An introduction to semiflows:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton u.a.
Chapman & Hall/CRC
2005
|
Schriftenreihe: | Chapman & Hall/CRC monographs and surveys in pure and applied mathematics
134 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (p. 373-380) and index |
Beschreibung: | xvi, 386 p. graph. Darst. 25 cm |
ISBN: | 1584884584 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV020849541 | ||
003 | DE-604 | ||
005 | 20051129 | ||
007 | t | ||
008 | 051028s2005 xxud||| |||| 00||| eng d | ||
010 | |a 2004055145 | ||
020 | |a 1584884584 |c acidfree paper |9 1-58488-458-4 | ||
035 | |a (OCoLC)55765524 | ||
035 | |a (DE-599)BVBBV020849541 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-384 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA614.82 | |
082 | 0 | |a 515/.352 |2 22 | |
082 | 0 | |a 515.352 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
100 | 1 | |a Milani, Albert |e Verfasser |0 (DE-588)1027129056 |4 aut | |
245 | 1 | 0 | |a An introduction to semiflows |c Albert J. Milani ; Norbert J. Koksch |
264 | 1 | |a Boca Raton u.a. |b Chapman & Hall/CRC |c 2005 | |
300 | |a xvi, 386 p. |b graph. Darst. |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Chapman & Hall/CRC monographs and surveys in pure and applied mathematics |v 134 | |
500 | |a Includes bibliographical references (p. 373-380) and index | ||
650 | 4 | |a Flots (Dynamique différentiable) | |
650 | 4 | |a Flows (Differentiable dynamical systems) | |
650 | 0 | 7 | |a Fluss |g Mathematik |0 (DE-588)4489499-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fluss |g Mathematik |0 (DE-588)4489499-5 |D s |
689 | 0 | 1 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Koksch, Norbert |d 1962- |e Verfasser |0 (DE-588)121901548 |4 aut | |
830 | 0 | |a Chapman & Hall/CRC monographs and surveys in pure and applied mathematics |v 134 |w (DE-604)BV013350872 |9 134 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171271&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014171271 |
Datensatz im Suchindex
_version_ | 1804134562273427456 |
---|---|
adam_text | K CHAPMAN & HALL/CRC MONOGRAPHS AND SURVEYS IN PURE AND APPLIED
MATHEMATICS 134 AN INTRODUCTION TO SEMIFLOWS ALBERT J. MILANI NORBERT J.
KOKSCH CHAPMAN & HALL/CRC A CRC PRESS COMPANY BOCA RATON LONDON NEW YORK
WASHINGTON, D.C. CONTENTS 1 DYNAMICAL PROCESSES 1 1.1 INTRODUCTION 1 1.2
ORDINARY DIFFERENTIAL EQUATIONS 4 1.2.1 WELL-POSEDNESS 6 1.2.2 REGULAR
