANTISATION
OF
THE
ENERGY............................
293
10.3.2
ZERO-POINT
ENERGY..................................
294
10.3.3
VIBRATIONAL
EIGENFUNCTIONS............................
294
10.4
ROTATION
OF
A
DIATOMIC
MOLECULE..............................
294
10.4.1
EIGENFUNCTIONS
OF
THE
RIGID
ROTATOR......................
297
10.5
SELECTION
RULES
FOR
VIBRATIONAL
AND
ROTATIONAL
TRANSITIONS.............
297
10.5.1
A
SEMI-CLASSICAL
VIEW
OF
THE
SELECTION
RULES...............
301
10.5.2
INFRARED
INTENSITIES..................................
301
10.6
REAL
DIATOMIC
MOLECULES....................................
302
10.7
POLYATOMIC
MOLECULES......................................
303
10.7.1
NORMAL
CO-ORDINATES,
NORMAL
VIBRATIONS,
VIBRATIONAL
EIGENFUNCTIONS
AND
EIGENVALUES........................
303
10.7.2
VIBRATIONS
OF
REAL
POLYATOMIC
MOLECULES..................
305
10.7.3
CHARACTERISTIC
GROUP
FREQUENCIES........................
308
10.7.4
LARGE
MOLECULES...................................
308
10.8
ANHARMONICITY...........................................
309
10.8.1
FERMI
RESONANCE...................................
309
10.8.2
VIBRATIONAL
ANGULAR
MOMENTUM
AND
THE
CORIOLIS
INTERACTION
....
311
10.9
THE
AB-INITIO
CALCULATION
OF
IR
SPECTRA.........................
316
CONTENTS
XI
10.10
THE
SPECIAL
CASE
OF
NEAR
INFRARED
SPECTROSCOPY...................
317
10.11
BIBLIOGRAPHY
AND
FURTHER
READING..............................
317
PROBLEMS
FOR
CHAPTER
10....................................
324
CHAPTER
11
ELECTRONIC
SPECTROSCOPY...............................
327
11.0
INTRODUCTION.............................................
327
11.1
ATOMIC
AND
MOLECULAR
ORBITALS...............................
328
11.2
THE
SPECTRA
OF
COVALENT
MOLECULES.............................
329
11.2.1
N
*
N*
TRANSITIONS.................................
329
11.2.2
N
-
7T*
TRANSITIONS.................................
330
11.2.3
TRANSITION-METAL
COMPLEXES...........................
330
11.3
CHARGE
TRANSFER
(CT)
SPECTRA.................................
330
11.4
MANY-ELECTRON
WAVE
FUNCTIONS...............................
332
11.5
THE
IS
1
2S
1
CONFIGURATION
OF
THE
HELIUM
ATOM;
SINGLET
AND
TRIPLET
STATES
.
.
333
11.5.1
THE
ENERGIES
OF
THE
IS
-
2S
EXCITED
STATES
OF
THE
HELIUM
ATOM
.
335
11.5.2
THE
ONE-ELECTRON
ENERGIES;
OPERATOR
-JV,
2
-IV
2
2
-2/N-2
IN
.........................
335
11.5.3
THE
TWO-ELECTRON,
I.E.
ELECTRON-REPULSION,
ENERGY;
OPERATOR
L/RI
2
336
11.5.4
THE
TOTAL
ENERGIES
OF
SINGLET
AND
TRIPLET
STATE...............
338
11.5.5
ELECTRON
REPULSION
IN
THE
TRIPLET
AND
SINGLET
STATES
OF
THE
EXCITED
HELIUM
ATOM:
A
DIAGRAMMATIC
ILLUSTRATION.................
339
11.5.6
SUMMARY
OF
SECTION
11.5.............................
341
11.6
THE
TT
-ELECTRON
SPECTRUM
OF
BENZENE...........................
341
11.7
SELECTION
RULES...........................................
344
11.7.1
ELECTRON
SPIN
(MULTIPLICITY)
AND
TRANSITION
PROBABILITY........
344
11.7.2
SPATIAL
ASPECTS
OF
TRANSITION
PROBABILITY
FOR
AN
ALLOWED
ELECTRONIC
TRANSITION.........................................
346
11.7.3
THE
VIBRATIONAL
FACTOR
IN
THE
TRANSITION
PROBABILITY...........
347
11.8
SLATER
DETERMINANTS
(APPENDIX
6).............................
348
11.9
BIBLIOGRAPHY
AND
FURTHER
READING..............................
348
PROBLEMS
FOR
CHAPTER
11....................................
348
CHAPTER
12
SOME
SPECIAL
TOPICS.................................
351
12.0
INTRODUCTION.............................................
352
12.1
THE
HIICKEL
MOLECULAR
ORBITAL
(HMO)
THEORY.....................
352
12.1.1
THE
BASIS
OF
HIICKEL*S
APPROACH........................
352
12.1.2
THE
METHOD.......................................
353
12.1.3
HIICKEL*S
ASSUMPTIONS...............................