AND CHAOTIC SYSTEMS 8 1.2.3 DEPENDENCE ON PARAMETERS 10 1.2.4 AUTONOMOUS
EQUATIONS 11 1.3 ATTRACTING SETS 16 1.4 ITERATED SEQUENCES 20 1.4.1
POINCARE MAPS 22 1.4.2 BERNOULLI S SEQUENCES 24 1.4.3 TENT MAPS 27 1.4.4
LOGISTIC MAPS 30 1.5 LORENZ EQUATIONS 32 1.5.1 THE DIFFERENTIAL SYSTEM
33 1.5.2 EQUILIBRIUM POINTS 33 1.6 DUFFING S EQUATION 36 1.6.1 THE
GENERAL MODEL 36 1.6.2 A LINEARIZED MODEL : 38 1.7 SUMMARY 40 2
ATTRACTORS OF SEMIFLOWS 41 2.1 DISTANCE AND SEMIDISTANCE 41 2.2 DISCRETE
AND CONTINUOUS SEMIFLOWS 42 2.2.1 TYPES OF SEMIFLOWS . . : ; 42 2.2.2
EXAMPLE: LORENZ EQUATIONS 46 2.3 INVARIANT SETS 49 2.3.1 ORBITS 50
2.3.2 LIMIT SETS 52 2.3.3 STABILITY OF STATIONARY POINTS 55 2.3.4
INVARIANCE OF ORBITS AND O)-LIMIT SETS 59 2.4 ATTRACTORS 64 2.4.1
ATTRACTING SETS 64 2.4.2 GLOBAL ATTRACTORS 65 2.4.3 COMPACTNESS 67 2.5
DISSIPATIVITY 68 2.6 ABSORBING SETS AND ATTRACTORS 70 VN VIA 2.6.1
ATTRACTORS OF COMPACT SEMIFLOWS 70 2.6.2 A GENERALIZATION 72 2.7
ATTRACTORS VIA A-CONTRACTIONS 73 2.7.1 MEASURING NONCOMPACTNESS 74 2.7.2
A ROUTE TO A-CONTRACTIONS 79 2.8 FRACTAL DIMENSION 81 2.9 A PRIORI
ESTIMATES 83 2.9.1 INTEGRAL AND DIFFERENTIAL INEQUALITIES * . 84 2.9.2
EXPONENTIAL INEQUALITY 86 ATTRACTORS FOR SEMILINEAR EVOLUTION EQUATIONS
89 3.1 PDEES AS DYNAMICAL SYSTEMS 89 3.1.1 THE MODEL IBV PROBLEMS 89
3.1.2 CONSTRUCTION OF THE ATTRACTORS 92 3.2 FUNCTIONAL FRAMEWORK 95
3.2.1 FUNCTION SPACES 95 3.2.2 ORTHOGONAL BASES 97 3.2.3 FINITE
DIMENSIONAL SUBSPACES 98 3.3 THE PARABOLIC PROBLEM 99 3.3.1 STEP 1: THE
SOLUTION OPERATOR 100 3.3.2 STEP 2: ABSORBING SETS 105 3.3.3 STEP 3:
COMPACTNESS OF THE SOLUTION OPERATOR 106 3.3.4 STEP 4: CONCLUSION 107
3.3.5 BACKWARD UNIQUENESS 108 3.4 THE HYPERBOLIC PROBLEM ILL 3.4.1 STEP
1: THE SOLUTION OPERATOR 112 3.4.2 STEP 2: ABSORBING SETS 114 3.4.3 STEP
3: COMPACTNESS OF THE SOLUTION OPERATOR 116 3.4.4 STEP 4: CONCLUSION 121
3.4.5 ATTRACTORS VIA A-CONTRACTIONS 121 3.5 REGULARITY 123 3.6 UPPER
SEMICONTINUITY OF THE GLOBAL ATTRACTORS 132 EXPONENTIAL ATTRACTORS 135
4.1 INTRODUCTION 135 4.2 THE DISCRETE SQUEEZING PROPERTY 137 4.2.1
ORTHOGONAL PROJECTIONS 137 4.2.2 SQUEEZING PROPERTIES 138 4.2.3
SQUEEZING PROPERTIES AND EXPONENTIAL ATTRACTORS 139 4.2.4 PROOF OF
THEOREM 4.5 141 4.3 THE PARABOLIC PROBLEM 143 4.3.1 STEP 1: ABSORBING
SETS IN X 143 4.3.2 STEP 2: THE DISCRETE SQUEEZING PROPERTY 144 4.4 THE
HYPERBOLIC PROBLEM 147 4.4.1 STEP 1: ABSORBING SETS IN X 147 IX 4.4.2
STEP 2: THE DISCRETE SQUEEZING PROPERTY 149 4.5 PROOF OF THEOREM 4.4 152
4.5.1 OUTLINE 152 4.5.2 THE CONE PROPERTY . . . . . . . : 153 4.5.3 THE
BASIC COVERING STEP 155 4.5.4 THE FIRST AND SECOND ITERATES 159 4.5.5
THE GENERAL ITERATE 161 4.5.6 CONCLUSION 162 4.6 CONCLUDING REMARKS 175
INERTIAL MANIFOLDS 177 5.1 INTRODUCTION 177 5.2 DEFINITIONS AND
COMPARISONS 179 5.2.1 LIPSCHITZ MANIFOLDS AND INERTIAL MANIFOLDS 179
5.2.2 INERTIAL MANIFOLDS AND EXPONENTIAL ATTRACTORS 183 5.2.3 METHODS OF
CONSTRUCTION OF THE INERTIAL MANIFOLD 185 5.3 GEOMETRIC ASSUMPTIONS ON
THE SEMIFLOW 189 5.3.1 THE CONE INVARIANCE PROPERTY 189 5.3.2 DECAY AND
SQUEEZING PROPERTIES 191 5.3.3 CONSEQUENCES OF THE DECAY PROPERTY 193
5.4 STRONG SQUEEZING PROPERTY AND INERTIAL MANIFOLDS 195 5.4.1
SURJECTIVITY AND UNIFORM BOUNDEDNESS 195 5.4.2 CONSTRUCTION OF THE
INERTIAL MANIFOLD , 197 5.5 A MODIFICATION 201 5.5.1 THE MODIFIED STRONG
SQUEEZING PROPERTY 201 5.5.2 CONSEQUENCES OF THE MODIFIED STRONG
SQUEEZING PROPERTY . 203 5.5.3 CONSTRUCTION OF THE INERTIAL MANIFOLD, 2
204 5.5.4 COMPARISON OF THE SQUEEZING PROPERTIES 206 5.6 INERTIAL
MANIFOLDS FOR EVOLUTION;EQUATIONS 208 5.6.1 THE EVOLUTION PROBLEM : 208
5.6.2 THE SPECTRAL GAP CONDITION 209 5.6.3 THE STRONG SQUEEZING
PROPERTIES 212 5.6.4 UNIFORM BOUNDEDNESS AND SURJECTIVITY 215 5.7
APPLICATIONS , 218 5.7.1 SEMILINEAR HEAT EQUATIONS 219 5.7.2 SEMILINEAR
WAVE EQUATIONS 220 5.8 SEMILINEAR EVOLUTION EQUATIONS IN ONE SPACE
DIMENSION 229 5.8.1 THE PARABOLIC PROBLEM 229 5.8.2 ABSORBING SETS 230
5.8.3 ADJUSTING THE NONLINEARITY 234 5.8.4 THE INERTIAL MANIFOLD 235
5.8.5 THE HYPERBOLIC PERTURBATION * 238 5.8.6 CONCLUDING REMARKS 239 6
EXAMPLES 241 6.1 CAHN-HILLIARD EQUATIONS 241 6.1.1 INTRODUCTION 242
6.1.2 THE CAHN-HILLIARD SEMIFLOWS 244 6.1.3 ABSORBING SETS 247 6.1.4 THE
GLOBAL ATTRACTOR 250 6.1.5 THE EXPONENTIAL ATTRACTOR 251 6.1.6 THE
INERTIAL MANIFOLD 254 6.2 BEAM AND VON KARMAN EQUATION 261 6.2.1
FUNCTIONAL FRAMEWORK AND NOTATIONS 261 6.2.2 THE BEAM EQUATION SEMIFLOW
262 6.2.3 ABSORBING SETS 263 6.2.4 THE GLOBAL ATTRACTOR 267 6.2.5 THE
EXPONENTIAL ATTRACTOR 269 6.2.6 INERTIAL MANIFOLD 271 6.2.7 VON KARMAN
EQUATIONS 272 6.3 NAVIER-STOKES EQUATIONS 272 6.3.1 THE EQUATIONS AND
THEIR FUNCTIONAL FRAMEWORK 272 6.3.2 THE 2-DIMENSIONAL NAVIER-STOKES
SEMIFLOW 275 6.3.3 ABSORBING SETS AND ATTRACTOR 276 6.3.4 THE
EXPONENTIAL ATTRACTOR 278 6.4 MAXWELL S EQUATIONS 280 6.4.1 THE