354
12.1.4
DETERMINATION
OF
HMO
ENERGIES
AND
AO
COEFFICIENTS........
354
12.1.5
APPLICATIONS
OF
HMO
ENERGIES.........................
357
12.1.6
APPLICATIONS
OF
HMO
COEFFICIENTS......................
361
12.1.7
SOME
FINAL
COMMENTS
ON
THE
HIICKEL
THEORY...............
362
12.2
MAGNETISM
IN
CHEMISTRY....................................
363
12.2.1
MAGNETIC
SUSCEPTIBILITY:
DIAMAGNETISM
AND
PARAMAGNETISM
....
364
CONTENTS
XII
12.2.2
MAGNETIC
SUSCEPTIBILITY:
FERROMAGNETISM
AND
ANTIFERROMAGNETISM
365
12.2.3
MAGNETIC
FIELDS
AND
DIPOLES:
SOME
DEFINITIONS..............
365
12.2.4
THE
MAGNETIC
EFFECT
OF
ELECTRONIC
ORBITAL
MOTION............
366
12.2.5
THE
CONSEQUENCES
OF
CHEMICAL
BONDING..................
368
12.2.6
THE
MAGNETIC
EFFECT
OF
ELECTRON
SPIN.....................
369
12.2.7
MAGNETISM
IN
PRACTICE...............................
370
12.2.8
SYSTEMS
OF
INTERACTING
MOLECULAR
MAGNETS.................
374
12.2.9
A
NOTE
OF
WARNING..................................
376
12.2.10
AN
APPLICATION.....................................
377
12.3
THE
BAND
THEORY
OF
SOLIDS...................................
378
12.3.1
THE
TIGHT
BINDING
APPROXIMATION.......................
378
12.3.2
THE
ELECTRON-GAS
(FREE-ELECTRON)
APPROXIMATION............
381
12.3.3
MOLECULAR
AND
IONIC
SOLIDS.............................
386
12.3.4
APPLICATIONS......................................
387
12.3.5
METALS,
INSULATORS
AND
SEMICONDUCTORS...................
387
12.3.6
OPTICAL
PROPERTIES
OF
SOLIDS...........................
390
12.3.7
MECHANICAL
PROPERTIES
OF
SOLIDS........................
390
12.4
BIBLIOGRAPHY
AND
FURTHER
READING..............................
390
PROBLEMS
FOR
CHAPTER
12....................................
397
APPENDICES.................................................
1
FUNDAMENTAL
CONSTANTS
AND
ATOMIC
UNITS.........................
401
2
THE
VARIATION
METHOD
AND
THE
SECULAR
EQUATIONS....................
403
3
ENERGIES
AND
WAVE
FUNCTIONS
BY
MATRIX
DIAGONALISATION
..............
411
4
PERTURBATION
THEORY.........................................
417
5
THE
SPHERICAL
HARMONICS
AND
HYDROGEN
ATOM
WAVE
FUNCTIONS.........
425
6
SLATER
DETERMINANTS..........................................
429
7
SPHERICAL
POLAR
CO-ORDINATES...................................
431
8
NUMBERS:
REAL,
IMAGINARY
AND
COMPLEX..........................
433
9
DIPOLE
AND
TRANSITION
DIPOLE
MOMENTS...........................
435
10
WAVE
FUNCTIONS
FOR
THE
3
F
STATES
OF
D
2
USING
SHIFT
OPERATORS...........
439
INDEX
443
|
adam_txt |
CONTENTS
PREFACE
.
XIII
CHAPTER
1
THE
ROLE
OF
THEORY
IN
THE
PHYSICAL
SCIENCES.
1
1.0
INTRODUCTION.
1
1.1
WHAT
IS
THE
ROLE
OF
THEORY
IN
SCIENCE?.
1
1.2
THE
GAS
LAWS
OF
BOYLE
AND
GAY-LUSSAC.
3
1.3
AN
ABSOLUTE
ZERO
OF
TEMPERATURE.
4
1.4
THE
GAS
EQUATION
OF
VAN
DER
WAALS.
5
1.5
PHYSICAL
LAWS.
5
1.6
LAWS,
POSTULATES,
HYPOTHESES,
ETC.
6
1.7
THEORY
AT
THE
END
OF
THE
19TH
CENTURY.
7
1.8
BIBLIOGRAPHY
AND
FURTHER
READING.
8
CHAPTER
2
FROM
CLASSICAL
TO
QUANTUM
MECHANICS.
9
2.0
INTRODUCTION.
9
2.1
THE
MOTION
OF
THE
PLANETS:
TYCHO
BRAHE
AND
KEPLER.
10
2.2
NEWTON,
LAGRANGE
AND
HAMILTON.
11
2.3
THE
POWER
OF
CLASSICAL
MECHANICS.
12
2.4
THE
FAILURE
OF
CLASSICAL
PHYSICS.
12
2.5
THE
BLACK-BODY
RADIATOR
AND
PLANCK*S
QUANTUM
HYPOTHESIS.