EQUATIONS AND THEIR FUNCTIONAL FRAMEWORK 281 6.4.2 THE QUASI-STATIONARY
MAXWELL SEMIFLOW 285 6.4.3 ABSORBING SETS AND ATTRACTORS 288 7 A
NONEXISTENCE RESULT FOR INERTIAL MANIFOLDS 291 7.1 THE INITIAL-BOUNDARY
VALUE PROBLEM 291 7.2 OVERVIEW OF THE ARGUMENT 293 7.3 THE LINEARIZED
PROBLEM 295 7.4 INERTIAL MANIFOLDS FOR THE LINEARIZED PROBLEM 298 7.5 C
1 LINEARIZATION EQUIVALENCE 303 7.6 PERTURBATIONS OF THE NONLINEAR FLOW
304 7.7 ASYMPTOTIC PROPERTIES OF THE PERTURBED FLOW 307 7.8 THE
NONEXISTENCE RESULT 309 7.9 PROOF OF PROPOSITION 7.17 310 7.10 THE C 1
LINEARIZATION EQUIVALENCE THEOREMS 316 7.10.1 EQUIVALENCE FOR A SINGLE
OPERATOR 316 7.10.2 EQUIVALENCE FOR GROUPS OF OPERATORS 320 APPENDIX:
SELECTED RESULTS FROM ANALYSIS 323 A.I ORDINARY DIFFERENTIAL EQUATIONS
323 A.1.1 CLASSICAL SOLUTIONS 323 A.1.2 GENERALIZED SOLUTIONS 324 A. 1.3
STABILITY FOR AUTONOMOUS SYSTEMS 325 XI A.2 LINEAR SPACES AND THEIR
DUALS 328 A.2.1 ORTHONORMAL BASES IN HILBERT SPACES 328 A.2.2 DUAL
SPACES AND THE HAHN-BANACH THEOREM 329 A.2.3 LINEAR OPERATORS IN BANACH
SPACES 330 A.2.4 ADJOINT OF A BOUNDED OPERATOR 333 A.2.5 ADJOINT OF AN
UNBOUNDED OPERATOR 335 A.2.6 GELFAND TRIPLES OF HILBERT SPACES 335 A.2.7
LINEAR OPERATORS IN GELFAND TRIPLES 336 A.2.8 EIGENVALUES OF COMPACT
OPERATORS 338 A.2.9 FRACTIONAL POWERS OF POSITIVE OPERATORS 340 A.2.10
INTERPOLATION SPACES . 342 A.2.11 DIFFERENTIAL CALCULUS IN BANACH SPACES
344 A.3 SEMIGROUPS OF LINEAR OPERATORS 345 A.3.1 GENERAL RESULTS 345
A.3.2 APPLICATIONS TO PDES 347 A.4 LEBESGUE SPACES 349 A.4.1 THE SPACES
I/(FT) 349 A.4.2 INEQUALITIES 350 A.4.3 OTHER PROPERTIES OF THE SPACES
LP(Q) 351 A.5 SOBOLEV SPACES OF SCALAR VALUED FUNCTIONS 352 A.5.1
DISTRIBUTIONS IN FT 353 A.5.2 THESPACESH M (FT),M*N 353 A.5.3 THE SPACES
H S (I2),^EM O 355 A.5.4 THE SPACES H !O (^), J 6 R 0 , AND H J (FT),.?
* K 0 357 A.5.5 THE LAPLACE OPERATOR 358 A.6 SOBOLEV SPACES OF VECTOR
VALUED FUNCTIONS 361 A.6.1 LEBESGUE AND SOBOLEV SPACES 361 A.6.2 THE
INTERMEDIATE DERIVATIVES THEOREM 362 A.7 THE SPACES H(DIV,FT) AND
H(CURL,FT) 363 A.7.1 NOTATIONS 364 A.7.2 THE SPACE H(DIV,FT) . : 364
A.7.3 THE SPACE H(CURL, FT) . . : 365 A.7.4 RELATIONS BETWEEN H(DIV,FT)
AND H(CURL,FT) 367 A.8 ALMOST PERIODIC FUNCTIONS 371 BIBLIOGRAPHY 373
INDEX 381 NOMENCLATURE 385
|
adam_txt |
K CHAPMAN & HALL/CRC MONOGRAPHS AND SURVEYS IN PURE AND APPLIED
MATHEMATICS 134 AN INTRODUCTION TO SEMIFLOWS ALBERT J. MILANI NORBERT J.