13
2.5.1
PLANCK*S
SOLUTION
TO
THE
BLACK-BODY
RADIATION
PROBLEM.
15
2.5.2
A
QUALITATIVE
INTERPRETATION
OF
THE
FORM
OF
THE
BLACK-BODY
EMISSION
CURVE
IN
THE
LIGHT
OF
PLANCK*S
HYPOTHESIS.
16
2.5.3
QUANTISATION
IN
CLASSICAL
MECHANICS.
18
2.6
THE
PHOTOELECTRIC
EFFECT.
20
2.6.1
EINSTEIN*S
THEORY
OF
THE
PHOTOELECTRIC
EFFECT
CONFIRMED
EXPERIMENTALLY.
22
2.7
THE
EMISSION
SPECTRA
OF
ATOMS.
23
2.7.1
BOHR*S
THEORY
OF
THE
STRUCTURE
OF
THE
HYDROGEN
ATOM.
24
2.7.2
COMPARISON
OF
BOHR*S
MODEL
WITH
EXPERIMENT.
26
2.7.3
FURTHER
DEVELOPMENT
OF
BOHR*S
THEORY.
26
2.8
DE
BROGLIE*S
PROPOSAL.
26
2.9
THE
SCHROEDINGER
EQUATION.
28
2.9.1
EIGENFUNCTIONS
AND
EIGENVALUES.
29
VI
CONTENTS
2.10
BIBLIOGRAPHY
AND
FURTHER
READING.
30
PROBLEMS
FOR
CHAPTER
2.
34
CHAPTER
3
THE
APPLICATION
OF
QUANTUM
MECHANICS.
37
3.0
INTRODUCTION.
38
3.1
OBSERVABLES,
OPERATORS,
EIGENFUNCTIONS
AND
EIGENVALUES.
38
3.2
THE
SCHRODINGER
METHOD.
39
3.3
AN
ELECTRON
ON
A
RING.
40
3.3.1
THE
HAMILTONIAN
OPERATOR
FOR
THE
ELECTRON
ON
A
RING.
40
3.3.2
SOLUTION
OF
THE
SCHRODINGER
EQUATION.
41
3.3.3
THE
ACCEPTABLE
EIGENFUNCTIONS.
41
3.4
HIICKEL*S
(4
N
+
2)
RULE:
AROMATICITY
.
:.
44
3.5
NORMALISATION
AND
ORTHOGONALITY.
46
3.6
AN
ELECTRON
IN
A
LINEAR
BOX.
46
3.6.1
THE
HAMILTONIAN
OPERATOR
FOR
AN
ELECTRON
IN
A
LINEAR
BOX.
46
3.6.2
THE
ACCEPTABLE
EIGENFUNCTIONS.
47
3.6.3
BOUNDARY
CONDITIONS.
48
3.7
THE
LINEAR
AND
ANGULAR
MOMENTA
OF
ELECTRONS
CONFINED
WITHIN
A
ONE-DIMENSIONAL
BOX
OR
ON
A
RING.
48
3.7.1
THE
LINEAR
MOMENTUM
OF
AN
ELECTRON
IN
A
BOX.
49
3.7.2
THE
ANGULAR
MOMENTUM
OF
AN
ELECTRON
ON
A
RING.
50
3.8
THE
EIGENFUNCTIONS
OF
DIFFERENT
OPERATORS.
52
3.9
EIGENFUNCTIONS,
EIGENVALUES
AND
EXPERIMENTAL
MEASUREMENTS.
53
3.10
MORE
ABOUT
MEASUREMENT:
THE
HEISENBERG
UNCERTAINTY
PRINCIPLE.
55
3.11
THE
COMMUTATION
OF
OPERATORS.
57
3.12
COMBINATIONS
OF
EIGENFUNCTIONS
AND
THE
SUPERPOSITION
OF
STATES.
58
3.13
OPERATORS
AND
JHEIR
FORMULATION.
59
3.13.1
POSITION
OR
CO-ORDINATE,
X
.
59
3.13.2
POTENTIAL
ENERGY,
V
.
59
3.13.3
LINEAR
MOMENTUM,
P
X
.
60
3.13.4
KINETIC
ENERGY,
W
.
60
3.13.5
ANGULAR
MOMENTUM,
L
.
60
3.14
SUMMARY.
60
3.15
BIBLIOGRAPHY
AND
FURTHER
READING.
61
PROBLEMS
FOR
CHAPTER
3.
71
CHAPTER
4
ANGULAR
MOMENTUM.
73
4.0
INTRODUCTION.
73
4.1
ANGULAR
MOMENTUM
IN
CLASSICAL
MECHANICS.
73
4.2
THE
CONSERVATION
OF
ANGULAR
MOMENTUM.
75
CONTENTS
VII
4.3
ANGULAR
MOMENTUM
AS
A
VECTOR
QUANTITY.
75
4.4
ORBITAL
ANGULAR
MOMENTUM
IN
QUANTUM
MECHANICS.
76
4.4.1
THE
VECTOR
MODEL.