KOKSCH CHAPMAN & HALL/CRC A CRC PRESS COMPANY BOCA RATON LONDON NEW YORK
WASHINGTON, D.C. CONTENTS 1 DYNAMICAL PROCESSES 1 1.1 INTRODUCTION 1 1.2
ORDINARY DIFFERENTIAL EQUATIONS 4 1.2.1 WELL-POSEDNESS 6 1.2.2 REGULAR
AND CHAOTIC SYSTEMS 8 1.2.3 DEPENDENCE ON PARAMETERS 10 1.2.4 AUTONOMOUS
EQUATIONS 11 1.3 ATTRACTING SETS 16 1.4 ITERATED SEQUENCES 20 1.4.1
POINCARE MAPS 22 1.4.2 BERNOULLI'S SEQUENCES 24 1.4.3 TENT MAPS 27 1.4.4
LOGISTIC MAPS 30 1.5 LORENZ' EQUATIONS 32 1.5.1 THE DIFFERENTIAL SYSTEM
33 1.5.2 EQUILIBRIUM POINTS 33 1.6 DUFFING'S EQUATION 36 1.6.1 THE
GENERAL MODEL 36 1.6.2 A LINEARIZED MODEL : 38 1.7 SUMMARY 40 2
ATTRACTORS OF SEMIFLOWS 41 2.1 DISTANCE AND SEMIDISTANCE 41 2.2 DISCRETE
AND CONTINUOUS SEMIFLOWS 42 2.2.1 TYPES OF SEMIFLOWS . . : ; 42 2.2.2
EXAMPLE: LORENZ' EQUATIONS 46 2.3 INVARIANT SETS 49 2.3.1 ORBITS 50
2.3.2 LIMIT SETS 52 2.3.3 STABILITY OF STATIONARY POINTS 55 2.3.4
INVARIANCE OF ORBITS AND O)-LIMIT SETS 59 2.4 ATTRACTORS 64 2.4.1
ATTRACTING SETS 64 2.4.2 GLOBAL ATTRACTORS 65 2.4.3 COMPACTNESS 67 2.5
DISSIPATIVITY 68 2.6 ABSORBING SETS AND ATTRACTORS 70 VN VIA 2.6.1
ATTRACTORS OF COMPACT SEMIFLOWS 70 2.6.2 A GENERALIZATION 72 2.7
ATTRACTORS VIA A-CONTRACTIONS 73 2.7.1 MEASURING NONCOMPACTNESS 74 2.7.2
A ROUTE TO A-CONTRACTIONS 79 2.8 FRACTAL DIMENSION 81 2.9 A PRIORI
ESTIMATES 83 2.9.1 INTEGRAL AND DIFFERENTIAL INEQUALITIES * . 84 2.9.2
EXPONENTIAL INEQUALITY 86 ATTRACTORS FOR SEMILINEAR EVOLUTION EQUATIONS
89 3.1 PDEES AS DYNAMICAL SYSTEMS 89 3.1.1 THE MODEL IBV PROBLEMS 89
3.1.2 CONSTRUCTION OF THE ATTRACTORS 92 3.2 FUNCTIONAL FRAMEWORK 95
3.2.1 FUNCTION SPACES 95 3.2.2 ORTHOGONAL BASES 97 3.2.3 FINITE
DIMENSIONAL SUBSPACES 98 3.3 THE PARABOLIC PROBLEM 99 3.3.1 STEP 1: THE
SOLUTION OPERATOR 100 3.3.2 STEP 2: ABSORBING SETS 105 3.3.3 STEP 3:
COMPACTNESS OF THE SOLUTION OPERATOR 106 3.3.4 STEP 4: CONCLUSION 107
3.3.5 BACKWARD UNIQUENESS 108 3.4 THE HYPERBOLIC PROBLEM ILL 3.4.1 STEP
1: THE SOLUTION OPERATOR 112 3.4.2 STEP 2: ABSORBING SETS 114 3.4.3 STEP
3: COMPACTNESS OF THE SOLUTION OPERATOR 116 3.4.4 STEP 4: CONCLUSION 121
3.4.5 ATTRACTORS VIA A-CONTRACTIONS 121 3.5 REGULARITY 123 3.6 UPPER
SEMICONTINUITY OF THE GLOBAL ATTRACTORS 132 EXPONENTIAL ATTRACTORS 135
4.1 INTRODUCTION 135 4.2 THE DISCRETE SQUEEZING PROPERTY 137 4.2.1
ORTHOGONAL PROJECTIONS 137 4.2.2 SQUEEZING PROPERTIES 138 4.2.3
SQUEEZING PROPERTIES AND EXPONENTIAL ATTRACTORS 139 4.2.4 PROOF OF
THEOREM 4.5 141 4.3 THE PARABOLIC PROBLEM 143 4.3.1 STEP 1: ABSORBING
SETS IN X\ 143 4.3.2 STEP 2: THE DISCRETE SQUEEZING PROPERTY 144 4.4 THE
HYPERBOLIC PROBLEM 147 4.4.1 STEP 1: ABSORBING SETS IN X\ 147 IX 4.4.2
STEP 2: THE DISCRETE SQUEEZING PROPERTY 149 4.5 PROOF OF THEOREM 4.4 152
4.5.1 OUTLINE 152 4.5.2 THE CONE PROPERTY . . . . . . .': 153 4.5.3 THE
BASIC COVERING STEP 155 4.5.4 THE FIRST AND SECOND ITERATES 159 4.5.5
THE GENERAL ITERATE 161 4.5.6 CONCLUSION 162 4.6 CONCLUDING REMARKS 175
INERTIAL MANIFOLDS 177 5.1 INTRODUCTION 177 5.2 DEFINITIONS AND
COMPARISONS 179 5.2.1 LIPSCHITZ MANIFOLDS AND INERTIAL MANIFOLDS 179
5.2.2 INERTIAL MANIFOLDS AND EXPONENTIAL ATTRACTORS 183 5.2.3 METHODS OF
CONSTRUCTION OF THE INERTIAL MANIFOLD 185 5.3 GEOMETRIC ASSUMPTIONS ON
THE SEMIFLOW 189 5.3.1 THE CONE INVARIANCE PROPERTY 189 5.3.2 DECAY AND
SQUEEZING PROPERTIES 191 5.3.3 CONSEQUENCES OF THE DECAY PROPERTY 193
5.4 STRONG SQUEEZING PROPERTY AND INERTIAL MANIFOLDS 195 5.4.1
SURJECTIVITY AND UNIFORM BOUNDEDNESS 195 5.4.2 CONSTRUCTION OF THE
INERTIAL MANIFOLD , 197 5.5 A MODIFICATION 201 5.5.1 THE MODIFIED STRONG
SQUEEZING PROPERTY 201 5.5.2 CONSEQUENCES OF THE MODIFIED STRONG
SQUEEZING PROPERTY . 203 5.5.3 CONSTRUCTION OF THE INERTIAL MANIFOLD, 2
204 5.5.4 COMPARISON OF THE SQUEEZING PROPERTIES 206 5.6 INERTIAL
MANIFOLDS FOR EVOLUTION;EQUATIONS 208 5.6.1 THE EVOLUTION PROBLEM : 208
5.6.2 THE SPECTRAL GAP CONDITION 209 5.6.3 THE STRONG SQUEEZING
PROPERTIES 212 5.6.4 UNIFORM BOUNDEDNESS AND SURJECTIVITY 215 5.7
APPLICATIONS , 218 5.7.1 SEMILINEAR HEAT EQUATIONS 219 5.7.2 SEMILINEAR
WAVE EQUATIONS 220 5.8 SEMILINEAR EVOLUTION EQUATIONS IN ONE SPACE
DIMENSION 229 5.8.1 THE PARABOLIC PROBLEM 229 5.8.2 ABSORBING SETS 230
5.8.3 ADJUSTING THE NONLINEARITY 234 5.8.4 THE INERTIAL MANIFOLD 235
5.8.5 THE HYPERBOLIC PERTURBATION * 238 5.8.6 CONCLUDING REMARKS 239 6
EXAMPLES 241 6.1 CAHN-HILLIARD EQUATIONS 241 6.1.1 INTRODUCTION 242
6.1.2 THE CAHN-HILLIARD SEMIFLOWS 244 6.1.3 ABSORBING SETS 247 6.1.4 THE
GLOBAL ATTRACTOR 250 6.1.5 THE EXPONENTIAL ATTRACTOR 251 6.1.6 THE
INERTIAL MANIFOLD 254 6.2 BEAM AND VON KARMAN EQUATION 261 6.2.1