77
4.5
SPIN
ANGULAR
MOMENTUM.
78
4.6
TOTAL
ANGULAR
MOMENTUM.
78
4.6.1
THE
ADDITION
AND
CONSERVATION
OF
ANGULAR
MOMENTUM
IN
QUANTUM
MECHANICS.
79
4.6.2
THE
LAWS
OF
QUANTUM-MECHANICAL
ANGULAR
MOMENTUM.
81
4.7
ANGULAR
MOMENTUM
OPERATORS
AND
EIGENFUNCTIONS.
82
4.7.1
THE
RAISING
AND
LOWERING,
SHIFT
OR
LADDER
OPERATORS.
82
4.8
NOTATION.
83
4.9
SOME
EXAMPLES.
84
4.10
BIBLIOGRAPHY
AND
FURTHER
READING.
86
PROBLEMS
FOR
CHAPTER
4.
93
CHAPTER
5
THE
STRUCTURE
AND
SPECTROSCOPY
OF
THE
ATOM.
95
5.0
INTRODUCTION.
96
5.1
THE
EIGENVALUES
OF
THE
HYDROGEN
ATOM.
96
5.2
THE
WAVE
FUNCTIONS
OF
THE
HYDROGEN
ATOM.
97
5.2.1
THE
RADIAL
FUNCTION,
R*,I(R)
.
98
5.2.2
THE
ANGULAR
FUNCTIONS,
)
AND
4
M
(0).
99
5.3
POLAR
DIAGRAMS
OF
THE
ANGULAR
FUNCTIONS.
100
5.3.1
THE
^-FUNCTIONS.
101
5.3.2
THE
P-FUNCTIONS.
101
5.3.3
THE
D-FUNCTIONS.
103
5.4
THE
COMPLETE
ORBITAL
WAVE
FUNCTIONS.
104
5.5
OTHER
ONE-ELECTRON
ATOMS.
104
5.6
ELECTRON
SPIN.
105
5.7
ATOMS
AND
IONS
WITH
MORE
THAN
ONE
ELECTRON.
105
5.7.1
THE
SELF-CONSISTENT
FIELD.
106
5.7.2
ELECTRON
CORRELATION.
106
5.7.3
THE
PERIODIC
TABLE
OF
THE
ELEMENTS.
107
5.8
THE
ELECTRONIC
STATES
OF
THE
ATOM.
107
5.8.1
THE
FIVE
QUANTUM
NUMBERS
OF
A
SINGLE
ELECTRON.
108
5.8.2
QUANTUM
NUMBERS
FOR
THE
MANY-ELECTRON
ATOM.
108
5.8.3
THE
ASSIGNMENT
OF
TERM
SYMBOLS.
108
5.8.4
TERM
ENERGIES
AND
HUND*S
RULES.
110
5.9
SPIN-ORBIT
COUPLING.
ILL
5.9.1
RUSSELL-SAUNDERS
OR
LS
COUPLING.
ILL
5.9.2
_/_/
C
U
PLING.
112
5.9.3
INTERMEDIATE
COUPLING.
113
5.9.4
INTER-ELECTRONIC
SPIN-ORBIT
COUPLING.
115
5.10
SELECTION
RULES
IN
ATOMIC
SPECTROSCOPY.
115
5.10.1
ANGULAR
MOMENTUM.
115
5.10.2
PARITY.
116
VIII
CONTENTS
5.11
THE
ZEEMAN
EFFECT.
117
5.11.1
THE
NORMAL
ZEEMAN
EFFECT.
118
5.11.2
THE
ANOMALOUS
ZEEMAN
EFFECT.
120
5.12
BIBLIOGRAPHY
AND
FURTHER
READING.
121
PROBLEMS
FOR
CHAPTER
5.
129
CHAPTER
6
THE
COVALENT
CHEMICAL
BOND.
131
6.0
INTRODUCTION.
132
6.1
THE
BINDING
ENERGY
OF
THE
HYDROGEN
MOLECULE.
133
6.2
THE
HAMILTONIAN
OPERATOR
FOR
THE
HYDROGEN
MOLECULE.
134
6.3
THE
BORN-OPPENHEIMER
APPROXIMATION.
136
6.4
HEITLER
AND
LONDON:
THE
VALENCE
BOND
(VB)
MODEL.
137
6.5
HUND
AND
MULLIKEN:
THE
MOLECULAR
ORBITAL
(MO)
MODEL.
139
6.6
IMPROVING
THE
WAVE
FUNCTIONS.
140
6.6.1
THE
VALUE
OF
Z.
140
6.6.2
POLARISATION.
140
6.7
UNIFICATION:
IONIC
STRUCTURES
AND
CONFIGURATION
INTERACTION.
141
6.8
ELECTRON
CORRELATION.
143
6.9
BONDING
AND
ANTIBONDING
MOS.
145
6.10
WHY
IS
THERE
NO
HE-HE
BOND?.
146
6.11
ATOMIC
ORBITAL
OVERLAP.
146
6.11.1
A
(SIGMA)
OVERLAP.