FUNCTIONAL FRAMEWORK AND NOTATIONS 261 6.2.2 THE BEAM EQUATION SEMIFLOW
262 6.2.3 ABSORBING SETS 263 6.2.4 THE GLOBAL ATTRACTOR 267 6.2.5 THE
EXPONENTIAL ATTRACTOR 269 6.2.6 INERTIAL MANIFOLD 271 6.2.7 VON KARMAN
EQUATIONS 272 6.3 NAVIER-STOKES EQUATIONS 272 6.3.1 THE EQUATIONS AND
THEIR FUNCTIONAL FRAMEWORK 272 6.3.2 THE 2-DIMENSIONAL NAVIER-STOKES
SEMIFLOW 275 6.3.3 ABSORBING SETS AND ATTRACTOR 276 6.3.4 THE
EXPONENTIAL ATTRACTOR 278 6.4 MAXWELL'S EQUATIONS 280 6.4.1 THE
EQUATIONS AND THEIR FUNCTIONAL FRAMEWORK 281 6.4.2 THE QUASI-STATIONARY
MAXWELL SEMIFLOW 285 6.4.3 ABSORBING SETS AND ATTRACTORS 288 7 A
NONEXISTENCE RESULT FOR INERTIAL MANIFOLDS 291 7.1 THE INITIAL-BOUNDARY
VALUE PROBLEM 291 7.2 OVERVIEW OF THE ARGUMENT 293 7.3 THE LINEARIZED
PROBLEM '295 7.4 INERTIAL MANIFOLDS FOR THE LINEARIZED PROBLEM 298 7.5 C
1 LINEARIZATION EQUIVALENCE 303 7.6 PERTURBATIONS OF THE NONLINEAR FLOW
304 7.7 ASYMPTOTIC PROPERTIES OF THE PERTURBED FLOW 307 7.8 THE
NONEXISTENCE RESULT 309 7.9 PROOF OF PROPOSITION 7.17 310 7.10 THE C 1
LINEARIZATION EQUIVALENCE THEOREMS 316 7.10.1 EQUIVALENCE FOR A SINGLE
OPERATOR 316 7.10.2 EQUIVALENCE FOR GROUPS OF OPERATORS 320 APPENDIX:
SELECTED RESULTS FROM ANALYSIS 323 A.I ORDINARY DIFFERENTIAL EQUATIONS
323 A.1.1 CLASSICAL SOLUTIONS 323 A.1.2 GENERALIZED SOLUTIONS 324 A. 1.3
STABILITY FOR AUTONOMOUS SYSTEMS 325 XI A.2 LINEAR SPACES AND THEIR
DUALS 328 A.2.1 ORTHONORMAL BASES IN HILBERT SPACES 328 A.2.2 DUAL
SPACES AND THE HAHN-BANACH THEOREM 329 A.2.3 LINEAR OPERATORS IN BANACH
SPACES 330 A.2.4 ADJOINT OF A BOUNDED OPERATOR 333 A.2.5 ADJOINT OF AN
UNBOUNDED OPERATOR 335 A.2.6 GELFAND TRIPLES OF HILBERT SPACES 335 A.2.7
LINEAR OPERATORS IN GELFAND TRIPLES 336 A.2.8 EIGENVALUES OF COMPACT
OPERATORS 338 A.2.9 FRACTIONAL POWERS OF POSITIVE OPERATORS 340 A.2.10
INTERPOLATION SPACES . 342 A.2.11 DIFFERENTIAL CALCULUS IN BANACH SPACES
344 A.3 SEMIGROUPS OF LINEAR OPERATORS 345 A.3.1 GENERAL RESULTS 345
A.3.2 APPLICATIONS TO PDES 347 A.4 LEBESGUE SPACES 349 A.4.1 THE SPACES
I/(FT) 349 A.4.2 INEQUALITIES 350 A.4.3 OTHER PROPERTIES OF THE SPACES
LP(Q) 351 A.5 SOBOLEV SPACES OF SCALAR VALUED FUNCTIONS 352 A.5.1
DISTRIBUTIONS IN FT 353 A.5.2 THESPACESH M (FT),M*N 353 A.5.3 THE SPACES
H S (I2),^EM O 355 A.5.4 THE SPACES H !O (^), J 6 R 0 , AND H J (FT),.?