147
6.11.2
7I
(PI)
OVERLAP.
147
6.11.3
8
(DELTA)
OVERLAP.
148
6.11.4
NON-BONDING
OVERLAP.
148
6.12
THE
HOMONUCLEAR
DIATOMIC
MOLECULES
FROM
LITHIUM
TO
FLUORINE.
149
6.13
HETERONUCLEAR
DIATOMIC
MOLECULES.
151
6.14
CHARGE
DISTRIBUTION.
153
6.15
HYBRIDISATION
AND
RESONANCE.
153
6.15.1
HYBRIDISATION:
PAULING
1931.
153
6.15.2
HYBRIDISATION
AND
THE
VALENCE
BOND
THEORY.
156
6.15.3
HYBRIDISATION
OF
CARBON
AOS.
156
6.15.4
THE
CHOICE
OF
HYBRID
ORBITALS.
161
6.15.5
THE
PROPERTIES
OF
HYBRID-ORBITAL
BONDS.
162
6.16
RESONANCE
AND
THE
VALENCE
BOND
THEORY.
163
6.17
MOLECULAR
GEOMETRY.
163
6.17.1
THE
VALENCE-SHELL
ELECTRON-PAIR
REPULSION
(VSEPR)
MODEL.
164
6.17.2
THE
VSEPR
MODEL
AND
MULTIPLE
BONDS.
165
6.18
COMPUTATIONAL
DEVELOPMENTS.
167
6.19
BIBLIOGRAPHY
AND
FURTHER
READING.
168
PROBLEMS
FOR
CHAPTER
6.
176
CHAPTER
7
BONDING,
SPECTROSCOPY
AND
MAGNETISM
IN
TRANSITION-METAL
COMPLEXES.
181
7.0
INTRODUCTION.
181
CONTENTS
IX
7.1
HISTORICAL
DEVELOPMENT.
182
7.2
THE
CRYSTAL
FIELD
THEORY.
182
7.3
THE
ELECTRONIC
ENERGY
LEVELS
OF
TRANSITION-METAL
COMPLEXES.
187
7.3.1
THE
WEAK-FIELD
SCHEME
FOR
D
2
(EXAMPLE
OF
3
F
IN
AN
OCTAHEDRAL
FIELD).
189
7.3.2
THE
WEAK-FIELD
SCHEME
FOR
D
2
(INCLUSION
OF
3
P).
190
7.3.3
THE
D
2
ENERGY
LEVELS
FOR
WEAK,
STRONG
AND
INTERMEDIATE
OCTAHEDRAL
FIELDS.
191
7.3.4
THE
STRONG-FIELD
SCHEME
FOR
D
2
IN
AN
OCTAHEDRAL
FIELD.
193
7.3.5
SPIN-ORBIT
COUPLING.
195
7.4
THE
ELECTRONIC
SPECTROSCOPY
OF
TRANSITION-METAL
COMPLEXES.
196
7.5
PAIRING
ENERGIES;
LOW-SPIN
AND
HIGH-SPIN
COMPLEXES.
197
7.6
THE
MAGNETISM
OF
TRANSITION-METAL
COMPLEXES.
197
7.7
COVALENCY
AND
THE
LIGAND
FIELD
THEORY.
199
7.8
BIBLIOGRAPHY
AND
FURTHER
READING.
203
PROBLEMS
FOR
CHAPTER
7.
212
CHAPTER
8
SPECTROSCOPY.
215
8.0
THE
INTERACTION
OF
RADIATION
WITH
MATTER.
216
8.1
ELECTROMAGNETIC
RADIATION.
216
8.1.1
THE
ELECTRIC
FIELD.
217
8.1.2
THE
MAGNETIC
FIELD.
219
8.2
POLARISED
LIGHT.
219
8.2.1
LINEARLY
POLARISED
LIGHT.
220
8.2.2
CIRCULARLY
POLARISED
LIGHT.
221
8.3
THE
ELECTROMAGNETIC
SPECTRUM.
222
8.3.1
THREE
FORMS
OF
ELECTROMAGNETIC
RADIATION.
222
8.4
PHOTONS
AND
THEIR
PROPERTIES.
223
8.4.1
VELOCITY.
223
8.4.2
ENERGY.
224
8.4.3
MASS.
224
8.4.4
LINEAR
MOMENTUM.
224
8.4.5
ANGULAR
MOMENTUM.
225
8.4.6
PARITY.
225
8.5
SELECTION
RULES.
225
8.5.1
THE
BOHR-EINSTEIN
CONDITION.
226
8.6
THE
QUANTUM
MECHANICS
OF
TRANSITION
PROBABILITY.
227
8.7
THE
NATURE
OF
THE
TIME-INDEPENDENT
INTERACTION
(0
F
|
V(X,
Y,
Z)| FT).
233
8.7.1
THE
TRANSITION
DIPOLE
MOMENT.
234
8.7.2
THE
RELATIVE
INTENSITIES
OF
UV-VIS,
IR
AND
NMR
TRANSITIONS
.
.
238
8.7.3
THE
PARTICLE
AND
WAVE
VIEWS
OF
SPECTROSCOPIC
TRANSITIONS.
242
8.8
SPECTROSCOPIC
TIME
SCALES.
245
8.9
QUANTUM
ELECTRODYNAMICS.
247
8.10
SPECTROSCOPIC
UNITS
AND
NOTATION.
247
8.10.1
THE
ENERGY/FREQUENCY/WAVELENGTH
AXIS.
248
8.10.2
THE
INTENSITY/ABSORBANCE
AXIS.
249
X
CONTENTS
8.11
THE
EINSTEIN
COEFFICIENTS.
250
8.12
BIBLIOGRAPHY
AND
FURTHER
READING.
250
PROBLEMS
FOR
CHAPTER
8.
259
CHAPTER
9
NUCLEAR
MAGNETIC
RESONANCE
SPECTROSCOPY.
261
9.0
INTRODUCTION.
261
9.1
THE
MAGNETIC
PROPERTIES
OF
ATOMIC
NUCLEI.
262
9.2
THE
FREQUENCY
REGION
OF
NMR
SPECTROSCOPY.
264
9.3
THE
NMR
SELECTION
RULE.
264
9.4
THE
CHEMICAL
SHIFT.
267
9.4.1
THE
DELTA
(5)
SCALE.
268
9.4.2
THE
SHIELDING
CONSTANT,
A
(SIGMA).
270
9.5
NUCLEAR
SPIN-SPIN
COUPLING.
270
9.6
THE
ENERGY
LEVELS
OF
A
NUCLEAR
SPIN
SYSTEM.
273
9.6.1
FIRST
ORDER
SPECTRA.
274
9.6.2
SECOND
ORDER
SPECTRA.
275
9.7
THE
INTENSITIES
OF
NMR
SPECTRAL
LINES.
276
9.8
QUANTUM
MECHANICS
AND
NMR
SPECTROSCOPY.
277
9.9
BIBLIOGRAPHY
AND
FURTHER
READING.
278
PROBLEMS
FOR
CHAPTER
9.
287
CHAPTER
10
INFRARED
SPECTROSCOPY.
289
10.0
INTRODUCTION.
289
10.1
THE
ORIGIN
OF
THE
INFRARED
SPECTRA
OF
MOLECULES.
290
10.2
SIMPLE
HARMONIC
MOTION.
290
10.3
THE
QUANTUM-MECHANICAL
HARMONIC
OSCILLATOR.
293
10.3.1
QUANTISATION
OF
THE
ENERGY.
293
10.3.2
ZERO-POINT
ENERGY.
294
10.3.3
VIBRATIONAL
EIGENFUNCTIONS.
294
10.4
ROTATION
OF
A
DIATOMIC
MOLECULE.
294
10.4.1
EIGENFUNCTIONS
OF
THE
RIGID
ROTATOR.
297
10.5
SELECTION
RULES
FOR
VIBRATIONAL
AND
ROTATIONAL
TRANSITIONS.
297
10.5.1
A
SEMI-CLASSICAL
VIEW
OF
THE
SELECTION
RULES.
301
10.5.2
INFRARED
INTENSITIES.
301
10.6
REAL
DIATOMIC
MOLECULES.
302
10.7
POLYATOMIC
MOLECULES.
303
10.7.1
NORMAL
CO-ORDINATES,
NORMAL
VIBRATIONS,
VIBRATIONAL
EIGENFUNCTIONS
AND
EIGENVALUES.
303
10.7.2
VIBRATIONS
OF
REAL
POLYATOMIC
MOLECULES.
305
10.7.3
CHARACTERISTIC
GROUP
FREQUENCIES.
308
10.7.4
LARGE
MOLECULES.
308
10.8
ANHARMONICITY.
309
10.8.1
FERMI
RESONANCE.
309
10.8.2
VIBRATIONAL
ANGULAR
MOMENTUM
AND
THE
CORIOLIS
INTERACTION
.
311
10.9
THE
AB-INITIO
CALCULATION
OF
IR
SPECTRA.
316
CONTENTS
XI
10.10
THE
SPECIAL
CASE
OF
NEAR
INFRARED
SPECTROSCOPY.
317
10.11
BIBLIOGRAPHY
AND
FURTHER
READING.
317
PROBLEMS
FOR
CHAPTER
10.
324
CHAPTER
11
ELECTRONIC
SPECTROSCOPY.
327
11.0
INTRODUCTION.
327
11.1
ATOMIC
AND
MOLECULAR
ORBITALS.
328
11.2
THE
SPECTRA
OF
COVALENT
MOLECULES.
329
11.2.1
N
*
N*
TRANSITIONS.
329
11.2.2
N
-
7T*
TRANSITIONS.
330
11.2.3
TRANSITION-METAL
COMPLEXES.
330
11.3
CHARGE
TRANSFER
(CT)
SPECTRA.
330
11.4
MANY-ELECTRON
WAVE
FUNCTIONS.