* K 0 357 A.5.5 THE LAPLACE OPERATOR 358 A.6 SOBOLEV SPACES OF VECTOR
VALUED FUNCTIONS 361 A.6.1 LEBESGUE AND SOBOLEV SPACES 361 A.6.2 THE
INTERMEDIATE DERIVATIVES THEOREM 362 A.7 THE SPACES H(DIV,FT) AND
H(CURL,FT) 363 A.7.1 NOTATIONS \ 364 A.7.2 THE SPACE H(DIV,FT) . : 364
A.7.3 THE SPACE H(CURL, FT) . . : 365 A.7.4 RELATIONS BETWEEN H(DIV,FT)
AND H(CURL,FT) 367 A.8 ALMOST PERIODIC FUNCTIONS 371 BIBLIOGRAPHY 373
INDEX 381 NOMENCLATURE 385 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Milani, Albert Koksch, Norbert 1962- |
author_GND | (DE-588)1027129056 (DE-588)121901548 |
author_facet | Milani, Albert Koksch, Norbert 1962- |
author_role | aut aut |
author_sort | Milani, Albert |
author_variant | a m am n k nk |
building | Verbundindex |
bvnumber | BV020849541 |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.82 |
callnumber-search | QA614.82 |
callnumber-sort | QA 3614.82 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 520 SK 810 |
ctrlnum | (OCoLC)55765524 (DE-599)BVBBV020849541 |
dewey-full | 515/.352 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.352 515.352 |
dewey-search | 515/.352 515.352 |
dewey-sort | 3515 3352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02001nam a2200481zcb4500</leader><controlfield tag="001">BV020849541</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20051129 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051028s2005 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004055145</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584884584</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">1-58488-458-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)55765524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020849541</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614.82</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.352</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Milani, Albert</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027129056</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to semiflows</subfield><subfield code="c">Albert J. Milani ; Norbert J. Koksch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton u.a.</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 386 p.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Chapman & Hall/CRC monographs and surveys in pure and applied mathematics</subfield><subfield code="v">134</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 373-380) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flots (Dynamique différentiable)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flows (Differentiable dynamical systems)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluss</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4489499-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fluss</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4489499-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koksch, Norbert</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121901548</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Chapman & Hall/CRC monographs and surveys in pure and applied mathematics</subfield><subfield code="v">134</subfield><subfield code="w">(DE-604)BV013350872</subfield><subfield code="9">134</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171271&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014171271</subfield></datafield></record></collection> |
id | DE-604.BV020849541 |
illustrated | Illustrated |
index_date | 2024-07-02T13:19:24Z |
indexdate | 2024-07-09T20:26:35Z |
institution | BVB |
isbn | 1584884584 |
language | English |
lccn | 2004055145 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014171271 |
oclc_num | 55765524 |
open_access_boolean | |
owner | DE-384 DE-11 DE-188 |
owner_facet | DE-384 DE-11 DE-188 |
physical | xvi, 386 p. graph. Darst. 25 cm |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Chapman & Hall/CRC |
record_format | marc |
series | Chapman & Hall/CRC monographs and surveys in pure and applied mathematics |
series2 | Chapman & Hall/CRC monographs and surveys in pure and applied mathematics |
spelling | Milani, Albert Verfasser (DE-588)1027129056 aut An introduction to semiflows Albert J. Milani ; Norbert J. Koksch Boca Raton u.a. Chapman & Hall/CRC 2005 xvi, 386 p. graph. Darst. 25 cm txt rdacontent n rdamedia nc rdacarrier Chapman & Hall/CRC monographs and surveys in pure and applied mathematics 134 Includes bibliographical references (p. 373-380) and index Flots (Dynamique différentiable) Flows (Differentiable dynamical systems) Fluss Mathematik (DE-588)4489499-5 gnd rswk-swf Dynamisches System (DE-588)4013396-5 gnd rswk-swf Fluss Mathematik (DE-588)4489499-5 s Dynamisches System (DE-588)4013396-5 s DE-604 Koksch, Norbert 1962- Verfasser (DE-588)121901548 aut Chapman & Hall/CRC monographs and surveys in pure and applied mathematics 134 (DE-604)BV013350872 134 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171271&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Milani, Albert Koksch, Norbert 1962- An introduction to semiflows Chapman & Hall/CRC monographs and surveys in pure and applied mathematics Flots (Dynamique différentiable) Flows (Differentiable dynamical systems) Fluss Mathematik (DE-588)4489499-5 gnd Dynamisches System (DE-588)4013396-5 gnd |
subject_GND | (DE-588)4489499-5 (DE-588)4013396-5 |
title | An introduction to semiflows |
title_auth | An introduction to semiflows |
title_exact_search | An introduction to semiflows |
title_exact_search_txtP | An introduction to semiflows |
title_full | An introduction to semiflows Albert J. Milani ; Norbert J. Koksch |
title_fullStr | An introduction to semiflows Albert J. Milani ; Norbert J. Koksch |
title_full_unstemmed | An introduction to semiflows Albert J. Milani ; Norbert J. Koksch |
title_short | An introduction to semiflows |
title_sort | an introduction to semiflows |
topic | Flots (Dynamique différentiable) Flows (Differentiable dynamical systems) Fluss Mathematik (DE-588)4489499-5 gnd Dynamisches System (DE-588)4013396-5 gnd |
topic_facet | Flots (Dynamique différentiable) Flows (Differentiable dynamical systems) Fluss Mathematik Dynamisches System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171271&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013350872 |
work_keys_str_mv | AT milanialbert anintroductiontosemiflows AT kokschnorbert anintroductiontosemiflows |