332
11.5
THE
IS
1
2S
1
CONFIGURATION
OF
THE
HELIUM
ATOM;
SINGLET
AND
TRIPLET
STATES
.
.
333
11.5.1
THE
ENERGIES
OF
THE
IS
-
2S
EXCITED
STATES
OF
THE
HELIUM
ATOM
.
335
11.5.2
THE
ONE-ELECTRON
ENERGIES;
OPERATOR
-JV,
2
-IV
2
2
-2/N-2
IN
.
335
11.5.3
THE
TWO-ELECTRON,
I.E.
ELECTRON-REPULSION,
ENERGY;
OPERATOR
L/RI
2
336
11.5.4
THE
TOTAL
ENERGIES
OF
SINGLET
AND
TRIPLET
STATE.
338
11.5.5
ELECTRON
REPULSION
IN
THE
TRIPLET
AND
SINGLET
STATES
OF
THE
EXCITED
HELIUM
ATOM:
A
DIAGRAMMATIC
ILLUSTRATION.
339
11.5.6
SUMMARY
OF
SECTION
11.5.
341
11.6
THE
TT
-ELECTRON
SPECTRUM
OF
BENZENE.
341
11.7
SELECTION
RULES.
344
11.7.1
ELECTRON
SPIN
(MULTIPLICITY)
AND
TRANSITION
PROBABILITY.
344
11.7.2
SPATIAL
ASPECTS
OF
TRANSITION
PROBABILITY
FOR
AN
ALLOWED
ELECTRONIC
TRANSITION.
346
11.7.3
THE
VIBRATIONAL
FACTOR
IN
THE
TRANSITION
PROBABILITY.
347
11.8
SLATER
DETERMINANTS
(APPENDIX
6).
348
11.9
BIBLIOGRAPHY
AND
FURTHER
READING.
348
PROBLEMS
FOR
CHAPTER
11.
348
CHAPTER
12
SOME
SPECIAL
TOPICS.
351
12.0
INTRODUCTION.
352
12.1
THE
HIICKEL
MOLECULAR
ORBITAL
(HMO)
THEORY.
352
12.1.1
THE
BASIS
OF
HIICKEL*S
APPROACH.
352
12.1.2
THE
METHOD.
353
12.1.3
HIICKEL*S
ASSUMPTIONS.
354
12.1.4
DETERMINATION
OF
HMO
ENERGIES
AND
AO
COEFFICIENTS.
354
12.1.5
APPLICATIONS
OF
HMO
ENERGIES.
357
12.1.6
APPLICATIONS
OF
HMO
COEFFICIENTS.
361
12.1.7
SOME
FINAL
COMMENTS
ON
THE
HIICKEL
THEORY.
362
12.2
MAGNETISM
IN
CHEMISTRY.
363
12.2.1
MAGNETIC
SUSCEPTIBILITY:
DIAMAGNETISM
AND
PARAMAGNETISM
.
364
CONTENTS
XII
12.2.2
MAGNETIC
SUSCEPTIBILITY:
FERROMAGNETISM
AND
ANTIFERROMAGNETISM
365
12.2.3
MAGNETIC
FIELDS
AND
DIPOLES:
SOME
DEFINITIONS.
365
12.2.4
THE
MAGNETIC
EFFECT
OF
ELECTRONIC
ORBITAL
MOTION.
366
12.2.5
THE
CONSEQUENCES
OF
CHEMICAL
BONDING.
368
12.2.6
THE
MAGNETIC
EFFECT
OF
ELECTRON
SPIN.
369
12.2.7
MAGNETISM
IN
PRACTICE.
370
12.2.8
SYSTEMS
OF
INTERACTING
MOLECULAR
MAGNETS.
374
12.2.9
A
NOTE
OF
WARNING.
376
12.2.10
AN
APPLICATION.
377
12.3
THE
BAND
THEORY
OF
SOLIDS.
378
12.3.1
THE
TIGHT
BINDING
APPROXIMATION.
378
12.3.2
THE
ELECTRON-GAS
(FREE-ELECTRON)
APPROXIMATION.
381
12.3.3
MOLECULAR
AND
IONIC
SOLIDS.
386
12.3.4
APPLICATIONS.
387
12.3.5
METALS,
INSULATORS
AND
SEMICONDUCTORS.
387
12.3.6
OPTICAL
PROPERTIES
OF
SOLIDS.
390
12.3.7
MECHANICAL
PROPERTIES
OF
SOLIDS.
390
12.4
BIBLIOGRAPHY
AND
FURTHER
READING.
390
PROBLEMS
FOR
CHAPTER
12.
397
APPENDICES.
1
FUNDAMENTAL
CONSTANTS
AND
ATOMIC
UNITS.
401
2
THE
VARIATION
METHOD
AND
THE
SECULAR
EQUATIONS.
403
3
ENERGIES
AND
WAVE
FUNCTIONS
BY
MATRIX
DIAGONALISATION
.
411
4
PERTURBATION
THEORY.
417
5
THE
SPHERICAL
HARMONICS
AND
HYDROGEN
ATOM
WAVE
FUNCTIONS.
425
6
SLATER
DETERMINANTS.
429
7
SPHERICAL
POLAR
CO-ORDINATES.
431
8
NUMBERS:
REAL,
IMAGINARY
AND
COMPLEX.
433
9
DIPOLE
AND
TRANSITION
DIPOLE
MOMENTS.
435
10
WAVE
FUNCTIONS
FOR
THE
3
F
STATES
OF
D
2
USING
SHIFT
OPERATORS.
439
INDEX
443 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Grinter, Roger |
author_facet | Grinter, Roger |
author_role | aut |
author_sort | Grinter, Roger |
author_variant | r g rg |
building | Verbundindex |
bvnumber | BV020851187 |
callnumber-first | Q - Science |
callnumber-label | QD462 |
callnumber-raw | QD462 |
callnumber-search | QD462 |
callnumber-sort | QD 3462 |
callnumber-subject | QD - Chemistry |
classification_rvk | VE 5650 |
classification_tum | CHE 187f CHE 160f CHE 150f |
ctrlnum | (OCoLC)58919972 (DE-599)BVBBV020851187 |
dewey-full | 541/.28 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541/.28 |
dewey-search | 541/.28 |
dewey-sort | 3541 228 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik Chemie |
discipline_str_mv | Chemie / Pharmazie Physik Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02061nam a2200553zc 4500</leader><controlfield tag="001">BV020851187</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060110 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051031s2005 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005009405</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470013176</subfield><subfield code="c">cloth : acidfree paper</subfield><subfield code="9">0-470-01317-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470013175</subfield><subfield code="9">978-0-470-01317-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470013182</subfield><subfield code="9">978-0-470-01318-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470013184</subfield><subfield code="c">pbk. : acidfree paper</subfield><subfield code="9">0-470-01318-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)58919972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020851187</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD462</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541/.28</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5650</subfield><subfield code="0">(DE-625)147118:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 187f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 160f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grinter, Roger</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The quantum in chemistry</subfield><subfield code="b">an experimentalist's view</subfield><subfield code="c">Roger Grinter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 459 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrum analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum measure theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektroskopie</subfield><subfield code="0">(DE-588)4056138-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spektroskopie</subfield><subfield code="0">(DE-588)4056138-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip0510/2005009405.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014172891&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014172891</subfield></datafield></record></collection> |
id | DE-604.BV020851187 |
illustrated | Illustrated |
index_date | 2024-07-02T13:19:52Z |
indexdate | 2024-07-09T20:26:37Z |
institution | BVB |
isbn | 0470013176 9780470013175 9780470013182 0470013184 |
language | English |
lccn | 2005009405 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014172891 |
oclc_num | 58919972 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-11 |
physical | XIV, 459 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Wiley |
record_format | marc |
spelling | Grinter, Roger Verfasser aut The quantum in chemistry an experimentalist's view Roger Grinter Chichester Wiley 2005 XIV, 459 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Quantum chemistry Spectrum analysis Quantum measure theory Spektroskopie (DE-588)4056138-0 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Quantenchemie (DE-588)4047979-1 gnd rswk-swf Quantenchemie (DE-588)4047979-1 s DE-604 Spektroskopie (DE-588)4056138-0 s Quantenmechanik (DE-588)4047989-4 s http://www.loc.gov/catdir/toc/ecip0510/2005009405.html Table of contents HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014172891&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grinter, Roger The quantum in chemistry an experimentalist's view Quantum chemistry Spectrum analysis Quantum measure theory Spektroskopie (DE-588)4056138-0 gnd Quantenmechanik (DE-588)4047989-4 gnd Quantenchemie (DE-588)4047979-1 gnd |
subject_GND | (DE-588)4056138-0 (DE-588)4047989-4 (DE-588)4047979-1 |
title | The quantum in chemistry an experimentalist's view |
title_auth | The quantum in chemistry an experimentalist's view |
title_exact_search | The quantum in chemistry an experimentalist's view |
title_exact_search_txtP | The quantum in chemistry an experimentalist's view |
title_full | The quantum in chemistry an experimentalist's view Roger Grinter |
title_fullStr | The quantum in chemistry an experimentalist's view Roger Grinter |
title_full_unstemmed | The quantum in chemistry an experimentalist's view Roger Grinter |
title_short | The quantum in chemistry |
title_sort | the quantum in chemistry an experimentalist s view |
title_sub | an experimentalist's view |
topic | Quantum chemistry Spectrum analysis Quantum measure theory Spektroskopie (DE-588)4056138-0 gnd Quantenmechanik (DE-588)4047989-4 gnd Quantenchemie (DE-588)4047979-1 gnd |
topic_facet | Quantum chemistry Spectrum analysis Quantum measure theory Spektroskopie Quantenmechanik Quantenchemie |
url | http://www.loc.gov/catdir/toc/ecip0510/2005009405.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014172891&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grinterroger thequantuminchemistryanexperimentalistsview |